首页 / 专利库 / 信号处理 / 信号 / 一种基于流量的抽油机冲次及动液面信息监测方法及系统

一种基于流量的抽油机冲次及动液面信息监测方法及系统

阅读:1发布:2021-02-21

专利汇可以提供一种基于流量的抽油机冲次及动液面信息监测方法及系统专利检索,专利查询,专利分析的服务。并且本 发明 公开一种基于流量的抽油机冲次及动液面信息监测方法及系统,涉及油井监测技术领域。对现场油井综测获取的标定数据进行预处理,得到以固定n个流量周期为基本处理单元的包括时域内特征 信号 、频域内特征信号及符号化序列特征信号的动液面特征数据,并基于动液面特征数据和BP神经网络模型,构建动液面预警模型;获取实时流量响应信号并处理,确定根据实时流量响应信号中的流量响应峰值和流量响应谷值计算的抽油机冲次;对实时流量响应信号进行预处理,得到一组实时动液面特征数据,并基于实时动液面特征数据和动液面预警模型,确定抽油机实时埋深。本发明不仅实现对油井抽油机冲次的准确监测,而且能够对油井井下动液面信息进行监测。,下面是一种基于流量的抽油机冲次及动液面信息监测方法及系统专利的具体信息内容。

1.一种基于流量的抽油机冲次及动液面信息监测方法,其特征在于,包括:
获取样本数据;所述样本数据为不同埋深程度的时序域内的电导相关流量测量子系统测量的流量响应信号;所述样本数据包括m组数据,每组数据是以固定n个流量周期为基本处理单元获取的流量响应信号;
对所述样本数据进行预处理,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号;
基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型;
获取电导相关流量测量子系统测量的实时流量响应信号;所述实时流量响应信号是以固定n个流量周期为基本处理单元获取的流量响应信号;
对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量响应峰值和流量响应谷值计算抽油机的冲次;
对所述实时流量响应信号进行预处理,得到一组实时动液面特征数据,并基于所述实时动液面特征数据和所述动液面预警模型,确定抽油机的实时埋深。
2.根据权利要求1所述的一种基于流量的抽油机冲次及动液面信息监测方法,其特征在于,所述对所述样本数据进行预处理,得到m组动液面特征数据,具体包括:
对所有的流量响应信号进行去噪处理,得到m组去噪后的流量响应信号;其中每组流量响应信号长度为n个流量周期的数据长度之和;
对所有所述去噪后的流量响应信号进行特征提取,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号;所述时域内特征信号包括流量响应峰值特征、流量响应谷值特征、流量响应均值特征、流量响应上升期梯度特征、流量响应下降期梯度特征、峰值流量变化度特征和谷值流量变化度特征;所述频域内特征信号为频域内特征参数;所述符号化序列特征信号包括修正的Shannon熵、时间不可逆性指标、X2统计量、分形维、混沌吸引子关联维和功率谱密度
3.根据权利要求1所述的一种基于流量的抽油机冲次及动液面信息监测方法,其特征在于,所述基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型,具体包括:
确定所述动液面特征数据内每个特征的权重,且不同组所述动液面特征数据内的相同特征的权重相同;
根据所述动液面特征数据以及所述动液面特征数据内每个特征的权重,构建m组特征标签;所述特征标签内的标签个数与所述动液面特征数据的特征个数相同;
对所有所述特征标签进行数据融合处理,构建m组综合特征标签;
基于m组所述综合特征标签和BP神经网络模型,构建动液面预警模型。
4.根据权利要求1所述的一种基于流量的抽油机冲次及动液面信息监测方法,其特征在于,所述对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量响应峰值和流量响应谷值计算抽油机的冲次,具体包括:
对所述实时流量响应信号进行处理,确定实时流量响应信号相邻的上升期和下降期;
在上升期内,比较相邻时刻流量响应值,确定上升期的流量响应峰值和流量响应谷值;
在下降期内,比较相邻时刻流量响应值,确定下降期的流量响应峰值和流量响应谷值;
将上升期内的流量响应峰值与下降期内的流量响应峰值求和并取均值,将得到的流量均值确定为实时流量响应信号的流量响应峰值;
将上升期内的流量响应谷值与下降期内的流量响应谷值求和并取均值,将获取的流量均值确定为实时流量响应信号的流量响应谷值;
根据所述实时流量响应信号的相邻流量响应峰值对应的时间间隔值或者相邻流量响应谷值对应的时间间隔值,计算实时流量周期;所述实时流量周期为实时冲程周期;
根据所述实时冲程周期计算抽油机的冲次;所述抽油机的冲次为每分钟内经过的实时冲程周期的个数。
5.一种基于流量的抽油机冲次及动液面信息监测系统,其特征在于,包括:
样本数据获取模,用于获取样本数据;所述样本数据为不同埋深程度的时序域内的电导相关流量测量子系统测量的流量响应信号;所述样本数据包括m组数据,每组数据是以固定n个流量周期为基本处理单元获取的流量响应信号;
动液面特征数据确定模块,用于对所述样本数据进行预处理,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号;
动液面预警模型构建模块,用于基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型;
实时流量响应信号获取模块,用于获取电导相关流量测量子系统测量的实时流量响应信号;所述实时流量响应信号是以固定n个流量周期为基本处理单元获取的流量响应信号;
抽油机冲次计算模块,用于对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量响应峰值和流量响应谷值计算抽油机的冲次;
抽油机实时埋深确定模块,用于对所述实时流量响应信号进行预处理,得到一组实时动液面特征数据,并基于所述实时动液面特征数据和所述动液面预警模型,确定抽油机的实时埋深。
6.根据权利要求5所述的一种基于流量的抽油机冲次及动液面信息监测系统,其特征在于,所述动液面特征数据确定模块,具体包括:
去噪处理单元,用于对所有的流量响应信号进行去噪处理,得到m组去噪后的流量响应信号;其中每组流量响应信号长度为n个流量周期的数据长度之和;
动液面特征数据确定单元,用于对所有所述去噪后的流量响应信号进行特征提取,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号;所述时域内特征信号包括流量响应峰值特征、流量响应谷值特征、流量响应均值特征、流量响应上升期梯度特征、流量响应下降期梯度特征、峰值流量变化度特征和谷值流量变化度特征;所述频域内特征信号为频域内特征参数;所述符号化序列特征信号包括修正的Shannon熵、时间不可逆性指标、X2统计量、分形维、混沌吸引子关联维和功率谱密度。
7.根据权利要求5所述的一种基于流量的抽油机冲次及动液面信息监测系统,其特征在于,所述动液面预警模型构建模块,具体包括:
权重确定单元,用于确定所述动液面特征数据内每个特征的权重,且不同组所述动液面特征数据内的相同特征的权重相同;
特征标签构建单元,用于根据所述动液面特征数据以及所述动液面特征数据内每个特征的权重,构建m组特征标签;所述特征标签内的标签个数与所述动液面特征数据的特征个数相同;
综合特征标签构建单元,用于对所有所述特征标签进行数据融合处理,构建m组综合特征标签;
动液面预警模型构建单元,用于基于m组所述综合特征标签和BP神经网络模型,构建动液面预警模型。
8.根据权利要求5所述的一种基于流量的抽油机冲次及动液面信息监测系统,其特征在于,所述抽油机冲次计算模块,具体包括:
上升期和下降期确定单元,用于对所述实时流量响应信号进行处理,确定实时流量响应信号相邻的上升期和下降期;
上升期的流量响应峰值和流量响应谷值确定单元,用于在上升期内,比较相邻时刻流量响应值,确定上升期的流量响应峰值和流量响应谷值;
下降期的流量响应峰值和流量响应谷值确定单元,用于在下降期内,比较相邻时刻流量响应值,确定下降期的流量响应峰值和流量响应谷值;
实时流量响应信号的流量响应峰值确定单元,用于将上升期内的流量响应峰值与下降期内的流量响应峰值求和并取均值,将得到的响应均值确定为实时流量响应信号的流量响应峰值;
实时流量响应信号的流量响应谷值确定单元,用于将上升期内的流量响应谷值与下降期内的流量响应谷值求和并取均值,将得到的响应均值确定为实时流量响应信号的流量响应谷值;
实时流量周期计算单元,用于根据所述实时流量响应信号的相邻流量响应峰值对应的时间间隔值或者相邻流量响应谷值对应的时间间隔值,计算实时流量周期;所述实时流量周期为实时冲程周期;
抽油机冲次计算单元,用于根据所述实时冲程周期计算抽油机的冲次;所述抽油机的冲次为每分钟内经过的实时冲程周期的个数。

说明书全文

一种基于流量的抽油机冲次及动液面信息监测方法及系统

技术领域

[0001] 本发明涉及油井监测技术领域,特别是涉及一种基于流量的抽油机冲次及动液面信息监测方法及系统。

背景技术

[0002] 目前,随着油田开发进入开发后期,依靠冲次以及动液面参数信息对抽油机系统的抽汲参数进行优化调整,协调抽油机的抽汲能地层供液能力,提高抽油机系统效率,
降低油井能耗,降低油田开发成本,具有重要意义。
[0003] 随着数字化油田的提出,陆面油田参数智能化、自动化监测技术已成为趋势,而油*
井参数测量精确度与油井抽油机冲次信息紧密相关,在n(n≥1,n∈N)个完整冲程内的油
井参数测量能更好的反映油井井下的真实工况。目前油井参数测量往往忽略了冲程冲次信
息对测量结果的影响。
[0004] 对于油井抽油机冲次及动液面信息的技术方法较多,其中,动液面测量方法主要包括井下压力法、回声法、示功图法、时间序列动态液面软测量技术;冲次调节方法主要包
括井下压力法、示功图法、软测量技术;软测量技术、回声法等技术实时性、自动化程度较
弱,示功图法、井下压力法需要在油井井下进行监测,存在干扰因素多、仪器规格要求高等
缺陷
[0005] 由此可见,为满足油田生产的实际要求,迫切需要研究一种能够准确测量石油生产测井中抽油机冲次以及油井井下动液面信息的便捷的、自动化的、实时的新技术和方法。

发明内容

[0006] 本发明的目的是针对上诉现状,提供一种基于流量的抽油机冲次及动液面信息监测方法及系统,不仅实现对油井抽油机冲次的准确监测,而且能够对油井井下动液面信息
进行监测。
[0007] 为实现上述目的,本发明提供了如下方案:
[0008] 一种基于流量的抽油机冲次及动液面信息监测方法,包括:
[0009] 获取样本数据;所述样本数据为不同埋深程度的时序域内的电导相关流量测量子系统测量的流量响应信号;所述样本数据包括m组数据,每组数据是以固定n个流量周期为
基本处理单元获取的流量响应信号;
[0010] 对所述样本数据进行预处理,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号;
[0011] 基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型;
[0012] 获取电导相关流量测量子系统测量的实时流量响应信号;所述实时流量响应信号是以固定n个流量周期为基本处理单元获取的流量响应信号;
[0013] 对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量响应峰值和流量响应谷值计算
抽油机的冲次;
[0014] 对所述实时流量响应信号进行预处理,得到一组实时动液面特征数据,并基于所述实时动液面特征数据和所述动液面预警模型,确定抽油机的实时埋深。
[0015] 可选的,所述对所述样本数据进行预处理,得到m组动液面特征数据,具体包括:
[0016] 对所有的流量响应信号进行去噪处理,得到m组去噪后的流量响应信号;其中每组流量响应信号长度为n个流量周期的数据长度之和;
[0017] 对所有所述去噪后的流量响应信号进行特征提取,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号;所
述时域内特征信号包括流量响应峰值特征、流量响应谷值特征、流量响应均值特征、流量响
应上升期梯度特征、流量响应下降期梯度特征、峰值流量变化度特征和谷值流量变化度特
征;所述频域内特征信号为频域内特征参数;所述符号化序列特征信号包括修正的Shannon
2
熵、时间不可逆性指标、X统计量、分形维、混沌吸引子关联维和功率谱密度
[0018] 可选的,所述基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型,具体包括:
[0019] 确定所述动液面特征数据内每个特征的权重,且不同组所述动液面特征数据内的相同特征的权重相同;
[0020] 根据所述动液面特征数据以及所述动液面特征数据内每个特征的权重,构建m组特征标签;所述特征标签内的标签个数与所述动液面特征数据的特征个数相同;
[0021] 对所有所述特征标签进行数据融合处理,构建m组综合特征标签;
[0022] 基于m组所述综合特征标签和BP神经网络模型,构建动液面预警模型。
[0023] 可选的,所述对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量响应峰值和流量
响应谷值计算抽油机的冲次,具体包括:
[0024] 对所述实时流量响应信号进行处理,确定实时流量响应信号相邻的上升期和下降期;
[0025] 在上升期内,比较相邻时刻流量响应值,确定上升期的流量响应峰值和流量响应谷值;
[0026] 在下降期内,比较相邻时刻流量响应值,确定下降期的流量响应峰值和流量响应谷值;
[0027] 将上升期内的流量响应峰值与下降期内的流量响应峰值求和并取均值,将得到的流量均值确定为实时流量响应信号的流量响应峰值;
[0028] 将上升期内的流量响应谷值与下降期内的流量响应谷值求和并取均值,将获取的流量均值确定为实时流量响应信号的流量响应谷值;
[0029] 根据所述实时流量响应信号的相邻流量响应峰值对应的时间间隔值或者相邻流量响应谷值对应的时间间隔值,计算实时流量周期;所述实时流量周期为实时冲程周期;
[0030] 根据所述实时冲程周期计算抽油机的冲次;所述抽油机的冲次为每分钟内经过的实时冲程周期的个数。
[0031] 一种基于流量的抽油机冲次及动液面信息监测系统,包括:
[0032] 样本数据获取模,用于获取样本数据;所述样本数据为不同埋深程度的时序域内的电导相关流量测量子系统测量的流量响应信号;所述样本数据包括m组数据,每组数据
是以固定n个流量周期为基本处理单元获取的流量响应信号;
[0033] 动液面特征数据确定模块,用于对所述样本数据进行预处理,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特
征信号;
[0034] 动液面预警模型构建模块,用于基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型;
[0035] 实时流量响应信号获取模块,用于获取电导相关流量测量子系统测量的实时流量响应信号;所述实时流量响应信号是以固定n个流量周期为基本处理单元获取的流量响应
信号;
[0036] 抽油机冲次计算模块,用于对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量响
应峰值和流量响应谷值计算抽油机的冲次;
[0037] 抽油机实时埋深确定模块,用于对所述实时流量响应信号进行预处理,得到一组实时动液面特征数据,并基于所述实时动液面特征数据和所述动液面预警模型,确定抽油
机的实时埋深。
[0038] 可选的,所述动液面特征数据确定模块,具体包括:
[0039] 去噪处理单元,用于对所有的流量响应信号进行去噪处理,得到m组去噪后的流量响应信号;其中每组流量响应信号长度为n个流量周期的数据长度之和;
[0040] 动液面特征数据确定单元,用于对所有所述去噪后的流量响应信号进行特征提取,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征
信号以及符号化序列特征信号;所述时域内特征信号包括流量响应峰值特征、流量响应谷
值特征、流量响应均值特征、流量响应上升期梯度特征、流量响应下降期梯度特征、峰值流
量变化度特征和谷值流量变化度特征;所述频域内特征信号为频域内特征参数;所述符号
化序列特征信号包括修正的Shannon熵、时间不可逆性指标、X2统计量、分形维、混沌吸引子
关联维和功率谱密度。
[0041] 可选的,所述动液面预警模型构建模块,具体包括:
[0042] 权重确定单元,用于确定所述动液面特征数据内每个特征的权重,且不同组所述动液面特征数据内的相同特征的权重相同;
[0043] 特征标签构建单元,用于根据所述动液面特征数据以及所述动液面特征数据内每个特征的权重,构建m组特征标签;所述特征标签内的标签个数与所述动液面特征数据的特
征个数相同;
[0044] 综合特征标签构建单元,用于对所有所述特征标签进行数据融合处理,构建m组综合特征标签;
[0045] 动液面预警模型构建单元,用于基于m组所述综合特征标签和BP神经网络模型,构建动液面预警模型。
[0046] 可选的,所述抽油机冲次计算模块,具体包括:
[0047] 上升期和下降期确定单元,用于对所述实时流量响应信号进行处理,确定实时流量响应信号相邻的上升期和下降期;
[0048] 上升期的流量响应峰值和流量响应谷值确定单元,用于在上升期内,比较相邻时刻流量响应值,确定上升期的流量响应峰值和流量响应谷值;
[0049] 下降期的流量响应峰值和流量响应谷值确定单元,用于在下降期内,比较相邻时刻流量响应值,确定下降期的流量响应峰值和流量响应谷值;
[0050] 实时流量响应信号的流量响应峰值确定单元,用于将上升期内的流量响应峰值与下降期内的流量响应峰值求和并取均值,将得到的响应均值确定为实时流量响应信号的流
量响应峰值;
[0051] 实时流量响应信号的流量响应谷值确定单元,用于将上升期内的流量响应谷值与下降期内的流量响应谷值求和并取均值,将得到的响应均值确定为实时流量响应信号的流
量响应谷值;
[0052] 实时流量周期计算单元,用于根据所述实时流量响应信号的相邻流量响应峰值对应的时间间隔值或者相邻流量响应谷值对应的时间间隔值,计算实时流量周期;所述实时
流量周期为实时冲程周期;
[0053] 抽油机冲次计算单元,用于根据所述实时冲程周期计算抽油机的冲次;所述抽油机的冲次为每分钟内经过的实时冲程周期的个数。
[0054] 根据本发明提供的具体实施例,本发明公开了以下技术效果:
[0055] 本发明提供了一种基于流量的抽油机冲次及动液面信息监测方法及系统。所述监测方法将流量变化与油井井下抽油机冲次以及油井井下动液面的变化建立联系。利用冲程
周期内流量峰值(流量谷值)的渡越时间确定抽油机冲次信息,同时以n(n≥1,n∈N*)个冲
程周期内流量数据信息为基本处理单元提取时域内特征信号、频域内特征信号、符号化序
列特征信号,确立特征指标权重构建特征标签,经过特征标签数据融合最终形成综合特征
标签,基于BP神经网络模型构建动液面预警模型从而实现动液面参数监测。本发明避免了
井下恶劣环境的影响,实施性强,安全性高。
附图说明
[0056] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施
例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图
获得其他的附图。
[0057] 图1为本发明实施例陆面井口流量测量系统结构图;
[0058] 图2为本发明实施例电导相关流量测量子系统工作示意图;
[0059] 图3为本发明实施例基于流量的抽油机冲次及动液面信息监测方法流程图
[0060] 图4为本发明实施例油井抽油机冲程周期测量方法流程图;
[0061] 图5为本发明实施例油井抽油机冲次测量方法流程图;
[0062] 图6为本发明实施例油井井下动液面测量方法流程图;
[0063] 图7为本发明实施例设备电路结构框图
[0064] 图8为本发明实施例基于流量的抽油机冲次及动液面信息监测系统结构图。
[0065] 图中:1-陆面单井口气液分离设备,2-电导相关流量测量子系统,3-井口管道,4-1号电磁,5-2号电磁阀,6-3号电磁阀,7-排气管道,8-止逆阀。

具体实施方式

[0066] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他
实施例,都属于本发明保护的范围。
[0067] 本发明的目的是提供一种基于流量的抽油机冲次及动液面信息监测方法及系统,将油井井下抽油机的运动状态划分为2类即上冲程和下冲程,由于上下冲程不同时刻,陆面
井口流量的变化情况不尽相同,所以本发明将油井流量变化特征与油井井下抽油机的运动
状态建立联系,对油井抽油机冲次的实时在线监测。同时依据油井井下柱塞填充的气液
两相流的不同占比导致陆面单井口电导相关流量测量子系统获得不同响应,能够实现油井
井下动液面信息实时监测。
[0068] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0069] 参照图1,本发明提供的陆面井口流量测量系统包括电导相关流量测量子系统2,井口管道3,陆面单井口气液分离设备1,1号电磁阀4,2号电磁阀5,3号电磁阀6,排气管道7
和止逆阀8。电导相关流量测量子系统2安装于陆面单井口气液分离设备1与井口管道3之
间。当陆面单井口气液分离设备1不工作时,1号电磁阀4与3号电磁阀6关闭,2号电磁阀5打
开;当陆面单井口气液分离设备1进行气液分离时,2号电磁阀5关闭,1号电磁阀4与3号电磁
阀6打开,油气三相流经由陆面单井口气液分离设备1进入,油水两相流经由电导相关流
量测量子系统2流出,气体经由排气管道7流出,电导相关流量测量子系统2以固定时间间隔
采集陆面单井口气液分离设备1流量数据值,其中止逆阀8保证油气水三相流回流。
[0070] 参照图2,本发明提供的电导相关流量测量子系统2工作原理。该电导相关流量测量子系统2为六电极阵列相关流量计,由传感器支架以及内置于其中的六个不锈电极环
组成。其中,传感器支架采用绝缘有机玻璃管制成,且在其内壁上形成六个有间距的凹型环
槽,每个凹型环槽里均镶嵌不锈钢电极环,即两个激励电极环E1、E2,四个测量电极环M1、
M2、M3、M4。激励电极环E1、E2为一对激励电极,为电导相关流量测量子系统2提供幅值恒定
的交变电流,在管道中建立电流场。测量电极环M1、M2构成流量测量的上游检测电极,测量
电极环M3、M4构成流量测量的下游检测电极。当油水两相流体从传感器支架内流过时,流体
阻抗的随机变化对作用在上下游检测电极上的交变恒定电流产生随机调制作用,上下游检
测电极的输出会随着调制作用产生相应的变化,由各自的信号处理电路解调出随机流动噪
声信号x(t)和y(t)。把两路流动噪声信号进行互相关运算,互相关函数表达式为:
[0071]
[0072] 互相关函数的峰值代表着两路流动噪声信号的最大相似,它所对应的时间τ0是流体流动噪声信号由上游到下游所经历的时间,称为渡越时间。其中流量为:
[0073] fcc=(L/τ0)*ap  (2);
[0074] 式2中L为上下游距离,即测量电极环M1、M2之间的中心到测量电极环M3、M4之间的中心距离,ap为电导相关流量测量子系统2管道的横截面积。
[0075] 参照图3,本发明提供的基于流量的抽油机冲次及动液面信息监测方法按照以下的步骤进行:
[0076] 步骤S01:获取样本数据;所述样本数据为不同埋深程度的时序域内的电导相关流量测量子系统测量的流量响应信号;所述样本数据包括m组数据,每组数据是以固定n(n≥
1,n∈N*)个流量周期为基本处理单元获取的流量响应信号。
[0077] 步骤S02:对所述样本数据进行预处理,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号。
[0078] 步骤S03:基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型。
[0079] 步骤S04:获取电导相关流量测量子系统测量的实时流量响应信号;所述实时流量响应信号是以固定n个流量周期为基本处理单元获取的流量响应信号。
[0080] 步骤S05:对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量响应峰值和流量响应
谷值计算抽油机的冲次。
[0081] 步骤S06:对所述实时流量响应信号进行预处理,得到一组实时动液面特征数据,并基于所述实时动液面特征数据和所述动液面预警模型,确定抽油机的实时埋深。
[0082] 其中,步骤S05具体包括:
[0083] 对所述实时流量响应信号进行处理,确定实时流量响应信号相邻的上升期和下降期。
[0084] 在上升期内,比较相邻时刻流量响应值,确定上升期的流量响应峰值和流量响应谷值。
[0085] 在下降期内,比较相邻时刻流量响应值,确定下降期的流量响应峰值和流量响应谷值。
[0086] 将上升期内的流量响应峰值与下降期内的流量响应峰值求和并取均值,将得到的流量均值确定为实时流量响应信号的流量响应峰值。
[0087] 将上升期内的流量响应谷值与下降期内的流量响应谷值求和并取均值,将获取的流量均值确定为实时流量响应信号的流量响应谷值。
[0088] 根据所述实时流量响应信号的相邻流量响应峰值对应的时间间隔值或者相邻流量响应谷值对应的时间间隔值,计算实时流量周期;所述实时流量周期为实时冲程周期。
[0089] 根据所述实时冲程周期计算抽油机的冲次;所述抽油机的冲次为每分钟内经过的实时冲程周期的个数。
[0090] 下面通过具体的流程图来说明步骤S05。
[0091] 参照图4本发明提供的油井抽油机冲程周期监测方法流程图。所述监测方法依据油井井下抽油机运动状态,将抽油机运动状态可以分为上冲程和下冲程,而上下冲程对应
井口流量的作用特点是不同的。
[0092] 所述抽油机冲程周期的监测方法,按以下步骤进行:
[0093] 步骤S2-1:获取相邻时刻(t-1,t,t+1)间电导相关流量测量子系统获得的流量响应数据值(Ft-1,Ft,Ft+1)。
[0094] 步骤S2-2:当Ft-1<Ft<Ft+1,此过程为井口流量上升期。在此期间,若Ft-1>Ft,Ft<Ft+1,Ft为井口流量上升期内流量测量表观起始点(谷值),Toh=t为井口流量上升期测量表
观起始点(谷值)Ft对应的时刻值,油井井口流量测量表观起始值(谷值)为Fom=Ft;若出现
Ft-1<Ft,Ft>Ft+1的情况时,Ft为流量上升期内井口流量测量峰值,Tot=t为流量上升期流量
峰值Ft对应的时刻值,流量上升期内油井井口流量测量峰值为PoM=Pt。
[0095] 步骤S2-3:若Ft+1>Ft>Ft-1,此过程为抽油机的流量下降期。在此期间,若Ft-1<Ft,Ft>Ft+1时,Ft为流量下降期对应的油井井口流量测量值,Tuh=t为流量下降期间流量峰值Ft
对应的时刻,流量下降期间油井井口流量测量峰值PuM=Pt;当出现Ft<Ft-1,Ft<Ft+1的现象
时,流量下降期间对应的油井井口流量测量谷值为Ft,Tut=t为流量下降期间井口流量谷值
测量值Ft对应的时刻值,流量下降期内油井井口流量测量谷值Fum=Ft。
[0096] 步骤S2-4:单个流量周期内油井井口流量测量峰值为FM=Max(FoM,FuM),流量测量谷值为Fm=Min(Fom,Fum),流量周期、冲程周期均为Tfc=|Toh-Tut|。
[0097] 参照图5本发明提供的油井抽油机冲次测量方法流程图。所述电导相关流量测量子系统2中流量的变化周期与油井井下抽油机冲程周期相同,抽油机冲次是根据每分钟内
经过电导相关流量测量子系统2流量周期的次数进行统计的。
[0098] 所述抽油机冲次的监测方法,按以下步骤进行:
[0099] 步骤S3-1:获取图4处理结果,获得流量周期、冲程周期Tfc=|Toh-Tut|;
[0100] 步骤S3-2:抽油机冲次是根据每分钟内经过的流量周期个数Nrt进行统计的,当前冲次数据为Nrt=1/Tft。
[0101] 步骤S01至步骤S03为构建动液面预警模型的过程。
[0102] 其中,步骤S02具体包括:
[0103] 对所有的流量响应信号进行去噪处理,得到m组去噪后的流量响应信号。其中每组流量响应信号长度为n个流量周期的数据长度之和。
[0104] 对所有所述去噪后的流量响应信号进行特征提取,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序列特征信号;所
述时域内特征信号包括流量响应峰值特征、流量响应谷值特征、流量响应均值特征、流量响
应上升期梯度特征、流量响应下降期梯度特征、峰值流量变化度特征和谷值流量变化度特
征;所述频域内特征信号为频域内特征参数;所述符号化序列特征信号包括修正的Shannon
熵、时间不可逆性指标、X2统计量、分形维、混沌吸引子关联维和功率谱密度。
[0105] 步骤S03具体包括:
[0106] 确定所述动液面特征数据内每个特征的权重,且不同组所述动液面特征数据内的相同特征的权重相同。
[0107] 根据所述动液面特征数据以及所述动液面特征数据内每个特征的权重,构建m组特征标签;所述特征标签内的标签个数与所述动液面特征数据的特征个数相同。
[0108] 对所有所述特征标签进行数据融合处理,构建m组综合特征标签。
[0109] 基于m组所述综合特征标签和BP神经网络模型,构建动液面预警模型。
[0110] 下面通过具体流程图来说明步骤S02至步骤S03。
[0111] 参照图6本发明提供的油井井下动液面测量方法流程图。所述油井井下动液面监测方法,按以下步骤进行:
[0112] 步骤S4-1:对获取的电导相关流量测量子系统测量的流量响应信号去噪并进行特征提取,其中特征参数包括时域内特征信号、频域内特征信号以及符号化序列特征信号,特
征参数均以n(n≥1,n∈N*)个流量周期内的所述去噪后的流量响应信号为基本处理单元获
得的。
[0113] 步骤S4-2:所述时域内特征信号包括电导相关流量测量子系统2内流量响应峰值特征FM、流量响应谷值特征Fm、流量响应均值特征Fav、流量响应上升期梯度特征Gau、流量响
应下降期梯度特征Gao、峰值流量变化度特征TrendM,谷值流量变化度特征Trendm;频域内特
征主要借鉴语音信号处理中的线性预测方法,在频域中提取反映流量变化特性的特征量方
法,提取频域内特征参数Fre。
[0114] 步骤S4-3:流量二元符号序列采用差值法获取的,其中差值法规定相邻时刻流量差值大于波动阈值σ(正数),则用符号1表示原数据,如果小于波动阈值σ(正数),则用符号0
表示;基于差值法处理后得到的流量二元符号序列,确定一个标准窗体长度L(L≥1,L∈
N*),将L(L≥1,L∈N*)个连续的二元符号组成一个字,每个字被编码为十进制数,形成流量
符号特征序列;以流量符号特征序列中出现字的概率除以所有字的总数,以此作为流量符
号特征序列分析指标来进行频率统计分析,以修正的Shannon熵(Hs)、时间不可逆性指标
(Tfb)、X2统计量 分形维(dl)、混沌吸引子关联维(D)、功率谱密度(PSD)作为油井井下
动液面监测指标。
[0115] 步骤S4-4:确定动液面特征数据中所有特征指标的权重(η1,η2,η3,η4,η5,η6,η7,η8,η9,η10,η11,η12,η13,η14),组合构建特征标签η1FM、η1Fm、η3Fav、η4Gau、η5Gao、η6TrendM、η7Trendm、η8Fre、η9Hs、η10Tfb、 η12dl、η13D、η14PSD,并基于多动液面特征标签进行数据融合处理,构建综合特征标签。
[0116] 步骤S4-5:借助综合特征标签和BP神经网络模型构建动液面预警模型,确定抽油泵埋深。
[0117] 其中步骤S4-2特征具体表示为式(3)至式(9);
[0118]
[0119]
[0120]
[0121] TrendM=(FM1-FMn)/2(n≥1,n∈N*)  (6);
[0122] Trendm=(Fm1-Fmn)/2(n≥1,n∈N*)  (7);
[0123]
[0124]
[0125] 其中FMn、Fmn为第n(n≥1,n∈N*)个冲程周期内流量响应峰值和谷值,Favn为第n(n≥1,n∈N*)个冲程周期内流量响应均值,Gun、Gon分别代表第n(n≥1,n∈N*)个流量周期中上升
期梯度和下降期梯度。
[0126] 频域内特征主要借鉴语音信号处理中的线性预测方法,在频域中提取反映流量变化特性的特征量方法,提取频域内特征参数Fre;其基本思路为:一个信号的当前值可以用
在此之前已经接收到的若干样本点值线性组合来进行估计,这些线性系数可用在一定时间
范围内,使得信号估计值与真值之间的方差(误差信号的能量)为极小来求得。这些线性系
数构成一个线性预测器,线性预测器个数称为预测器的阶数,线性预测器中的线性系数则
是要提取的频域内特征量。设信号输出Xt可以表示为:
[0127]
[0128] 式中Un-l为未知输入信号,ak(1≤k≤p)、bl(1≤l≤q)及增益G是系统参数。式(11)说明了输出Xt是过去输出及现在和过去输入的线性函数,由此得名为线性预测。
[0129] 由于输入信号Ut是完全未知的,输出信号Xt只能从先前输出近似估计,即
[0130]
[0131] 式中xt是Xt的近似值。xt与Xt的误差为
[0132]
[0133] 误差的平方和为
[0134]
[0135] 按最小二乘法确定系数ak,有
[0136]
[0137] 由给定的信号Xt,可由式(15)严格求解系数ak(1≤k≤p)(p个方程及p个未知变量),对于电导相关流量测量子系统2测量的数据,选择系数ak(1≤k≤p)作为流量数据特征
参数,选择本方法拟采用四阶线性预测器,即
[0138] Fre=(a1+a2+a3+a4)/4  (16);
[0139] 步骤S4-3符号化序列特征信号表示如下:
[0140] 修正的Shannon熵定义如下:
[0141]
[0142] 其中pi是第i个字出现的概率,Nobs是在符号序列中出现的不同字的数量。
[0143] 时间序列不可逆性Tfb定义如下:
[0144]
[0145] 式(18)中Pf,i和Pb,i分别为前向序列中符号串与后向序列符号串的概率。
[0146] 利用X2统计量来计算前向符号序列与后向符号序列的差别,X2统计量的定义如下:
[0147]
[0148] 所述分形维定义如下:
[0149] dl=2-H  (20);
[0150] 其中H代表Hurst指数,对概率符号特征样本序列P(t),在延迟时间τ内定义变量R(t,τ)为: B(t,u)为P(t+y)与均值P(t)τ的偏差累计和,即:
[0151]
[0152] 概率符号特征样本序列P(t)在τ内的方差为:
[0153]
[0154] H的求解方式为:
[0155]
[0156] 混沌吸引子关联维的定义如下:
[0157]
[0158] 所述功率谱密度从频域反映随机信号的统计特性,依据傅里叶能量定理,其平均功率为:
[0159]
[0160] 式(25)中,右边为随机变量,随样本的不同而对应不同的值,但通过对它取期望值,称为一个频率函数,即:
[0161]
[0162] 式(26)中, 称为p(t)的功率谱密度。
[0163] 步骤S06中的预处理与样本数据预处理相同,在此不再论述。
[0164] 对照附图7本发明设备电路结构框图,其结构是电导相关流量测量子系统2监测电路模块、电磁阀控制电路模块、TFTLCD显示模块、信号采集与信号处理模块、电源模块、数据
采集频率设置,其中电导相关流量测量子系统2监测电路模块、电磁阀控制电路模块分别由
控制终端MCU控制其相关操作;信号采集与信号处理模块完成油井井口流量数据的采集以
及冲程周期、冲次及动液面信息的获取;TFTLCD显示模块显示相关参数的测量结果;电源模
块用于向设备提供电源;数据采集频率设置控制着单片机采集电导相关流量测量子系统2
数据值的时间间隔。
[0165] 为实现上述目标本发明还一种基于流量的抽油机冲次及动液面信息监测系统,参照图8,包括:
[0166] 样本数据获取模块801,用于获取样本数据;所述样本数据为不同埋深程度的时序域内的电导相关流量测量子系统测量的流量响应信号;所述样本数据包括m组数据,每组数
据是以固定n个流量周期为基本处理单元获取的流量响应信号。
[0167] 动液面特征数据确定模块802,用于对所述样本数据进行预处理,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征信号以及符号化序
列特征信号。
[0168] 动液面预警模型构建模块803,用于基于m组所述动液面特征数据和BP神经网络模型,构建动液面预警模型。
[0169] 实时流量响应信号获取模块804,用于获取电导相关流量测量子系统测量的实时流量响应信号;所述实时流量响应信号是以固定n个流量周期为基本处理单元获取的流量
响应信号。
[0170] 抽油机冲次计算模块805,用于对所述实时流量响应信号进行处理,确定所述实时流量响应信号中的流量响应峰值和流量响应谷值,并根据所述实时流量响应信号中的流量
响应峰值和流量响应谷值计算抽油机的冲次。
[0171] 抽油机实时埋深确定模块806,用于对所述实时流量响应信号进行预处理,得到一组实时动液面特征数据,并基于所述实时动液面特征数据和所述动液面预警模型,确定抽
油机的实时埋深。
[0172] 所述动液面特征数据确定模块802,具体包括:
[0173] 去噪处理单元,用于对所有的流量响应信号进行去噪处理,得到m组去噪后的流量响应信号。其中每组流量响应信号长度为n个流量周期的数据长度之和。
[0174] 动液面特征数据确定单元,用于对所有所述去噪后的流量响应信号进行特征提取,得到m组动液面特征数据;每组所述动液面特征数据包括时域内特征信号、频域内特征
信号以及符号化序列特征信号;所述时域内特征信号包括流量响应峰值特征、流量响应谷
值特征、流量响应均值特征、流量响应上升期梯度特征、流量响应下降期梯度特征、峰值流
量变化度特征和谷值流量变化度特征;所述频域内特征信号为频域内特征参数;所述符号
化序列特征信号包括修正的Shannon熵、时间不可逆性指标、X2统计量、分形维、混沌吸引子
关联维和功率谱密度。
[0175] 所述动液面预警模型构建模块803,具体包括:
[0176] 权重确定单元,用于确定所述动液面特征数据内每个特征的权重,且不同组所述动液面特征数据内的相同特征的权重相同。
[0177] 特征标签构建单元,用于根据所述动液面特征数据以及所述动液面特征数据内每个特征的权重,构建m组特征标签;所述特征标签内的标签个数与所述动液面特征数据的特
征个数相同。
[0178] 综合特征标签构建单元,用于对所有所述特征标签进行数据融合处理,构建m组综合特征标签。
[0179] 动液面预警模型构建单元,用于基于m组所述综合特征标签和BP神经网络模型,构建动液面预警模型。
[0180] 所述抽油机冲次计算模块805,具体包括:
[0181] 上升期和下降期确定单元,用于对所述实时流量响应信号进行处理,确定实时流量响应信号相邻的上升期和下降期。
[0182] 上升期的流量响应峰值和流量响应谷值确定单元,用于在上升期内,比较相邻时刻流量响应值,确定上升期的流量响应峰值和流量响应谷值。
[0183] 下降期的流量响应峰值和流量响应谷值确定单元,用于在下降期内,比较相邻时刻流量响应值,确定下降期的流量响应峰值和流量响应谷值。
[0184] 实时流量响应信号的流量响应峰值确定单元,用于将上升期内的流量响应峰值与下降期内的流量响应峰值求和并取均值,将得到的流量均值确定为实时流量响应信号的流
量响应峰值。
[0185] 实时流量响应信号的流量响应谷值确定单元,用于将上升期内的流量响应谷值与下降期内的流量响应谷值求和并取均值,将获取的流量均值确定为实时流量响应信号的流
量响应谷值。
[0186] 实时流量周期计算单元,用于根据所述实时流量响应信号的相邻流量响应峰值对应的时间间隔值或者相邻流量响应谷值对应的时间间隔值,计算实时流量周期;所述实时
流量周期为实时冲程周期。
[0187] 抽油机冲次计算单元,用于根据所述实时冲程周期计算抽油机的冲次;所述抽油机的冲次为每分钟内经过的实时冲程周期的个数。
[0188] 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统
而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说
明即可。
[0189] 本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据
本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不
应理解为对本发明的限制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈