首页 / 专利库 / 医疗设备 / 视觉反馈 / 内窥镜检查辅导系统和方法

内窥镜检查辅导系统和方法

阅读:884发布:2021-05-18

专利汇可以提供内窥镜检查辅导系统和方法专利检索,专利查询,专利分析的服务。并且一种用于仿真在一主体上施行的一医疗过程的系统,特点在于:(a)一仿真器官;(b)一仿真器械,用于在仿真器官上施行医疗过程;(c)一 定位 器,用于确定所述仿真器官之内仿真器械的某一 位置 ;以及(d)一视觉显示器,用于显示出自医疗过程的图像,使得图像仿真在一真实主体施行的医疗过程期间接收的视觉数据,视觉显示器包括:(i)仿真器官的一三维模型,模型划分为许多分段;(ii)一加载器,用于 选定 至少一个许多分段以便显示,此至少一个许多分段是按照仿真器官之内仿真器械的位置予以选定的;(iii)一 控制器 ,用于按照仿真器械的位置从选定出来的分段中选定每一图像;以及(iv)一显示器,用于按照控制器显示图像。,下面是内窥镜检查辅导系统和方法专利的具体信息内容。

1.一种用于施行一仿真医疗过程的系统,包括:
(a)一仿真器官;
(b)一仿真器械,用于在所述仿真器官上施行仿真医疗过程;
(c)一定位器,用于确定所述仿真器械在所述仿真器官之内的某一位置; 以及
(d)一视觉显示器,用于按照所述仿真器官之内所述仿真器械的所述位 置显示图像以便提供视觉反馈,以致所述图像可仿真在一施行在一真实主 体上的真实医疗过程期间所接收的真实视觉数据,所述视觉显示器包括:
(i)一数学模型,按照一相应的真实器官模拟所述仿真器官,所述模型 划分为许多分段;
(ii)一加载器,用于选定至少一个所述许多分段以便显示,所述至少一 个所述许多分段按照所述仿真器官之内所述仿真器械的所述位置予以选 定;
(iii)一控制器,用于按照所述仿真器械的所述位置从所述分段中选定一 仿真图像;以及
(iv)一显示器,用于显示所述仿真图像;
其中所述视觉显示器还包括:
(v)一纹理映射数据库,用于储存纹理映射数据;以及
(vi)一纹理映射引擎,用于在所述仿真图像由所述显示器显示之前把所 述纹理映射数据覆盖于所述仿真图像;
其中所述纹理映射是所述仿真器械的随机动作和所述仿真器官的随机 动作的动画。
2.按照权利要求1所述的系统,其中所述纹理映射包括从在所述真实 主体上施行的所述真实医疗过程中获得的图像。
3.按照权利要求2所述的系统,其中所述图像是由首先在所述施行期 间记录所述视觉数据,而后从所述记录的视觉数据中选定所述图像而获得 的。
4.按照权利要求1所述的系统,其中所述数学模型的特点在于许多按 照一样条制成的多边形,所述样条确定了所述数学模型在三个方向上的一 种几何形态。
5.按照权利要求4所述的系统,其中所述数学模型中对应于所述仿真 器官中某一变形的变形是通过改变所述样条而予以确定的。
6.按照权利要求5所述的系统,其中所述仿真器官中所述变形是一种 局部变形,所述仿真器官的所述局部变形是按照所述数学模型通过把一些 多边形添加于一部分所述数学模型,使得所述数学模型的所述部分被变形 而生成的。
7.按照权利要求4所述的系统,其中所述数学模型是通过作为一条直 线模拟所述仿真器官和改变所述样条直至所述数学模型适合所述相应的真 实器官而从所述样条生成。
8.按照权利要求7所述的系统,其中所述控制器按照所述仿真器官之 内所述仿真器械的至少一次先前动作来选定仿真图像。
9.按照权利要求1所述的系统,其中所述显示器还显示一图形用户界 面。
10.按照权利要求9所述的系统,其中所述图形用户界面可显示用于协 助施行医疗过程的辅导信息。
11.按照权利要求1所述的系统,其中所述仿真器官是一胃-肠系统。
12.按照权利要求11所述的系统,其中所述胃-肠系统是由一种半挠 性、光滑材料制成的。
13.按照权利要求11所述的系统,其中所述仿真器械是一内窥镜,所 述内窥镜的特点在于一传感器,用于确定所述传感器在所述胃-肠系统中 的某一位置,此系统还包括:
(e)一计算机,用于按照所述传感器的所述位置确定所述视觉反馈。
14.按照权利要求13所述的系统,还包括一触觉反馈机构,用于按照 所述内窥镜所述端头的所述位置形成仿真触觉反馈。
15.按照权利要求14所述的系统,其中所述触觉反馈机构装放在所述 胃-肠系统之中,而所述胃-肠系统还包括:
(i)许多伺服电机
(ii)一活塞,由所述许多伺服电机中的每一个操作,所述活塞接触所述 半挠性材料;以及
(iii)一控制器,用于控制所述许多伺服电机,以致所述活塞的某一位 置由所述控制器予以确定,而且以致所述活塞的所述位置可形成所述触觉 反馈。
16.按照权利要求14所述的系统,其中所述触觉反馈机构位于内窥镜 之中,而所述内窥镜还包括:
(i)一导引套筒,连接于所述内窥镜的所述端头;
(ii)至少一个滚珠轴承,装接于所述导引套筒,用于沿着所述胃-肠系 统的内部表面滚动;
(iii)至少一部直线电机,装接于所述导引套筒;
(iv)一活塞,由所述直线电机操纵,所述活塞接触所述胃-肠系统的所 述内部表面;以及
(v)一控制器,用于控制所述直线电机,以致所述活塞的某一位置由所 述控制器予以确定,而且以致所述活塞的所述位置形成所述触觉反馈。
17.按照权利要求14所述的系统,其中所述触觉反馈机构的特点在于:
(i)许多环圈,围绕所述内窥镜,每一环圈具有不同的一半径,至少一 第一环圈的特点在于一半径大于所述内窥镜的半径和至少一第二环圈的特 点在于一半径小于所述内窥镜的所述半径,每一所述许多环圈的所述半径 按照每一所述许多环圈的某一充气程度而被控制,所述各环圈的所述半径 确定所述内窥镜的动作;
(ii)一气,用于把空气泵入所述许多环圈;
(iii)至少一个管筒,用于把所述气泵连接于所述许多环圈;以及
(iv)一气泵控制器,用于通过控制所述气泵来确定所述许多环圈的所述 充气程度。
18.按照权利要求17所述的系统,其中所述至少一部管筒是两个管筒, 一第一管筒,用于把空气泵入所述许多环圈,以及一第二管筒,从所述许 多环圈吸出空气,而所述气泵把空气泵入所述许多环圈和从所述许多环圈 中吸出空气,以致所述许多环圈的充气程度通过交替地把空气泵入所述许 多环圈和从中吸出空气而予以确定。
19.按照权利要求14所述的系统,其中所述胃-肠系统基本上是一根 直管,以及所述触觉反馈和所述视觉反馈基本上与所述胃-肠系统的某一 几何形状无关。
20.按照权利要求14所述的系统,其中所述触觉反馈机构按照在一真 实主体上所述施行医疗过程期间所获得的触觉反馈予以操作,所述触觉反 馈是通过虚拟现实手套来获得的。
21.按照权利要求13所述的系统,其中所述内窥镜的特点还在于一用 于握住所述内窥镜的手柄和一器具装置,所述器具装置包括:
(i)一仿真镊子
(ii)一槽道,用于容放所述仿真镊子,所述槽道设置在所述手柄之中;
(iii)一器具控制装置,用于检测所述仿真镊子的某一动作,所述器具控 制装置设置在所述槽道之中,而所述器具控制装置连系于所述计算机,以 致所述计算机按照所述仿真镊子的所述动作确定所述视觉反馈和所述触觉 反馈。
22.按照权利要求21所述的系统,其中所述器具控制装置检测所述胃 -肠系统之内所述仿真镊子的某一位置用于形成视觉反馈。
23.按照权利要求22所述的系统,其中所述器具控制装置另外检测一 套所述仿真镊子用于视觉反馈。
24.按照权利要求23所述的系统,其中所述视觉反馈包括所述仿真镊 子的用于施行息肉切除术的一仿真环套的显示。
25.按照权利要求21所述的系统,其中所述器具控制装置还包括:
(1)一光源,用于生成光线,所述光源设置在所述槽道之内;
(2)一光轮,用于按照所述仿真镊子的动作交替地挡住和不挡所述光线; 以及
(3)一光线检测器,用于检测所述光线,以致所述计算机按照所述光线 检测器确定所述仿真镊子的某一动作。
26.一种用于显示以一真实医疗器械在一真人器官上施行的一医疗过 程的仿真视觉数据的方法,此方法包括各步骤:
(a)从在一真人患者身上施行一真实医疗过程之中记录真实数据;
(b)从所述真实数据中抽取许多个别图像;
(c)使所述许多个别图像数字化以形成许多数字化的图像;
(d)选定至少一个所述数字化的图像以形成一选定数字化图像;
(e)把所述选定的数字化的图像作为纹理映射数据储存在一纹理映射数 据库之中;
(f)提供一真人器官的数学模型,所述模型划分为许多分段;
(g)从所述模型中选定所述许多分段之中的一个用于显示;
(h)把来自所述纹理映射数据库的所述纹理映射数据覆盖在所述模型的 所述分段上面以形成至少一个最终图像;以及
(i)显示所述最终图像;
其中所述纹理映射数据还包括动画;
其中所述动画包括真实医疗器械的随机动作和真实人体器官的随机动 作。
27.按照权利要求26所述的方法,其中来自所述真实医疗过程的所述 施行的所述真实数据选自由视频数据、MRI(磁共振成象)数据和CAT(计算 机辅助断层X射线摄影术)扫描数据。
28.按照权利要求27所述的方法,其中步骤(f)还包括各步骤:
(i)按照一样条把真人器官模拟成许多多边形;
(ii)按照三维坐标把所述样条映射成真人器官;
(iii)改变样条,以致样条适合所述真实数据。

说明书全文

技术领域

发明涉及一种在医疗过程方面教导和培训学生的系统和方法,而具 体地涉及一种在内窥镜检查方面培养学生的系统和方法。

背景技术

内窥镜检查,而特别是挠性胃部内窥镜检查,是最低侵入医疗过程。 挠性胃部内窥镜检查在胃-肠系统中用于外科和诊断过程二者的一种重要 的医疗器具。基本上,胃部内窥镜检查是通过把一只是挠性管筒的内窥镜 或是通过主体的口腔或是直肠插入胃-肠系统而施行的。管筒由一经过培 训的医生通过专的控制装置予以操作。插入主体的管筒端部装有一摄像 机和一或多个外科器具,诸如一用于从胃-肠系统取除组织样本的尖口钳。 医生必须按照从摄像机接收到和显示在一视频屏幕上的胃-肠系统图像来 操纵管筒。缺乏来自胃-肠系统的直接视觉反馈是使内窥镜检查成为一种 复杂而又难以掌握的过程的一项因素。反馈的这种缺乏还加大了手-眼协 调和正确操作内窥镜检查装置的难度。因而,挠性胃部内窥镜检查是一种 既难以施行也难以学习的过程。
当前,是按照用于医学教育的传统模型教导学生施行挠性胃部内窥镜 检查的,其中学生观察和协助经验较多的医生。遗憾的是,这种观察单独 不能提供针对这种复杂医疗过程的必要培训。学生也可能在动物和人尸上 施行操作,各自都不能再现一真人患者的视觉和触觉反馈。因而,传统的 医学培训不适合于近代的技术上复杂的医疗过程。
在企图为这种过程提供比较现实的医学培训时,一直研制一些仿真装 置,试图为这种过程再现触觉感受和/或视觉反馈,以便提供经过改进的医 学培训而不危及真人患者。这样一种仿真装置的一项范例披露在美国专利 第5,403,191号之中,其中所披露的装置是一个装有仿真人体器官的盒器。 多种外科腹腔镜检查过程可以在仿真器官上施行。视觉反馈由一镜具系统 提供。不过,视觉和触觉反馈二者的系统在此装置中是很初步的,不能够 提供在一真人患者身上伴随这种外科过程的视觉和触觉感受的真正表现。 其次,盒器本身不是一真人患者三维结构的现实表象。因而,所披露的装 置缺少许多重要的方面并无法满足一医疗仿真装置的需要。
在PCT专利申请第WO 96/16389和WO 95/02233号中披露了企图从一 种医疗仿真装置中提供比较现实的经验。这两项申请都披露了一种用于提 供腹腔镜检查外科过程的仿真的装置。两种装置都包括一状为一真人躯干 的人体模型,在其不同部位处安放各仿真外科器械。不过,这些装置局限 于各仿真外科器械的位置都是预先确定的,这不是一种现实的方案。其次, 视觉反馈基于取自真实外科过程的一连串的视频图像。不过,由于一些部 分的视频数据可能为了处理速度大一些而需要删除,这种简单地再现视频 图像会导致不精确的或不现实的图像。另外,视频处理会耗费如此大量的 计算时间和资源,以致整个系统会不能在一实时的时期内对学生的动作作 出反应。最低限度,会需要一个专用的图形工作站,而不是一部个人计算 机(PC)。因而,两份参考文件都没有教导或阐明用于仿真医疗过程实时视觉 反馈的适当的视觉处理。
类似地,美国专利第4,907,973号披露一种用于仿真挠性胃部内窥镜检 查医疗过程的装置。所披露的装置也存在着以上提到的先前技术中各种装 置的一些不足之处,即视觉反馈系统基于再现取自真实内窥镜检查过程的 视频数据。一如前所指出,显示这种数据或是会需要大量的计算资源,或 是会迳直地需要过多的时间,用于现实的视觉反馈响应。因而,所披露的 装置也存在着先前技术中的一些不足之处。
一种真正有用和有效的用于诸如内窥镜检查这样的最少侵入治疗过程 的医疗仿真装置会给出过程的实时、精确和现实的视觉反馈,并且也会给 出现实的触觉反馈,以致视觉和触觉系统就会像对于一真实医疗过程那样 精确地联系起来以便仿真。遗憾的是,先前技术当前并未启示或提供这样 一种装置。
因此,存在一种需要,而且会很有用,就是获得一种方法和一种系统 以仿真一诸如内窥镜检查这样的最少侵入的医疗过程,它们会向学生提供 精确的关联的视觉和触觉反馈并可用作针对过程所有方面的一种培训资 源。

发明内容

本发明包括一种方法和一种系统以仿真内窥镜检查,特别是挠性胃部 内窥镜检查的最少侵入的医疗过程。此系统目的在于通过随着仿真过程施 行在仿真患者身上而既提供一仿真医疗器械也提供触觉与视觉反馈来尽可 能密切地仿真内窥镜检查的真实医疗过程。
按照本发明,提供一种用于施行一仿真医疗过程的系统,包括:(a)一 仿真器官;(b)一仿真器械,用于在仿真器官上施行仿真医疗过程;(c)一定 位器,用于确定仿真器官之内仿真器械的某一位置;以及(d)一视觉显示器, 用于按照仿真器官之内仿真器械的位置显示图像以便提供视觉反馈,以使 图像可仿真施行在一真实主体上的真实医疗过程期间所接收的真实视觉数 据,此视觉显示器包括:(i)一数学模型,按照一相应的真实器官模拟仿真 器官,模型划分为许多分段;(ii)一加载器,用于选定至少一个分段以便显 示,至少一个分段按照仿真器官之内仿真器械的位置予以选定;(iii)一控制 器,用于按照仿真器械的位置从分段中选定一仿真图像;以及(iv)一显示器, 用于显示仿真图像。
可取的是,视觉显示器还包括:(v)一纹理映射数据库,用于储存纹理 映射数据;以及(vi)一纹理映射引擎,用于大体上在仿真图像由显示器显示 之前把纹理映射数据覆盖于仿真图像。更为可取的是,纹理映射是仿真器 械的随机动作和仿真器官的随机动作之动画演示。
同样可取的是,纹理映射包括从在真实主体上施行真实医疗过程中获 得的图像。
更为可取的是,图像是由首先在施行期间记录视觉数据,而后从记录 的视觉数据中选定图像而获得的。
按照本发明的一项优先实施例,数学模型的特点在于许多按照一样条 制成的多边形,此样条确定了数学模型在三维方向上的一种几何形态。可 取的是,数学模型中对应于仿真器官中某一变形的变形是通过改变样条而 予以确定的。更为可取的是,仿真器官中的变形是一种局部变形,仿真器 官的局部变形通过把一些多边形添加于一部分数学模型按照数学模型予以 确定,以致数学模型的一部分被变形以生成局部变形。最为可取的是,数 学模型是通过模拟仿真器官作为一条直线和改变样条直至数学模型适合相 应的真实器官。同样最为可取的是,控制器按照仿真器官之内仿真器械的 至少一次先前动作来选定仿真图像。
按照本发明的另一优先实施例,显示器还显示一图形用户界面。可取 的是,图形用户界面可显示用于协助施行医疗过程的辅导信息。
按照本发明的又一优先实施例,仿真器官是一胃-肠系统。可取的是, 胃-肠系统是由一种半挠性、光滑材料制成的。同样可取的是,仿真器械 是一内窥镜,内窥镜的特点在于一传感器,用于确定传感器在胃-肠系统 中的某一位置,此系统还包括:(e)一计算机,用于按照传感器的位置确定 视觉反馈。
可取的是,此系统的特点还在于,一触觉反馈机构,用于按照内窥镜 所述端头的位置形成仿真触觉反馈。
按照触觉反馈机构的一项实施例,触觉反馈机构装放在胃-肠系统之 中,而胃-肠系统还包括:(i)许多伺服电机;(ii)一活塞,由许多伺服电机 之一操纵,所述活塞接触所述半挠性材料;(iii)一控制器,用于控制所述 多个伺服电机,使得活塞的位置由控制器决定,并使得活塞的位置提供触 觉反馈。
另外,触觉反馈机构位于内窥镜之中,而内窥镜还包括:(i)一导引套 筒,连接于内窥镜的端头;(ii)至少一个滚珠轴承,装接于导引套筒,用于 沿着胃-肠系统的内部表面滚动;(iii)至少一部直线电机,装接于导引套筒; (iv)一活塞,由直线电机操纵,活塞接触胃-肠系统的内部表面;以及(v) 一控制器,用于控制直线电机,以致活塞的某一位置由控制器予以确定, 而且以致活塞的位置形成触觉反馈。
另外,触觉反馈机构的特点在于:(i)许多环圈,围绕所述内窥镜,每 一环圈具有一不同的半径,至少一第一环圈的特点在于一半径大于内窥镜 的半径和至少一第二环圈的特点在于一半径小于内窥镜的半径,每一许多 环圈的半径按照许多环圈中每一个的某一充气程度被控制,各环圈的半径 确定内窥镜的动作;(ii)一气,用于把空气泵入许多环圈;(iii)至少一个管 筒,用于把所述气泵连接于所述许多环圈;以及(iv)一气泵控制器,用于通 过控制所述气泵来确定所述许多环圈的所述充气程度。
可取的是,至少一部管筒是两个管筒,一第一管筒,用于把空气泵入 许多环圈,以及一第二管筒,从许多环圈吸出空气,而气泵把空气泵入许 多环圈和从许多环圈中吸出空气,以致许多环圈的充气程度通过交替地把 空气泵入许多环圈和从中吸出空气而予以确定。
同样可取的是,胃-肠系统基本上是一根直管,以及触觉反馈和视觉 反馈基本上与胃-肠系统的某一几何形状无关。可取的是,触觉反馈机构 按照在一真实主体上施行医疗过程期间所获得的触觉反馈予以操作,触觉 反馈是通过虚拟现实手套来获得的。
按照本发明系统的另一优先实施例,内窥镜的特点还在于一用于握住 内窥镜的手柄和一器具装置,器具装置包括:(i)一仿真器具;(ii)一槽道, 用于容放实际器具的仿真品,槽道设置在手柄之中;(iii)一器具控制装置, 用于检测仿真器具的某一动作,器具控制装置设置在槽道之中,而器具控 制装置连系于计算机,使得计算机按照仿真器具的动作确定视觉反馈和触 觉反馈。
可取的是,器具控制装置可检测胃-肠系统之内仿真器具的某一位置 用于形成视觉反馈。
更为可取的是,器具控制装置另外可检测一套仿真器具用于视觉反馈。
按照器具控制装置的一项实施例,器具控制装置还包括:(1)一光源, 用于产生光线,光源设置在槽道之内;(2)一光轮,用于按照仿真器具的动 作交替地挡住和不挡光线;以及(3)一光线检测器,用于检测光线,以致计 算机按照光线检测器确定仿真器具的某一动作。
按照本发明的另一实施例,提供一种用于施行一仿真的窥镜检查过程 的方法,包括各步骤:(a)配置一种用于施行仿真内窥镜检查过程的系统, 包括:(i)一仿真胃-肠系统;(ii)一仿真内窥镜,用于在仿真胃-肠系统之 内完成仿真内窥镜检查过程;(iii)一定位器,用于确定在仿真胃-肠系统之 内仿真内窥镜的某一位置;以及(iv)一视觉显示器,用于按照仿真胃-肠系 统之内仿真内窥镜来显示图像,以致图像仿真在施行在一真实主体上的一 真实医疗过程期间所接收的视觉数据,视觉显示器包括:(1)一仿真胃-肠 系统的三维数学模型,其划分为许多分段;(2)一加载器,用于选定至少一 个分段以便显示,至少一个分段是按照仿真胃-肠系统之内仿真内窥镜的 位置予以选定的;(3)一控制器,用于按照仿真器械的位置从分段选定一仿 真图像;以及(4)一显示器,用于根据控制器显示仿真图像,以致仿真图像 是一显示出来的图像;(b)把仿真内窥镜插入仿真胃-肠系统;(c)按照显示 出来的图像接收视觉反馈;以及(d)按照胃-肠系统之内内窥镜的位置接收 触觉反馈。
可取的是,显示出来的图像是按照仿真胃-肠系统之内仿真内窥镜的 至少一个先前的动作予以确定的。
按照本发明的再一实施例,提供一种用于显示以一真实医疗器械在一 真人器官上施行的一医疗过程的仿真视觉数据的方法,此方法包括各步骤: (a)在一患者的真实医疗过程的施行中记录真实数据;(b)从真实数据中抽取 许多个别图像;(c)使许多个别图像数字化以形成许多数字化的图像;(d)选 定至少一个数字化的图像以形成一选定数字化图像;(e)把选定的数字化的 图像作为纹理映射数据储存在一纹理映射数据库之中;(f)提供一真人器官 的数学模型,模型划分为许多分段;(g)从模型中选定许多分段之中的一个 用于显示;(h)把来自纹理映射数据库的纹理映射数据覆盖在模型的分段上 面以形成至少一个最终图像;以及(i)显示最终图像。
可取的是,来自真实医疗过程的施行中的真实数据选自由视频数据、 MRI(磁共振成象)数据和CAT(计算机辅助断层X射线摄影术)扫描数据。
更为可取的是,步骤(f)还包括各步骤:(i)按照一样条把真人器官模拟 成许多多边形;(ii)按照三维坐标把样条映射成真人器官;(iii)改变样条,以 致样条适合真实数据。
最为可取的是,纹理映射数据还包括动画。同样最为可取的是,动画 包括真实医疗器械的随机动作和真实人体器官的随机动作。
按照本发明的又一实施例,提供一种用于向学生教授为施行一真实医 疗过程所需的某一特定技艺的方法,此真实医疗过程是以一真实医疗器械 在一真实器官上施行的,带有视觉反馈,此方法包括各步骤:(a)配置一仿 真器械,用于仿真真实医疗器械;(b)配置一仿真器官,用于仿真真实器官; (c)抽取真实医疗过程的一部分视觉反馈;(d)提供一部分视觉反馈用于仿真 视觉反馈;以及(e)由学生按照一部分视觉反馈操作仿真器官之内的仿真器 械,使得仿真器械的某一动作是教给学生的一种技巧。
可取的是,视觉反馈部分大体上包括少于真实医疗过程视觉反馈的视 觉细节。
更为可取的是,仿真器官是一胃-肠系统的仿真,而仿真器械是一内 窥镜的仿真。
最为可取的是,视觉反馈部分只包括胃-肠系统内部的几何形状。
本发明的方法,用于制备一仿真器官模型并用于在仿真医疗过程期间 再现仿真器官的视觉反馈,可以表述为由一数据处理器执行的许多指令。 如此,这些指令可以以硬件软件固件,或者其某一组合,予以实施。 作为软件,本发明方法的各步骤可以容易地由本技术领域中具有一般平 的人基本上以任何适当的编程语言予以实施,包括但不限于C和C++。
此后,“仿真医疗过程”这一用语指的是通过本发明的系统和方法所施 行的医疗过程仿真。此后,“真实医疗过程”这一用语指的是用一真实内窥 镜在一真正的、活人患者身上施行医疗过程,以致医疗过程是“真正的” 而不是“仿真”的。此后,“相应的真实器官”这一用语指的是一个人的或 哺乳动物的“真正的”器官,其由本发明的仿真器官予以仿真。
此后,“内窥镜检查”这一用语包括,但不限于,前述的挠性胃部内窥 镜检查过程,以及一些医学诊断和外科过程,其中一内窥镜插入主体的口 腔或直肠以便在主体的胃-肠系统之内操作。此后,“主体”这一用语指的 是人或低等哺乳动物,本发明的方法和系统在其上面施行或运用。此后,“学 生”这一用语指的是按照本发明被培训或按照本发明被教习的、使用本发 明系统的任何人,包括但不限于医学院校的学生、医院大夫、经受培训的 胃-肠专业人员或其他经受培训的专业医疗人员。
附图说明
前述和其他一些目的、方面和优点通过以下参照各图所作的本发明一 项最佳实施例的详细说明会更好地予以理解,图中:
图1是符合本发明的医疗仿真系统的一项示范图例;
图2是符合本发明的一种屏幕显示器的一项示范图例;
图3A是符合本发明的、用于制备被仿真器官的视觉模型并提供视觉反 馈的一种示范性方法的流程图,以及
图3B是一符合本发明的示范性的视觉处理和显示系统的示意方框图
图4是符合本发明的一种示范性辅导系统的示意方框图;
图5A和5B表明符合本发明的一种示范性仿真的胃-肠系统;
图6A-C表明符合本发明的度反馈系统一项实施例的各个方面;
图7A-7D表明符合本发明的力反馈系统的一第二实施例;
图8A-8E表明符合本发明的系统的另一实施例;以及
图9A-9E表明符合本发明的一器具组件的例证性实施例。

具体实施方式

本发明包括仿真内窥镜检查,特别是挠性胃部内窥镜检查的医疗过程 的一种方法和一种系统。此系统目的是要在被仿真的病人身上进行被仿真 过程时通过既提供一种仿真医疗器械,也提供触觉和视觉反馈来尽可能真 切地仿真真实的内窥镜检查医疗过程。尽管所作讨论是针对内窥镜检查医 疗过程的,但本发明也可用于仿真其他各种类型的最低侵入医疗过程。
本发明的系统的特征在于,为仿真内窥镜检查医疗过程,既有一实际 模型,也有一虚拟模型。实际模型包括一人体模型,仿真内窥镜插入其中。 一仿真器官设置在人体模型之内。比如,如果仿真器官是胃-肠系统,器 官可以任由选择地包括一仿真直肠和一仿真结肠,用于仿真挠性胃-内窥 镜检查过程。任由选择并且优先的是,仿真器官可以任由选择地包括一仿 真口腔和上部胃-肠系统。仿真内窥镜插入仿真胃-肠系统。仿真胃-肠 系统包括一触觉反馈系统,用于按照仿真器官之内的仿真内窥镜的移动形 成现实的触觉反馈。
虚拟模型为来自内窥镜的各图像的仿真提供一“虚拟现实”。在一真实 的内窥镜检查医疗过程中,在真实内窥镜的端头处的一部相机回返来自真 人患者胃-肠系统的各个图像。这些图像然后由实施内窥镜检查过程的医 生观看,从而向医生提供视觉反馈。本发明的系统为这种视觉反馈的现实 仿真提供一种“虚拟现实”。这种虚拟现实使得能够最好是以一种触觉和视 觉反馈像是在一真人患者身上那样被耦联起来的方式按照仿真内窥镜的各 种操作在一视频监视器上实时地显示胃-肠系统的各现实图像。
虚拟现实具有两个主要部分:一胃-肠系统或其一部分的三维、数学 模型,以及从获自真实内窥镜检查过程的真实视觉图像中导出的一增强的 数字化图像的数据库。这两个部分结合起来以通过增强的图像作为纹理映 射来覆盖受仿真器官的数学模型而形成现实的视觉反馈,从而贴切地仿真 获自真实过程的图像。
胃-肠系统的虚拟现实反馈对于仿真图像是特别有利的,因为它不依 赖于视频数据流,后者要求巨大的计算能力用于视觉反馈的实时显示。此 外,视频数据流只提供一预定的图像流量而不能以实时提供具有六个自由 度的视觉数据。其次,本发明的虚拟现实不只依靠一胃-肠系统的数学模 型,后者不能从一真人患者处记录一真实胃-肠系统的凹凸不平和细微的 视觉特点。因而,胃-肠系统的虚拟现实反馈为视觉反馈以实时提供了现 实图像的最佳仿真。
本发明涉及一种方法和一种系统,以仿真内窥镜检查,特别是挠性胃 -肠内窥镜检查。此系统包括一人体模型,仿真内窥镜插入其中。按照仿 真内窥镜的操作,通过一以实时显示现实图像的视频监示器提供视觉反馈。 也可以提供现实触觉反馈,方式最好是,触觉和视觉反馈像是在一真人患 者身上那样被耦联起来。最好是,本发明的特点还在于一辅导系统,用于 培训学生和测试他们的成绩。因而,本发明的系统和方法提供了一种用于 培训和测试学生的内窥镜检查医疗过程的现实仿真。
符合本发明用于医疗仿真,特别是用于内窥镜检查医疗过程仿真的一 种方法和一种系统的原理和运用,最好是包括把学生技能的辅导效果和测 定结果通知给教师或医务督导人员,参照附图和所附说明会得到更好的了 解,而可以理解的是,这些附图的提出只是为了例证目的,并不意味着是 限制性的,其次,虽然以下的说明旨在结肠的仿真,但应当指出,这只是 为了明晰目的,无论如何不意味着是限制性的。
现在参看图纸,图1画出符合本发明的一种示范的、例证性的医疗仿 真系统。一系统10包括一人体模型12,表示有待施行医疗过程于其上的主 体;一仿真内窥镜14;以及一计算机16,带有一视频监视器18。图示一学 生20通过操作人体模型12之内的仿真内窥镜14而与系统10互动。一如 以下图5A和5B所进一步表明的那样,人体模型12包括一仿真器官,其中 插入仿真内窥镜14。随着学生20操作仿真内窥镜14,触觉和视觉反馈按 照内窥镜14在仿真器官(未示出)之内的位置予以确定。视觉反馈以在视频 监视器18上的一种显示的形式予以提供。必需的各种数据计算由计算机16 施行,以向学生20提供现实的触觉和视觉反馈。
图2是监视器18上的一屏幕显示的一示范图例。一屏幕显示22包括 一反馈图像24。反馈图像24表示仿佛内窥镜插入一活人患者体内时所看到 视觉图像。反馈图像24是本来会从活人患者胃-肠系统该部分处接收到的 视觉数据的一种精确和现实的仿真。虽然反馈图像24表现为一种静态图像, 但可以理解,这只是为了例证目的,而真实的视觉反馈数据会是状为基于 获自一真实内窥镜检查过程的、真实视频流数据的一基本上连续的仿真图 像流动。因而,由反馈图像24表示的图像流动给予学生(未示出)以现实的 视觉反馈。
此外,屏幕显示器22可取地包括许多GUI(图形用户界面)特征,相关 于本发明的一些最佳的辅导功能。比如,一跟踪显示器26清楚地表明仿真 内窥镜在仿真胃-肠系统之内的部位。跟踪显示器26包括一示意胃-肠系 统28,一示意内窥镜30已经插入其中。可取的是,跟踪显示器26可以启 动和禁止,使得如果跟踪功能被启动,学生只能看到跟踪显示器26。
屏幕显示器22的另外的、任由选择然而可取的特征包括设置一“帮助” 按钮32,一当启动即可导致显示诸如作为控制内窥镜的一种指导书那样的 有用信息。同样,一可取的“提示”按钮34会给予学生关于如何继续施行 医疗过程的一或多项建议。一可取的“患者病史”按钮36会导致屏幕显示 器22现出与一组仿真的“患者病史”之中的一项有关的信息,可能有助于 学生确定进一步的行动。最后,一可取的“成绩”38会导致屏幕显示器22 显示对学生成绩的检查和评定。所有这些功能是一种用于在内窥镜检查医 疗过程中培训学生的辅导系统最佳实施例的一部分,一如图4之中更为详 细所述。
图3A和3B是符合本发明的一种示范的视觉处理和显示系统和方法的 示意方框图。图3A是符合本发明的视觉处理和显示方法的流程图,并且意 欲作为图3B中系统所用方法的概括。有关此方法各具体方面的其他细节以 下将参照图3B予以说明。
本发明的方法和系统提供了在医疗仿真技术中许多问题的一种解决办 法,特别适用于胃-肠内窥镜检查过程的仿真。这一过程涉及胃肠系统的 诸如结肠这样的一个内在部分的视觉显示。结肠是带有一弯曲构造的挠性 体部。结肠的内表面一般是可变形的,以及具体地说,是局部可变形的。 所有这些主体变形应当按照结肠的数学模型加以计算,而后以实时在视觉 上予以再现,以便为使用者提供一种现实视觉反馈响应。
图3A表明本发明方法的一项最佳实施例,用于制备模型和再现视觉反 馈,包括为制备结肠计算机化模型所需的各个步骤,以及为显示结肠所需 的各个步骤。
在本发明方法的步骤1中,在一真人患者身上施行内窥镜检查的真实 医疗过程期间,真实的视频数据被记录在录相带上。此外,这种数据还包 括来自在真人患者身上施行的过程的MRI(磁共振成象)和CAT(计算机辅助 断层X射线摄影术)扫描数据。
在步骤2中,比如使用一捕获器抽取各个图像,而后予以数字化。 在步骤3中,这些数字化的图像为清晰和因减少视觉伪影起见而予以优选, 而后储存在一纹理映射数据库之中。更为可取的是,这些数字化的图像在 储存前进行增强。更为可取的是,纹理映射也包括动画。这种动画可以仿 真诸如结肠组织和内窥镜的随机振动等效应,以及诸如由于重力作用而造 成的液体向下流动等现象。
在步骤4中,建造了人体结肠的一个三维数学模型。本发明中特别可 取的结肠三维数学模型是一个诸如一样条那样的多边形模型。这一教学函 数把结肠表示成一系列曲线,以致结肠三维结构中的各点都被映射于此样 条。比如,结肠可以模拟为一条直线,可以通过改变模型的样条而使之变 形,直至模型拟合数据为止。另外,样条可以安置在结肠内部并映射于结 肠。最好是,采用多个样条以模拟比如胃与小肠的接合处。
这种映射可以沿着x、y和z轴线按照三维坐标予以施行。另外,映射 可以按照时间、结肠之内的度和半径这些坐标予以施行。这两种不同类 型的各坐标也可以任由选择地予以混合使用,其中各坐标比如是时间、x和 y。样条本身和从样条映射到结肠二者都可以任由选择地予以改变,以便形 成新的和不同的结肠视觉表象,比如以便为学生形成供研习之用的许多理 论上的“测试病例”。比如,这种改变是任由选择地按照MRI(磁共振成象) 数据予以作出的。此外,出自MRI和/或CAT扫描过程的数据任由选择地 和最好是按照数学模型予以净化和重组,以便更为精确地确定仿真结肠的 几何形状。基本上所有这些过程都可以按照这种数据自动地进行,或者另 外,这些过程也可以部分地或整体地以人工进行。因而,本发明的最佳数 学模型允许数据被迅速地在视觉上重现在结肠模型上。
按照本发明一特别优先的实施例,模拟了内窥镜缆本身的一个“环圈”。 这样一个环圈出现在施用内窥镜检查过程,无论“真实”或仿真的,无意 地通过转动内窥镜本身而在结肠之内改变了方向的时候。这样一个环圈对 于患者可以是非常危险的,并因而应当作为仿真的一部分予以检测,以便 警示学生,指出过程进行得不正确,从而出现环圈。
最好是,环圈是由一种符合本发明的样条构成的并协调于力度反馈。 必须确定已经送入结肠的缆的长度,以及从直肠(内窥镜的进入点)到内窥镜 的当前位置的结肠长度。环圈的尺寸随后从这两个长度的差值中计算出来, 而环圈按照样条予以模拟。
按照本发明在视觉上重现结肠的方法包括下述的许多步骤,作为由一 数据处理器操作的一些软件指令而予以执行。此方法可取地包括把结肠划 分为许多部分的步骤(一如图3A之中步骤5所示)。由于仿真内窥镜的空间 运动是受限的,这一划分以直线方式作出。换句话说,仿真内窥镜不能从 结肠的一部分“跳”向另一部分,而必须代之以沿着仿真结肠以一直线方 式行进。此外,仿真内窥镜只能以一有限速度经过仿真结肠而移动。因而, 内窥镜必须以一已知的有限速度依序通过结肠三维模型的每一分段。
这样一种划分的后果是,只有一个分段需要在任何给定时刻予以处理, 虽然如果计算资源允许时基本上可以同时处理许多这样的分段。其次,这 一划分把视觉处理归结为一种更加可以的任务,由于这一模型在最佳实施 例中可以任由选择地包括数以千计的多边形,虽然每一分段具有少得多的 多边形。
此外,可取的是,只是那些处在摄像机视线上的部分,并因而或是当 即可见的或很快成为可见的部分,被选定用于视觉重现,以便减少为重现 所需的计算。更为可取的是,被重现的部分之数量不是预先确定的,因为 在某些情况下,在视线上的部分之数量可以改变。比如,当摄像机正在围 着结肠中的一弯曲段行走时,摄像机的视线是很短的,以致相对较少的部 分,或者另外较小的这些部分,必须予以再现。
下面,在步骤6中,确定由摄像机扫描的结肠区域的各视觉特性。可 取的是,这些视觉特性是按照许多因素予以确定的,包括托持摄像机的内 窥镜端头的位置和摄像机本身所指的方向。其他重要的因素包括被模拟结 肠的形状和摄像机通过结肠的移动的历史。关于后一因素,由学生的各种 动作所确定的、内窥镜通过结肠的先前的各种移动对在任一给定时刻由摄 像机观察到的结肠区域具有相当大的影响。比如,如果学生由于不正确地 操作内窥镜而已经导致造成一个“环圈”,如前所述,则此“环圈”只能通 过把各种移动的历史包含在内以确定视觉反馈而正确地予以仿真。
在步骤7中,可取的是,分析一下至少这些部分之一的一局部变形以 确定是否这一变形会影响样条本身。经过映射的各坐标而后迅速地从时间、 角度和半径变换为x、y和z。接下来,在步骤8中,可取的是,结肠组织 的局部变形通过半径内插而予以确定,以便确定这一变形的程度。由于时 间、角度和半径可能不会给出充分的信息以从事计算,任由选择地和可取 的是,结肠的体积按照预先形成的数学模型另外予以改变。
对于在一非常局部规模上的变形,诸如在来自器械的低度力量下内窥 镜检查器械的端头与结肠之间的接触点,最好是此区域之内的细分程度通 过对于采用此模型进行的计算添加更多的多边形而予以增大,以便能够全 部或基本上无扭曲地展开密接区域之内的各点。这种展开最好是按照一个 最好是能使样条模型局部地作出改变的预定函数来进行。
这一用于模拟结肠“展开”的最佳方法也可以用以模拟诸如一息肉这 样的局部不规则区域。一些息肉可以一个点一个点地映射到结肠模型上去, 从而调节该组织的视觉表象以适应息肉本身和在息肉底部处该组织的结构 上的各种变化。
接下来,在步骤9中,先前所述的多种类型的数据用来真实地把视频 数据再现到结肠上去。起初,这种数据之映射到模型上去会任由选择地和 最好的是包含某些调节,由一软件编程员手工进行。另外,这种映射可以 完全自动进行。
在步骤10中,出自数据库的纹理映射覆盖在模型的大部分上面。最好 是,这种纹理映射包括数字化图像和辅助动画二者。在步骤11中,显示最 终的图像。一如前所指出,各图像是按照仿真胃-肠系统之内仿真内窥镜 的位置而以一种连续流的方式显示出来的。同样一如前所指出,各坐标的 这种映射最好是按照结肠的数学模型予以实现,后者最好是一样条。
图3B比较详细地表明符合本发明的视觉处理和显示系统。一视觉处理 和显示系统40包括屏幕显示器22,用于显示处理过的视觉数据。视觉数据 构成如下。首先,数据从真实胃内窥镜检查过程中记录到录像带上,一如 记录方框42之中所示。数据可取地贮存在Super-VHS录象磁带上,以便在 真实内窥镜检查过程期间获得显示在屏幕上的视觉图像的最佳质量,一如 方框44之中所示。接下去,录像带的至少一部分画面,而最好是基本上全 部画面,由一帧捕获器46各个地抽取以形成数字化图像。各个数字化图像 然后为清晰起见和因减少视觉伪影,诸如出自内窥镜器械本身的反射,而 可予以挑选。在选定的各帧之中的图像随后最好是予以增强并添加于一纹 理映射数据库48。
最好是,两种类型的纹理映射被贮存在数据库中。第一类型的纹理映 射目的在于比如通过消除视觉伪影来增强图像的现实视觉状况。第二类型 的纹理映射目的在于仿真一活动器官和一真实内窥镜的性质,如由方框50 所示。在一真人患者身上的真实内窥镜检查过程期间,结肠组织稍作移动 而内窥镜本身振动而又摇摆。这一运动在视觉上由于添加图像的随机活动, 而且还由于添加诸如由于重力影响而造成的液体向下流动等效应,而予以 仿真。这种活动增强了结肠视觉表象的现实性质。
为了经过增强的图像能正确地显示出来,图像必须相应于仿真内窥镜 在仿真结肠之内的操作和位置。特别是,图像的纹理映射应当相应于内窥 镜在结肠之内的位置。内窥镜在结肠之内的位置与纹理映射之间的这种相 应关系是由一纹理映射引擎52形成的。纹理映射数据然后很容易由视觉系 统40的显示部分予以取用,一如方框54所示。
不过,一如针对前述先前技术的装置所指出,以一大量影像流的方式 迳直地复制经过挑选的增强帧会很快地超越计算资源和导致视觉显示成为 非同步于仿真内窥镜的实际位置。其次,这样一种影像流不会使得图像按 照内窥镜的活动正确地显示,这种活动可取的是具有六个自由度。因而, 仅仅复制是不能充分地确保现实的图像,即使在映射到一三维表面上之后。
可取的是,视觉处理和显示系统40包括至少一部分胃-肠系统56的 一个三维数学模型,更为可取的是,建造得一如图3A之中所示。为了说明 的目的,模型56在此描述为一三维的结肠模型,但应当理解,这无论如何 并不意味着是限制性的。模型56可取地具有的特点是有多个分段58,更为 可取地是有许多这样的分段58。
当仿真内窥镜沿着仿真结肠移动时,内窥镜的位置给予一定位器60, 后者在下面要更为详细地予以说明。定位器60随后指令一目标加载器62 以加载相关的分段58,以便由视觉系统40取用,一和前述和方框54之中 所示。在所示最佳实施例中,最好是在任一给定时刻准备好三个分段58由 目标加载器62取用。内窥镜当前位于其中的特定分段58可取地结合前述 的纹理映射保存在DRAM或RAM之中。下一个分段58和前一个分段58 也可取地贮存在易于取用的位置上,虽然不必在RAM或DRAM之中。
可取的是,来自仿真内窥镜已经进入其中的特定分段58的每一图像的 显示由一分段优化器64予以优化。分段优化器64从定位器60接收信息, 以及由于把纹理映射覆盖到相关分段58上面而获得的系列图像,而后把每 一特定图像馈给一显示管理器66,用于显示在屏幕显示器22上。
此外,显示管理器66由一实时观察器68予以协助,最好是在Direct 3DTM(微软公司,西雅图,华盛顿)中予以实施。实时观察器68提供必要的 软件支持以连系于一图形插卡70用于图像在屏幕显示器22上的真实显示。 虽然图形卡70可以属于任何适当的制品,但可取的是图形卡70具有至少8, 而更为可取的是16,Mb的VRAM以获得最佳性能。一种适当的图形卡70 的范例是3Dfx Voodoo RushTM卡。最好是,实时观察器68的性能由一数学 优化器72予以增强,最好是在Visual C++之中予以实施。
分段优化器64和显示管理器66之间的相互作用在一方面,而定位器 60在另一方面,通过一软件界面74予以提供。软件界面74使得定位器60 可以连系于视觉系统40的其他一些部件,以便提供关于内窥镜在结肠之内 的位置的信息。
在本发明的各优先实施例中,定位器60包括一传感器76,其比如可从 从赤经技术公司(Ascension Technology Corp.)获得。传感器76从一仿真器官 77之内感测位置信息,此器官在此描述为一结肠用于说明目的而并不意味 着是限制性的。传感器76由一控制装置82予以控制。位置信息随后被转 发至一CPU控制器78,后者连接于一伺服电机80(Haydon Switch and Instrument Co.)。随着仿真内窥镜移动经过结肠,内窥镜接触结肠的不同部 分(未示出,见下面图5和6)。触觉反馈由每一伺服电机80本身提供,它可 以控制结肠的材料。
视觉系统40还包括一用户界面84,最好是在Visual C++之中实施。用 户界面84包括先前为图2所述的各GUI器件。此外,用户界面84比如可 使视觉系统40以一网络界面86的最佳特性相互作用,使得其他一些学生 可以经由网络观看屏幕显示器22。用户界面84还允许启动至少一个,和最 好是多个,辅导模88的辅导功能。辅导模块88可以包括一特定的情况, 诸如一带有结肠癌症的主题,以致可以向学生提出不同类型的诊断和医治 难题。学生可能随后需要针对提出的情况正确地作出反应。
辅导系统的一种范例较为详细地示于图4的方框图之中。一辅导系统 90如图所示起始在方框92之中。接下去,使用者必须选定是否希望真实地 与仿真内窥镜相互作用,或者是否使用者比较喜欢接受内窥镜检查理论方 面的辅导,一如在一方框94之中所示。下一个显示询问是否使用者是新手, 一如在一方框96之中所示。如果回答是“是”,使用者被要求送入某种信 息,一如方框98所示。如果回答是“否”,使用者被要求送入识别信息, 诸如使用者姓名或识别编号,一如方框100所示。
接下来,使用者必须选定辅导的类型。比如,使用者可以选定按主题 102辅导,按过程104辅导或按案例研讨106辅导。按主题102辅导包括, 但不局限于,诸如内窥镜操作、活组织检查和息肉切除术的基本操作这样 的主题。按主题102辅导包括屏上支持,一如方框108之中所示。
按案例研讨106辅导可以既按照案例编号也按照所需案例的水平,诸 如初学者、中级人员和专家,来加以选定。最好是,通过综合多种贮存案 例的特点可以由一位教师或教授来制作各个案例研讨。比如,一位教授可 以制作一份案例病史,适合于一名20岁患结肠炎的男子,以致学生随后能 够在这样一位病人身上进行内窥镜检查。因而,辅导系统90最好是具有灵 活性而使得许多不同类型的“病人”能够得到研讨。
如果需要,可以为按案例研讨106辅导和按过程104辅导二者都提供 屏上支持,一如在方框110之中所示。如果不需要屏上支持,使用者可以 指明是否辅导过程实际上是一种正式测试,一如方框112之中所示。因而, 辅导系统90包括既有教导学生的能力,也有测试学生的能力。
按照本发明的一项优先实施例,辅导系统还包括一种仿真内窥镜检查 过程的简化方案,用于按照视觉反馈教习内窥镜的正确操作,以及用于使 得学生能够理解视觉反馈与触觉反馈之间的相应关系。这种简化方案将会 强调一或多项特定任务的,诸如操作内窥镜通过结肠的执行和掌握。
确实,这一优先实施例可以推广到一种方法,用于把一种为施行一真 实医疗过程所需的具体技巧教给学生。这一方法可以包括抽取真实医疗过 程的一部分视觉反馈,这最好是包括比在施行医疗过程期间所获得的全部 视觉反馈要少的视觉细节。这一部分视觉反馈可取地使得学生能够作为必 需的技巧而知悉器械的活动。
比如,简化方案可以任由选择地不以许多,甚至大多数,结肠的视觉 细节作为视觉反馈。相反,结肠可取地是现为一光滑的、相对无特征的管 筒,具有结肠的几何形状和各项尺寸,以便相关于仿真内窥镜经过结肠内 部空间的运动。更为可取地,简化方案可以作为一项游戏而予以实施,其 中学生们可因正确操作内窥镜而被奖以分数,并因不正确操作而被判罚。 因而,学生会具有机会在某一低的心理压力下和甚至“有趣”环境中来知 悉为成功的内窥镜检查所需的各项操作而没有视觉细节分散精力。
图5A和5B表明符合本发明的一示范性仿真胃-肠系统的各种机械状 况。人体模型114的一断面视图示于图5A之中。可取的是,人体模型114 大约一米宽,在一真实的人体尺寸之内。一仿真胃-肠系统116在人体模 型114之内。为明晰起见,仿真胃-肠系统116只包括结肠,应当理解,这 绝不意味着是限制性的。仿真胃-肠系统116连接于一发射器118和一信号 处理装置120,也都安放在人体模型114之内。如图所示,一仿真内窥镜 122可以通过一孔口124插进入体模型114。在此情况下,由于仿真是针对 主体结肠的内窥镜检查的,所以孔口124可仿真主体的直肠。
仿真内窥镜122可以操纵其向上、向下、向左和向右。最好是,仿真 内窥镜122是大约1800厘米长,类似于一真正内窥镜的长度。同样最好是, 仿真内窥镜1 22端头的直径是大约13.4mm,而内窥镜122其余部分具有大 约10.2mm的直径,又类似于一真正内窥镜的尺寸。
一旦仿真内窥镜122插进仿真胃-肠系统116,仿真内窥镜122端头上 的传感器76能够检测仿真内窥镜122的位置。传感器76可取地具有三个 自由度,更为可取地六个自由度,以便有效地仿真内窥镜122的操作。如 果传感器76具有六个自由度,检测出来的取向包括狄卡儿坐标x、y、z, 以及倾斜角、仰角和方位角。此外,传感器76可取地包括一传感器发射器 126,以致传感器76的确切角度和位置可以相对于胃-肠系统116予以确 定。传感发射器126向信号处理装置120发射数据,此装置随后分析和处 理信号。经过处理的信号而后给予发射器118,以便发射给一电子装置128 和一DC驱动装置130。信号由DC驱动装置130予以变换并传递给电子装 置128。电子装置128然后把传感器76的位置和方位传送给软件界面74, 以致显示系统的其余部分能够利用此信息在显示屏幕22上显示正确的图像 用于视觉反馈。
本发明既提供视觉反馈也提供触觉反馈。触觉反馈可以通过由仿真胃 -肠系统116施加力量在仿真内窥镜122上而予以提供,一如图6A-6C之 中所示。另外,触觉反馈可以由仿真内窥镜122的机械动作予以提供,一 如图7A-7D之中所示。对于第一实施例来说,最好的是,仿真胃-肠系统 116是由半挠性材料制成的,令人感觉是一种光滑和湿润的材料。当然,就 像在第二实施例之中那样,沿着一种半挠性的、光滑的、湿润的材料滑移 的真实感觉也可以通过内窥镜122本身的机构予以提供。
胃-肠系统116的另外一项实施例,其中系统116安放在一盒器132 而不是人体模型114之内,一如图5B之中所示。盒器132的优点是,盒器 132能够用来包容任何无线电波,以致比如胃-肠系统116的机构可以通过 发射无线电波而予以控制。由于某种医疗设备对于这些无线电波是高度敏 感的,它们需要留在人体模型114之内。盒器132因此起到把胃-肠系统 116与人体模型之外的外部环境隔绝开来的作用。胃-肠系统116的细节在 图6A之中比较容易看清,应当理解,图5A、5B和6A表明同一胃-肠系 统116。
图6A表明符合第一实施例的胃-肠系统116,其中触觉反馈是由一装 放在胃-肠系统116本身之内的机构通过作用在仿真内窥镜122上的力量 而予以提供的。仿真胃-肠系统116是由一种半挠性材料制成的。许多动 作盒器134沿着胃-肠系统116的外部表面间隔开来设置。为说明目的, 画出七个动作盒器134。每一动作盒器134,较为详细地示于图6B之中, 具有至少一部,而最好是多部,伺服电机80,最好是直线电机。
每一伺服电机80连接于一活塞136。活塞136的细节放大地画在图6B 之中。每一活塞136连接于一台座138,后者接触胃-肠系统116外部表面 的一部分材料。可取的是,台座138实际上粘附于外部表面的这部分材料, 以便较为容易地操纵此材料。
最好是,有两种不同类型的活塞136。第一类型,为说明目的画出其中 两个,是一种垂直力活塞140,用于造成胃-肠系统116一部分外部表面的 垂直运动。第二类型,为说明目的画出其中一个,是一种水平力活塞142, 用于造成胃-肠系统116一部分外部表面的水平运动。在图示的优先实施 例中,伺服电机80是一直接顶靠胃-肠系统116材料安放的振荡电机,以 致水平力活塞142只包括电机,不具有类似于垂直力活塞140的结构。由 于每一活塞136具有一相关的伺服电机80,胃-肠系统116外部表面的必 需垂直和水平运动可以通过伺服电机80的活动精确地予以确定。
每一活塞136,或者最好是附着的台座138,接触胃-肠系统116的材 料,以便操纵此材料而施加力量顶靠内窥镜(未示出)。比如,一如图6B之 中所示,一第一垂直力活塞144可以移动接近伺服电机80,而一第二垂直 力活塞146移动远离伺服电机80。这些移动可改变胃-肠系统116材料的 位置,导致对仿真内窥镜施加类似于或等同于在一真实内窥镜检查过程期 间所感到的那些力量。此外,水平力活塞142,如图所示最好是单独一部振 荡伺服电机,水平移动以形成触觉反馈感觉的更为纤细的细调。由各伺服 电机80设置得遍及胃-肠系统116的三维表面,可以在三个方向上施加力 量在内窥镜上。
伺服电机80的活动本身又由数字控制器82予以控制。数字控制器82 可以是一个插进PC计算机的插卡,此计算机将要进行为仿真医疗过程所需 的必要计算。由PC操作的软件地把来自传感器76的位置和方位信息使用 在仿真内窥镜122上以确定仿真内窥镜122的位置。接下来,软件按照应 当由仿真内窥镜122操作者在仿真胃-肠系统116之内该特定位置处感觉 到的所需触觉指令数字控制器82,数字控制器82然后在必要时使得至少一 部伺服电机80推动相关的活塞136以形成触觉反馈感觉。
数字控制器82可以通过某种类型的辐射,诸如红外光线,连接于伺服 电机80。不过,在医院或医疗环境之内对于某些波长诸如无线电波辐射的 限制使得一条从数字控制器82伸向每一伺服电机80的导线所形成的连接 甚为可取。在示于图6B之中的示范实施例之中,每一伺服电机80由一条 导线连接于一动作盒器控制器144。动作盒器控制器144然后最好是由单独 一条导线(未示出)连接于数字控制器82。这种结构为了效率较高而限制了向 数字控制器82所作各个连接的数量。
图6C表明伺服电机80的一放大的断面视图,此伺服电机一如前述最 好是一直线电机。最好是,伺服电机80大约是100mm宽和45mm高。
图7A-7D表明用于形成触觉反馈的机构的一第二实施例。在此实施例 中,机构装放在仿真内窥镜本身之内,而不是仿真胃-肠系统之内。类似 于前一实施例,仿真胃-肠系统可以装放在一基本上真人尺寸的人体模型 之内,后者带有一孔口用于仿真直肠。其次,从学生或另一操作仿真内窥 镜的个人的角度来看,两项实施例都应当给出医疗过程的适当仿真。不过, 一如下面所述,形成仿真的触觉部分的真实机构是不同的。
图7A表明一仿真内窥镜146的第二实施例。仿真内窥镜146的运动和 动作通过一组控制器148予以控制。仿真内窥镜146的端头装放在一导引 套管150之内。导引套筒150,较为详细地示于图7B之中,最好是留在仿 真胃-肠系统(未示出;见图7C)之内,以便在插入人体模型(未示出)之前保 持仿真内窥镜146的一种现实视觉外观。最好是,内窥镜146的端头具有 一装接上的金属支架152,可以作出带有“试样”字眼的标记或带有另一标 记,以便澄清一下:内窥镜146只是一种仿真而不是一种真实的医疗器械。 导引套筒150的内部最好是经过磁化的,比如用电流。因而,当内窥镜146 的端头被插入人体模型时,金属支架152被吸向导引套筒150,以致导引套 筒150保持为装接于内窥镜146的端头。
导引套筒150具有至少一个,而最好是多个,滚珠轴承154,装接于导 引套筒150的外部表面。此外,导引套筒150具有至少一个,而最好是多 个,附着的插棒156。一如图7B之中详细视图所示,导引套筒150的一端 最好是以一段挠性材料158为特征。如图所示,内窥镜146的端头最好是 插穿导引套筒150。内窥镜146端头以传感器76为特征,类似仿真内窥镜 的前一实施例。
图7C表明插入一仿真胃-肠系统160第二实施例之内以后的仿真内窥 镜146。仿真胃肠系统160最好是由一种刚性材料。此外,仿真胃-肠系统 160最好是具有一般的解剖形状和一真实胃-肠系统的各种特性,这出于两 种原因。第一,由于其弯曲和回转,一般的解剖形状可以比较容易地装放 在人体模型之内。第二,一般的解剖形状可以形成重大的触觉反馈。比如, 随着任一内窥镜较深地插进结肠,结肠的形状会使触觉感受由于内窥镜围 绕结肠之中的一弯段移动而被改变。因而,一般的解剖形状对于有效的仿 真是比较有用的。
随着内窥镜146移动在仿真胃-肠系统160之内,导引套筒150使得 操作者以如下方式接收触觉反馈。各滚珠轴承154沿着胃-肠系统160的 内部表面滚动。每一滚珠轴承154具有5个运动自由度。每一插棒156连 接于一直线电机162,一如图7D之中横截面上所示。直线电机162以类似 于前一实施例伺服电机的方式受到控制。一当收到来自计算机的信号,直 线电机162导致插棒156垂直移动,从而导致仿真内窥镜146的操作者接 收触觉反馈感受。因而,导引套筒150可导致触觉反馈通过内窥镜146被 传送回来。
此外,一如上述,导引套筒150最好是具有挠性材料段158。挠性材料 段158导致内窥镜146端头在某些情况下会遭遇某种阻力,诸如在端头向 自身回弯的时候。因而,挠性材料段158会限制端头的运动不致达到某些 角度。
这一第二实施例的具体优点是,大部分触觉感受是由内窥镜自身确定 的,以致这些感受比较容易自PC计算机得到控制。其次,可以按照来自计 算机的指令来添加比如一种瘘管的解剖特点,而不必改变仿真胃-肠系统 的实际模型。此外,在某些情况下,真实结肠的组织会迫使内窥镜向后, 这是在第二实施例中可以比较容易予以再现的一种情况。因而,仿真胃- 肠系统和内窥镜的第二实施例在再现较为多样的解剖特点和状况方面是比 较灵活的。
图8A-8E表明符合本发明的仿真内窥镜和结肠的又一特别优先实施 例。图8A表明符合本发明的一种优先医疗仿真系统。一系统164包括一人 体模型166,代表过程有待施行于其上的主体,一仿真内窥镜(未示出,见 图8D)和一带有视频监视器170的计算机168。人体模型166最好是包括一 触知区域172,用于通过触摸人体模型166的腹部区域来确定仿真内窥镜的 位置。触知区域172最好是以具有一灯具(未示出)为特征,以致当学生已经 确定仿真内窥镜的位置之后,灯具点亮以显出仿真内窥镜的真实位置。
人体模型166还包括一仿真器官174,仿真内窥镜插入其中。可取的是, 仿真器官174是一结肠,更为可取的是,它做成为一根直筒,通过一力量 反馈机构176形成为在结肠中弯曲处所需的力量反馈。更为可取的是,仿 真医疗过程的视觉反馈不取决于仿真器官174本身的几何形状,以致视觉 反馈和触觉反馈二者都基本上完全与仿真器官174的结构无关。
力量反馈机构176可取的是包括一气动力量反馈装置178(较为详细地 示于图8B、8D和8E)。更为可取的是,设置两部这样的气动力量反馈装置 178,一个靠近人体模型166的口腔180,而另一靠近人体模型166的直肠 182。一气管184把每一气动力量反馈装置178连接于一气泵186。最好是, 气泵186还包括一气泵控制装置188,连接于计算机168用于控制泵入气动 力量反馈装置178的气量。
计算机168也最好是包括一调制解调器190,用于连系于其他计算机。 比如,调制解调器190可以使得计算机168连接于因特网或用于施行远程 医疗的互联网,或者连接于用于修理或故障排除的厂商的互联网/计算机网 络。
图8B和8C较为详细地表明气动力量反馈装置178的各组成部分。一 如图8B之中所示,一部分仿真内窥镜192与气动力量反馈装置178相互作 用以提供力量反馈给学生。力量反馈装置178以具有许多可充气的环圈 194(在图8C之中较为详细地表明在已充气位置上)为特征。每一可充气环圈 194可取地具有各异的半径。更为可取地,有四个这样的环圈194,至少其 中之一具有的半径大于内窥镜192和至少其中之一具有的半径小于内窥镜 192。给入各环圈194的气量可取地分别确定了每一环圈194的充气程度, 从而确定了施加在内窥镜192上的力量大小。
可取的是,每一环圈194需要一秒或更为可取的是小于一秒来达到完 全充气的位置。气流速率最好是高达100立升每分,而压力高达3大气压。 各环圈194最好是既用于被动力量反馈,诸如来自直肠收缩,也用于主动 力量反馈,比如当空气按照仿真内窥镜192的一功能特点被泵入仿真器官 174的时候(见图8E)。
图8D较为详细地表明力量反馈机构176。可取的是,各环圈194通过 管筒184连接于气泵186,管筒184更为可取的是分成为两根管筒196,一 第一管筒196,用于把空气泵入各环圈194,和一第二管筒196,用于从各 环圈194泵出空气。由气泵186泵送的气量由气泵控制器188予以控制。 气泵控制器188的动作最好是由计算机168通过一I/O(模拟至数字)插卡198 予以控制。
图8E较为详细地表明仿真内窥镜192。仿真内窥镜192以具有多种控 制器的一手柄200为特征,包括一第一控制器202,用于把空气泵入仿真器 官174,以及一第二控制器204,用于把空气吸出仿真器官174。仿真内窥 镜192最好是以具有一外科器具控制装置206为特征,多种外科器具任由 选择地和可取地插入其中(见图9A-9E)。仿真内窥镜192还最好是以具有一 接收器208为特征,比如一“minibird”传感器(Ascension Ltd.,Burlington, Vermo nt,USA)。接收器208设置在仿真内窥镜192的端头处。接收器208 用于接收来自位于人体模型166之内的一发射器210的传送信息(见图8A), 从而确定仿真内窥镜192端头在仿真器官174之内的位置。发射器210最 好是一“minibird”发射器(Acension Ltd.)。接收器208然后把这些信号传送 给计算机168,后者利用这些信号用于确定有待在监视器178上显示给学生 的力量反馈和视觉反馈的多少。
一如前述,图9A-9E表明外科器具控制装置206的一优先实施例,多 种外科器具任由选择地和可取地插入此装置。外科器具控制装置最好是以 具有一插入一器具套筒214的镊子212为特征,从而仿真一内窥镜的真实 镊子。真实的镊子用于施行息肉切除术,并以一环套为特征,此环套在操 作装置时从镊子的端头露出。此环套围绕息肉安放并收紧。然后通过环套 送电,以便切除息肉并烧灼此区域。
类似于真实镊子,镊子212在学生握住一镊子手柄216时被插入,最 好是包括一个按钮或另一控制器,用于仿真通过“环套”起动“电”流的 效应。器具套筒214以一器具控制装置218等特征,此装置用于检测镊子 212的各种动作,并把这些动作转换为力量反馈和视觉反馈。视觉反馈包括 比如适当的镊子“环套”的视觉显示,以及“息肉切除术”之前和之后息 肉的显示。此外,环套的位置必须予以跟踪,最好是包括在内窥镜之内的 上下运动,以及环套的“滚”动。器具控制装置218连接于计算机之内的 一I/O插卡(未示出),用于从事多种类型反馈的必需计算。
图9B和9C表明与218器具套筒214之内器具控制装置218与镊子212 相互作用时的镊子212的两个视图。器具控制218以一导轮220和用于检 测镊子212各种动作的一光轮222(图9B)为特征。光轮222以许多切口为特 征,光线可以穿过这些切口。器具控制装置218的特征还在于一第一灯具 224和一第一灯光传感器226,以及一第二灯具228和一第一灯光传感器 230(图9C)。当光轮222随着镊子212的动作而转动时,从第一灯具224和 第二灯具228传来的光线交替地被阻挡和解除阻挡,以致光线可由第一灯 光传感器226和第二灯光传感器230交替地予以检测和不予检测。
图9C表明器具控制装置的一第二实施例。在此实施例中,一器具控制 装置232的特点在于两个导轮234。两个导轮234有助于导引器具套筒214 之内镊子212的动作。一光轮236的特点也在于各个切口,通过这些切口, 光线随着镊子212转动在器具套筒214之内而交替地被阻挡和解除阻挡。 一光源(未示出)可生成如果穿过光轮236即由一光电眼238予以检测的光 线。光电眼238随后把信号送给一连接于计算机(未示出)的PCB(印刷电路 板)240,以致信号可以由计算机转换为所需的视觉反馈和力量反馈。
脚踏板242示于图9E,用于施行一仿真息肉切除术。脚踏板242的 特点在于一油驱活塞和一微动开关246。微动开关246连接于计算机上的一 I/O卡(未示出),再次用于把脚踏板242的动作转换成为所需的视觉反馈和 力量反馈。
为了精确地再现在一医疗过程期间一真实内窥镜的触觉感受,这些感 受必须在一真实的真人患者身上的内窥镜检查过程期间精确地予以取得。 比如,这种触觉感受可以从一位戴着诸如Data GlovesTM Tracking VR System(Greenleaf Medical Systems)这样的虚拟现实手套施行内窥镜检查过 程的医生那里收集起来,这种手套已知能够记录有关在真实内窥镜检查过 程期间由医生经历的触觉感受和反馈的数据。这种真实数据是很重要的, 因为触觉感受在过程进行期间是变化的。比如,内窥镜动作与视觉显示之 间相关关系是随着内窥镜更深地插入胃-肠系统而逐渐减小。因而,真实 数据的收集在提供一精确的、现实的内窥镜仿真器时是一项重要的步骤。
最后,按照本发明的另一优先实施例,提供一种仿真活组织检查装置 (未示出)。这一活组织检查装置会仿真在内窥镜检查期间用以从胃-肠系统 那里截取组织样本的真实活组织检查装置。真实的活组织检查装置装放在 内窥镜之内。当内窥镜的操作者想要取用一样本时,活组织检查装置从内 窥镜的端头处露出,在这一部位处它在显示屏幕上是可以看到的。活组织 检查装置的各颚板随后被张开并被推压到组织上。各颚板然后被关闭,而 活组织检查装置被撤回。组织的去除导致由于余留组织流血而出现血坑。
类似地,仿真活组织检查装置,当仿真内窥镜的操作者使得仿真活组 织检查装置露出时,将只出现在本发明的显示屏幕上。活组织检查的多颚 板可取地表现为动画形式,更为可取地具有较高的分辨率,因为颚板是很 小的,以致高分辨率不会对于PC计算机显得是过分繁重的。组织的流血和 造成的血坑也将以动画表现。
将会理解,以上说明目的只是用作范例,而在本发明的精神和范畴之 内的许多其他一些实施例都是可能的。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈