技术领域
[0001] 本
发明涉及一种用于卧式废热
蒸汽发生器的直流式
蒸发器,该直流式蒸发器带有包括多个基本上垂直布置的、被从下向上流过的第一蒸汽发生管的第一蒸发加热面和另一在流动介质流向上连接在第一蒸发加热面下游的第二蒸发加热面,该第二蒸发加热面包括多个其它的、基本上垂直布置的、被从下向上流过的第二蒸汽发生管。这种直流式蒸发器例如已由US6957630B1公开。
背景技术
[0002] 在燃气和蒸
汽轮机设备中,包含在来自燃气透平的膨胀工质或者热燃气中的热量被用来产生用于蒸汽透平的蒸汽。在连接在燃气透平下游的废热
蒸汽发生器中进行热传递,在该废热蒸汽发生器中通常设置有多个用于预热
水、产生蒸汽和使蒸汽
过热的加热面。所述加热面连接在蒸汽轮机的水-蒸汽循环中。水-蒸汽循环通常包括多个,例如三个压
力级,其中每个压力级可以具有一个蒸发加热面。
[0003] 对于在热燃气流向上连接在
燃气轮机下游作为废热蒸汽发生器的蒸汽发生器或
锅炉可考虑多种可供选择的设计方案,亦即设计为直流式蒸汽发生器或设计为循环式蒸汽发生器。在直流式蒸汽发生器中,对被规定为蒸发管的蒸汽发生器管的加热导致流动介质在蒸汽发生器管内一次通过时
汽化。与之相反,在自然或强制循环式蒸汽发生器中,循环中流过的水在通过蒸发器时仅部分汽化。在此过程中未汽化的水在产生的蒸汽分离后,为了进一步汽化而被重新供入同一些蒸发管内。
[0004] 与自然或强制循环蒸汽发生器不同,直流式蒸汽发生器不受压力限制。高的新汽压力有助于达到高的热效率并因而实现用化石
燃料加热的电厂的低的CO2排放。此外,与循环式蒸汽发生器相比,直流式蒸汽发生器有简单的结构形式并因而能用特别低的
费用生产。因此,使用按直流式原理设计的蒸汽发生器作为燃气和蒸汽轮机装置的废热蒸汽发生器就特别有利于在结构简单的同时达到燃气和蒸汽轮机装置高的总效率。
[0005] 设计为废热蒸汽发生器的直流式蒸汽发生器原则上可以设计为两种可选的结构形式之一,即,立式或卧式。在此,在按卧式结构设计的废热蒸汽发生器中,被加热的介质或热燃气,例如来自燃气轮机的废气,沿近似水平的流动方向流过蒸汽发生器,反之,在立式的直流式蒸汽发生器中,被加热的介质设计为沿几乎垂直的方向流动。
[0006] 卧式的直流蒸汽发生器相比立式的直流蒸汽发生器能以简单的器件和特别少的制造和安装开销制造。在此,尤其可以在各个管排内部的第二蒸发加热面的在流动介质流向上位于下游的蒸汽发生管中出现流动介质在蒸汽发生管上的不均匀分配,这导致
温度不平衡并且由于不同的
热膨胀导致机械
应力。因此,为了避免损坏废热蒸汽发生器,迄今例如设置膨胀弯曲部来补偿这种应力。然而,这些措施对于卧式的废热蒸汽发生器在技术上较为耗费。
发明内容
[0007] 因此,本发明所要解决的技术问题是,提供一种用于开头所述类型的废热蒸汽发生器的直流式蒸发器,这种直流式蒸发器在寿命特别长地同时实现了特别简单的结构。
[0008] 该技术问题按照本发明由此解决,即,在流动介质流向上在第二蒸汽发生管下游连接节流板系统。
[0009] 在此,本发明基于这样的构思,即,通过省略迄今常见的膨胀弯曲部能够实现废热蒸汽发生器或直流式蒸发器特别简单的结构。然而,在此必须以其它方式减小由于温度不平衡在各个管排的并联的蒸汽发生管中引起的机械应力。这种机械应力尤其在用水-蒸汽混合物加载的第二蒸发加热面中出现。在此,温度不平衡由于在流动流向上进入管排的各个管的水和蒸汽的不同份额以及由此导致的、这些管的不同流量 导致。已知的是,各管中的这些不同流量由蒸汽发生管中与测量学压力损失相比较小的摩擦压力损失导致。高蒸汽份额的流动介质流以小摩擦压力损失较快地流过各个蒸汽发生管,而较高水份额的介质流由于其较高的、通过
质量引起的测量学压力损失是不利的并且易于堵塞。因此,为了使流动均匀,应当提供摩擦压力损失。这可通过在流动介质流向上在第二蒸汽发生管下游连接节流板系统实现,该节流板系统导致这种额外的摩擦压力损失。
[0010] 节流板系统有利地包括多个设置在各个第二蒸汽发生管中的节流板。通过这种偏心布置的节流板单独在各个蒸汽发生管中保证,产生足够的附加摩擦压力损失,该摩擦压力损失有助于流动的静态稳定并因此用于补偿温度不平衡。
[0011] 该摩擦压力损失应当根据其余的运行参数,如管几何形状、热燃气通道的尺寸和相对温度相应地确定。然后,有利地这样选择各个节流板的节流孔,使得通过节流板系统形成流动介质预定的摩擦压力损失。因此,能够更好地避免温度不平衡。
[0012] 各个节流板有利地具有直径在10到20mm直径的、作为节流孔的孔。这种选择导致第二蒸汽发生管中特别良好的静态
稳定性,并因此导致第二加热面的各个管排中并联连接的蒸汽发生管内特别良好的温度补偿。
[0013] 为了实现节流板系统更加灵活的构造,节流板系统应当包括多个在流动介质流向上彼此前后连接的节流板。因此可以实现更加均匀的温度分布。
[0014] 在有利的设计构造中,多个第一蒸汽发生管在热燃气的流向上彼此前后连接成管排。这使得可以将较大数量的并联的蒸汽发生管用于一个蒸发加热面,这由于增大的表面而意味着更好的热量输入。然而,沿热燃气流动方向彼此前后布置的蒸汽发生管在此被不同地加热。尤其在热燃气入口侧的蒸汽发生管中,流动介质被较强地加热。然而,通过在后面连接所述的节流板系统,即便在这种蒸汽发生管中也能实现与加热相适应的流量。由此在结构简单的同时实现了废热蒸汽发生器特别长的寿命。
[0015] 在一种有利的设计构造中,第一蒸发加热面在热燃气流向上连接在第二蒸发加热面下游。这具有这样的优点,即,在流动介质流向上连接在下游并因此设计用于进一步加热已经蒸发的流动介质的第二蒸发加热面也位于热燃气通道被较强加热的区域内。
[0016] 这种直流式蒸发器相宜地应用在废热蒸汽发生器中并且该废热蒸汽发生器被应用在燃气和蒸汽轮机设备中。在此,蒸汽发生器有利地在热燃气流向上连接在燃气轮机下游。在这种连接方式时,可以相宜地在燃气轮机后面设置附加
燃烧器,用于提高热燃气温度。
[0017] 通过本发明实现的优点尤其在于,通过在下游连接节流板系统实现了流动的静态稳定并因此减小了并联的各第二蒸汽发生管之间的温度差和由此导致的机械应力。因此,废热蒸汽发生器的寿命特别高。通过节流板系统的相应布置可以省略其它耗费的技术措施(如膨胀弯曲部)并且同时实现了废热蒸汽发生器或燃气和蒸汽轮机发电站特别简单、廉价的结构。
附图说明
[0018] 以下参照附图详细说明本发明的
实施例。在附图中:
[0019] 图1以简化视图示出了卧式蒸汽发生器的纵截面图;
[0020] 图2是在没有布置节流板系统时管温度相对加
热管入口的蒸汽含量的图表;
[0021] 图3是布置有节流板系统时管温度相对加热管入口的蒸汽含量的图表。
[0022] 在所有的附图中,相同的部件具有相同的附图标记。
具体实施方式
[0023] 图1所示的用于废热蒸汽发生器2的直流式蒸汽发生器1在废气流向上连接在没有详细示出的燃气透平下游。废热蒸汽发生器2具有包壁3,该包壁形成可被来自燃气透平的废气沿基本上水平的、由箭头4表示的热燃气方向流过的热燃气通道5。在热燃气通道5中设置有多个按直流原理设计的蒸发加热面8、10。在图1所示实施例中分别示出了两个蒸发加热面8、10,但是也可以设置更大数量的蒸发加热面。
[0024] 图1所示蒸发加热面8、10分别以
管束的形式包括多个沿热燃气方向彼此前后布置的管排11或12。每个管排11、12又分别包括多个沿热燃气方向并排地布置的蒸汽发生管13或14,其中对于每个管排11、12仅分别能看见一个蒸汽发生管。第一蒸发加热面8的、几乎垂直布置的、用于使流动介质W流过的、并联连接的第一蒸汽发生管13在此在出口侧连接在它们公共的流出汇集器15上。第二蒸发加热面10的、同样几乎垂直布置的、用于使流动介质W流过的、并联连接的第二蒸汽发生管14同样在出口侧连接在它们公共的流出汇集器16上。在此,也可以在两个蒸发加热面8、10上设置较复杂耗费的汇集系统。第二蒸发加热面10的蒸汽发生管14在流动技术上通过
下降管系统17连接在第一蒸发加热面8的蒸汽发生管13下游。
[0025] 由蒸发加热面8、10形成的蒸发系统可加载流动介质W,该流动介质在一次经过时被蒸发系统蒸发并且在出口之后作为蒸汽D从第二蒸发加热面10排出。由蒸发加热面8,10形成的蒸发系统连接在蒸汽透平没有详细示出的水-蒸汽循环中。除了包括蒸发加热面8、10的蒸发系统之外,在蒸汽透平的水-蒸汽循环中还连接有多个其它的、在附图1中示意示出的加热面20。加热面20例如可以是
过热器、中压蒸发器、低压蒸发器和/或预热器。
[0026] 现在在第二蒸汽发生管14下游连接有节流板系统22,该节流板系统包括设置在各个蒸汽发生管中的节流板23。这样选择节流板23的孔,使得流动介质W在蒸汽发生管14中的摩擦压力损失相应这样高,使得确保在管排11内均匀的流量。由此减小了温度不平衡。节流板23为此包括直径在10至20mm直径的孔。
[0027] 节流板系统22对温差的效果在图2和图3中示出。图2和图3分别示出了平均的管壁温度25和管出口壁温度27对于流动介质的蒸汽份额DA的视图。在此,图2示出了没有连接在下游的节流板系统22的情况。在此,与蒸汽含量DA有关,平均的管壁温度25在约460度到360度之间变化,管出口壁温度27在480度到370度之间变化。如图3所示,这些变化减小到约440度至390度或者470度至405度。因此,不同蒸汽含量的管的温度差被明显减小。
[0028] 通过减小在流动侧入口处具有不同蒸汽含量的各管的温度差,减小了废热蒸汽发生器2的机械应力负荷并且通过省略迄今常见的膨胀弯曲部在结构简单的同时保证了特别长的寿命。