首页 / 专利库 / 涡轮机 / 涡轮 / 由包含铼和/或钌的超合金制成的涡轮部件以及相关制造方法

由包含铼和/或钌的超合金制成的涡轮部件以及相关制造方法

阅读:987发布:2020-05-08

专利汇可以提供由包含铼和/或钌的超合金制成的涡轮部件以及相关制造方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种 涡轮 部件,诸如涡轮 叶片 或分配器翅片,例如,该涡轮部件包括由基于单晶镍的超 合金 制成的 基板 ,该基于单晶镍的超合金包含铼和/或钌,并且具有体积占主导的γ’-NisAI相和γ-Ni相,部件还包括 覆盖 基板的由基于镍的金属超合金制成的底层,其特征在于,底层具有体积占主导的γ’-NisAI相,并且其中,底层的 铝 的平均 原子 分数介于0.15至0.25之间,铬的平均原子分数介于0.03至0.08之间,铂的平均原子分数介于0.01至0.05之间,铪的平均原子分数小于0.01并且 硅 的平均原子分数小于0.01。一种用于制造涡轮部件的方法,该方法包括以下步骤:将由具有体积占主导的γ’-NisAI相的基于镍的超合金制成的底层 真空 沉积在由包含铼和/或钌的基于镍的超合金制成的基板上,底层的铝的平均原子分数介于0.15至0.25之间,铬的平均原子分数介于0.03至0.08之间,铂的平均原子分数介于0.01至0.05之间,铪的平均原子分数小于0.01并且硅的平均原子分数小于0.01。,下面是由包含铼和/或钌的超合金制成的涡轮部件以及相关制造方法专利的具体信息内容。

1.一种涡轮部件(1),所述涡轮部件包括:由单晶镍基超合金制成的基板(2),所述单晶镍基超合金包含铼和/或钌,并且具有体积占主导的γ’-Ni3Al相和γ-Ni相;以及粘结层(3b),所述粘结层由镍基金属超合金制成并且覆盖所述基板(2),其特征在于,所述粘结层(3b)具有体积占多数的γ’-Ni3Al相(12),并且其中,所述粘结层(3b)的平均原子分数如下:
-的平均原子分数介于0.15至0.25之间;
-铬的平均原子分数介于0.03至0.08之间;
-铂的平均原子分数介于0.01至0.05之间;
-铪的平均原子分数小于0.01;并且
-的平均原子分数小于0.01。
2.根据权利要求1所述的部件,其中,所述粘结层(3b)具有体积百分比大于95%的γ’-Ni3Al相(12)。
3.根据权利要求1或2所述的部件,其中,所述粘结层(3b)具有γ’-Ni3Al相(12)和β-NiAlPt相(11)。
4.根据权利要求1或2所述的部件,其中,所述粘结层(3b)具有γ’-Ni3Al相(12)和γ-Ni相。
5.根据权利要求1至4中的一项所述的部件,其中,所述基板(2)的铼的质量分数大于或等于0.04。
6.根据权利要求1至4中的一项所述的部件,其中,所述粘结层(3b)进一步包括选自钴、钼、钨、、钽中的至少一种元素。
7.根据权利要求1至6中的一项所述的部件,所述部件包括覆盖所述粘结层(3b)的化铝的保护层(4)。
8.根据权利要求7所述的部件,所述部件包括覆盖所述保护层(4)的绝热陶瓷层(9)。
9.根据权利要求1至8中的一项所述的部件,其中,所述粘结层(3)的厚度介于5μm至50μm之间。
10.一种涡轮叶片(6),其特征在于,所述涡轮叶片包括根据权利要求1至9中的一项所述的部件(1)。
11.一种燃气涡轮发动机,其特征在于,所述燃气涡轮发动机包括涡轮,所述涡轮包括根据权利要求10所述的涡轮叶片(6)。
12.一种用于制造涡轮部件(1)的方法,所述方法包括以下步骤:将具有体积占主导的γ’-Ni3Al相的镍基超合金的粘结层(3b)真空沉积在由包含铼和/或钌的镍基超合金制成的基板(2)上,所述粘结层(3b)的平均原子分数如下:
-铝的平均原子分数介于0.15至0.25之间;
-铬的平均原子分数介于0.03至0.08之间;
-铂的平均原子分数介于0.01至0.05之间;
-铪的平均原子分数小于0.01;并且
-硅的平均原子分数小于0.01。
13.根据权利要求12所述的方法,其中,沉积可以通过选自物理气相沉积喷涂、焦蒸发、脉冲激光烧蚀和溅射中的一种方法来进行。
14.根据权利要求12或13所述的方法,其中,可以通过共同喷涂和/或共同蒸发金属靶来沉积所述粘结层(3b)。

说明书全文

由包含铼和/或钌的超合金制成的涡轮部件以及相关制造

方法

技术领域

[0001] 本发明涉及一种例如用于航空的涡轮部件,诸如涡轮叶片喷嘴叶片。

背景技术

[0002] 在涡轮喷气发动机中,由燃烧室产生的排气可以达到1200℃或者甚至1600℃以上的高温。因此,与这些排气接触的涡轮喷气发动机的部件(诸如涡轮叶片)例如必须能够在这些高温下维持其机械性能。
[0003] 为此,已知的是,以“超合金”制造涡轮喷气发动机的某些部件。超合金是高强度金属合金的族,其可以在相对接近其熔点的温度(通常是其熔化温度的0.7倍至0.8倍)下工作。
[0004] 为了增加这些超合金的耐热性并且保护其免受化和腐蚀,已知的是,用充当隔热层的涂层对这些超合金进行涂覆。
[0005] 图1示出了例如为涡轮叶片6或喷嘴叶片的涡轮部件1的截面的示意图。部件1包括基板2,该基板由单晶金属超合金制成且涂覆有隔热层10。
[0006] 隔热层通常由金属粘结层、保护层和绝热层组成。金属粘结层覆盖金属超合金基板。金属粘结层本身被保护层覆盖,该保护层通过金属粘结层的氧化形成。保护层保护超合金基板免受腐蚀和/或氧化。绝热层覆盖保护层。绝热层可以由陶瓷(例如掺氧化钇的氧化锆)制成。
[0007] 粘结层可以由单个化镍β-NiAl或改性铂β-NiAlPt制成。粘结层的平均铝原子分数(介于0.35至0.45之间)足以单独形成氧化铝(Al2O3)保护层,以保护超合金基板免受氧化和腐蚀。
[0008] 然而,当部件经受高温时,超合金基板与金属粘结层之间的镍(尤其是铝)的浓度差导致各种元素的扩散,特别是基板中的镍扩散到金属粘结层,以及金属粘结层中的铝扩散到超合金。这种现象被称为“相互扩散”。
[0009] 相互扩散可能导致在基板的与粘结层接触的一部分中形成一级和二级反应区(Secondary Reaction Zone,SRZ)。
[0010] 图2是覆盖基板2的粘结层3a的截面的显微照片。显微照片是在部件经受一系列热循环以模拟使用中的部件1的温度条件之前拍摄的。基板2富含铼,即铼的平均质量分数大于或等于0.04。已知的是,在超合金的组成中使用铼,以增加超合金部件的抗蠕变性。通常,基板2具有γ-Ni相。基板3a是β-NiAlPt类型的。基板在基板的直接被粘结层3a覆盖的部分中具有一级相互扩散区5。基板2还具有直接被一级相互扩散区5覆盖的二级相互扩散区6。图2中所示的二级相互扩散区6的厚度约为35μm。
[0011] 图3是覆盖基板2的粘结层3a的截面的显微照片。显微照片示出了在经受上述的一系列热循环之后的粘结层3a和基板2。粘结层3a覆盖基板2。基板2具有一级相互扩散区5和二级相互扩散区6。局部地,二级相互扩散区6的厚度可以高达150μm,如图3中的白色段所示。
[0012] 相互扩散现象导致铝粘结层的过早贫化,这促进了粘结层中的相转变(β-NiAl→γ’-Ni3Al,氏体转变)。这些转变改变了粘结层3a的同素异形结构并且在粘结层中产生裂纹8,从而引起了保护性氧化铝层的褶皱。
[0013] 因此,超合金基板与粘结层之间的相互扩散可能对超合金部件的使用寿命产生不利影响。

发明内容

[0014] 本发明的目的在于提供一种解决方案,与已知部件相比,该解决方案在使用期间有效地保护超合金涡轮部件免受氧化和腐蚀,同时增加其使用寿命。
[0015] 本发明的另一目的在于提供一种解决方案,该解决方案避免或限制二级反应区在基板中的形成以及避免或限制保护性氧化铝层的剥离。
[0016] 在本发明中,该目的是借助于涡轮部件来实现的,该涡轮部件包括:由单晶镍基超合金制成的基板,该单晶镍基超合金包含铼和/或钌,并且具有体积占主导的γ’-Ni3Al相和γ-Ni相;以及粘结层,该粘结层由镍基金属超合金制成且覆盖基板,其特征在于,粘结层具有体积占主导的γ’-Ni3Al相,并且其中,粘结层的铝的平均原子分数介于0.15至0.25之间,铬的平均原子分数介于0.03至0.08之间,铂的平均原子分数介于0.01至0.05之间,铪的平均原子分数小于0.01并且的平均原子分数小于0.01。
[0017] 由于金属粘结层具有接近基板结构的同素异形结构,因此防止和/或限制了二级反应区的形成。
[0018] 此外,由于金属粘结层的组成对应于处于马氏体转变之后的工作条件下的粘结层的组成,因此粘结层的同素异形结构限制或防止了二级反应区的形成,同时具有适于在工作条件下增加可能形成保护性粘结层的时间的化学组成。
[0019] 另外,涡轮部件可以具有以下特征:
[0020] -粘结层具有体积百分比大于95%的γ’-Ni3Al相;
[0021] -粘结层具有γ’-Ni3Al相和β-NiAlPt相;
[0022] -粘结层具有γ’-Ni3Al相和γ-Ni相;
[0023] -基板中的铼的质量分数大于或等于0.04;
[0024] -粘结层进一步包括选自钴、钼、钨、、钽中的至少一种元素;
[0025] -氧化铝的保护层覆盖粘结层;
[0026] -绝热陶瓷层覆盖保护层;
[0027] -粘结层的厚度介于5μm至50μm之间。
[0028] 本发明进一步涉及一种涡轮叶片,其特征在于,该涡轮叶片包括如先前所限定的部件。
[0029] 本发明进一步涉及一种燃气涡轮发动机,其特征在于,该燃气涡轮发动机包括涡轮,该涡轮包括如先前所限定的涡轮叶片。
[0030] 本发明进一步涉及一种用于制造涡轮部件的方法,该方法包括以下步骤:将具有体积占主导的γ’-Ni3Al相的镍基超合金的粘结层真空沉积在由包含铼和/或钌的镍基超合金制成的基板上,粘结层的平均原子分数如下:
[0031] -铝的平均原子分数介于0.15至0.25之间;
[0032] -铬的平均原子分数介于0.03至0.08之间;
[0033] -铂的平均原子分数介于0.01至0.05之间;
[0034] -铪的平均原子分数小于0.01;并且
[0035] -硅的平均原子分数小于0.01。
[0036] 沉积可以通过选自物理气相沉积喷涂、焦蒸发、脉冲激光烧蚀和溅射中的一种方法来进行。
[0037] 可以通过共同喷涂和/或共同蒸发金属靶来沉积粘结层。附图说明
[0038] 在以下描述中进一步强调其它特征和优点,以下描述是纯说明性且非限制性的并且必须结合附图进行阅读,在附图中:
[0039] -图1示出了例如为涡轮叶片或喷嘴叶片的涡轮部件的横截面的示意图;
[0040] -图2是覆盖基板的粘结层的截面的显微照片;
[0041] -图3是覆盖基板的粘结层的截面的显微照片;
[0042] -图4示意性地示出了隔热层的截面,该隔热层覆盖根据本发明的实施例的涡轮部件的基板;
[0043] -图5是在热处理之后覆盖基板的粘结层的截面的显微照片;
[0044] -图6是在热处理之后覆盖基板的粘结层的截面的显微照片。
[0045] 定义
[0046] 术语“超合金”是指在高温和高压下对氧化、腐蚀、蠕变和循环(特别是机械或热)应表现出非常好耐性的复合合金。超合金在制造航空用部件(例如涡轮或燃气涡轮发动机叶片)方面具有具体应用,因为这些超合金构成了高强度合金的族,这些高强度合金可以在相对接近其熔点的温度(通常是其熔化温度的0.7至0.8倍)下工作。
[0047] 超合金可以具有两相微观结构,该两相微观结构包括形成基质的第一相(被称为“γ相”)和形成在基质中硬化的析出物的第二相(被称为“γ’相”)。
[0048] 超合金的“基体”是基质的主要金属成分。在大多数情况下,超合金包括、钴或镍基体,但是有时也包括钛或铝基体。
[0049] “镍基超合金”具有在抗氧化性、耐高温断裂性和重量之间取得良好折中的优点,这证明了这些镍基超合金在涡轮喷气发动机的最热部件中的使用。
[0050] 镍基超合金由奥氏体面心立方γ-Ni类型(可选地在α置换固溶体中包含添加剂(Co、Cr、W、Mo))的γ相(或基质)以及γ’-Ni3X类型(其中,X=Al、Ti或Ta)的γ’相(或析出物)组成。γ’相具有从面心立方结构派生的有序的L12结构,该L12结构与基质相干,即具有与该基质非常接近的原子晶格。
[0051] 由于其有序的特性,γ’相具有显著的性能,即具有在温度高达约800℃的情况下增加的机械阻力。γ相与γ’相之间的相干性赋予了镍基超合金非常高的热机械强度,该热机械强度本身取决于比值γ/γ’以及硬化析出物的尺寸。
[0052] 在本发明的所有实施例中,超合金富含铼和/或钌,即,超合金中铼或钌的平均原子分数大于或等于0.04。与不含钌的无铼超合金部件相比,铼的存在增加了超合金部件的抗蠕变性。另外,钌的存在改进了难熔化学元素在γ相和γ’相中的分布。
[0053] 因此,镍基超合金通常在高达700℃下具有高机械强度,然后在800℃以上具有急剧下降的机械强度。
[0054] 术语“原子分数”是指浓度。

具体实施方式

[0055] 图4示意性地示出了隔热层10的截面,该隔热层覆盖涡轮部件1的基板2。
[0056] 图4中所示的组件可以独立地代表涡轮叶片6、喷嘴叶片的组件或涡轮的任何其他组件、部件或零件。
[0057] 基板2由包含铼和/或钌的镍基超合金形成。铼和/或钌基板2的平均质量分数大于或等于0.04,优选地介于0.045至0.055之间。
[0058] 隔热层由金属粘结层3b、保护层4和绝热层9组成。
[0059] 基板2被金属粘结层3b覆盖。金属层3b被保护层4覆盖。保护层4被绝热层9覆盖。
[0060] 沉积的金属粘结层3b的组成如下:铝的平均原子分数介于0.15至0.25之间、优选地介于0.19至0.23之间,铬的平均原子分数介于0.03至0.08之间、优选地介于0.03至0.06之间,铂的平均原子分数介于0.01至0.05之间,铪的平均原子分数小于0.01、优选地小于0.008,并且硅的平均原子分数小于0.01、优选地小于0.008。优先组成在下面的表1中描述,平均原子分数以百分比给出。
[0061] Ni(%At) Al(%At) Cr(%At) Pt(%At) Hf(%At) Si(%At)基体 19-23 3-6 1-5 0-0.8 0-0.8
[0062] 表1
[0063] 金属粘结层3b具有体积占多数的γ’-Ni3Al相12。因此,粘结层3b的同素异形结构接近于基板2的结构,从而在900℃以上、优选地在1100℃以上的温度下使用涡轮部件1期间防止形成二级反应区。有利地,在金属粘结层中,γ’-Ni3Al相大于95%(按体积计)。除了γ’-Ni3Al相之外,金属粘结层3b可以具有β-NiAlPt相或γ-Ni相。
[0064] 粘结层3b的化学组成和同素异形结构是通过在粘结层3b的模拟部件1的使用的热条件的处理期间直接在马氏体转变阶段之后对初始为β-NiAlPt类型的粘结层3b的化学组成和结构进行分析来确定的。
[0065] 图5是与本发明的粘结层不同的粘结层3a的截面的显微照片,该粘结层在热处理之后覆盖基板。被粘结层3a覆盖的基板是由既不包含铼也不包含钌的AM1类型的镍基超合金制成的基板。包括粘结层3a的部件已经通过一系列的250次热循环进行处理,每个循环对应于在1100℃的温度下对包括粘结层3a的部件进行的60分钟的热处理。粘结层3a的大部分体积是β-NiAlPt相11,而小部分体积是γ’-Ni3Al相12。粘结层3b被保护层4覆盖。粘结层3a与保护层4之间的界面非常不规则:当使用部件时,该界面具有足以导致保护层4脱落(或褶皱)的粗糙度。这种粗糙度是在热处理期间由粘结层3a中的β-NiAlPt相11的马氏体转变引起的。
[0066] 图6是根据本发明的实施例的粘结层3a的截面的显微照片,该粘结层在热处理之后覆盖由包含铼和/或钌的单晶镍基超合金制成的基板2。包括粘结层3b的部件已经通过一系列的500次热循环进行处理,每个循环对应于在1100℃的温度下对包括粘结层3b的部件1进行的60分钟的热处理。粘结层3b的大部分体积γ’-Ni3Al相12,而小部分体积是β-NiAlPt相11。粘结层3b被保护层4覆盖。尽管包括粘结层3b的系统的热处理时间长于参考图5所描述的热处理时间,但是粘结层3b与保护层4之间的界面的粗糙度低于图5中所示的粘结层3a与保护层4之间的粗糙度。粗糙度的这种差异与粘结层3a的β-NiAlPt相11的马氏体转变比粘结层3a的β-NiAlPt相11的马氏体转变更快相关。另外,图6中所示的粘结层3b具有的主要体积为γ’-Ni3Al相12,而具有的较少体积为β-NiAlPt相11。
[0067] 分析并选择了在500次热循环之后的粘结层3b的同素异形结构和化学组成。该结构和组成对应于上面(特别是表1中)所描述的结构和组成。
[0068] 因此,由于体积占多数的γ’-Ni3Al相12并且由于表1中所描述的组成,因此粘结层3b几乎不经受导致褶皱现象的马氏体转变,同时具有在工作条件下增加可能形成保护性粘结层4的时间的组成。
[0069] 粘结层3b可以在真空下例如借助于物理气相沉积(Physical Vapor Deposition,PVD)进行沉积。不同的PVD方法可以用于制造粘结层3b,诸如溅射、焦耳蒸发、激光烧蚀和电子束辅助的物理气相沉积。粘结层3b也可以通过热喷涂进行沉积。
[0070] 因此,粘结层3b可以通过在进行任何热处理之前具有适于避免褶皱现象的化学组成和同素异形结构而沉积在基板2上。
[0071] 这些沉积方法还简化了粘结层3b在基板2上的形成以及更好地控制粘结层3b的化学组成。
[0072] 最后,与通过化学元素扩散形成金属粘结层的方法不同,这些沉积方法允许精确地控制粘结层3b的厚度。有利地,粘结层3b的厚度介于5μm至50μm之间。
[0073] 当沉积粘结层3b时,可以同时并行使用不同金属材料的多种靶。这种类型的沉积可以通过共同蒸发或通过共同溅射来进行:在粘结层3b的沉积期间施加在每个靶上的蒸发或溅射的相应速率于是确定了所述层的化学计量。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈