首页 / 专利库 / 酸,碱,盐,酸酐和碱 / 磷酸 / 波长转换模块、波长转换模块的形成方法以及投影装置

波长转换模、波长转换模块的形成方法以及投影装置

阅读:509发布:2021-05-14

专利汇可以提供波长转换模、波长转换模块的形成方法以及投影装置专利检索,专利查询,专利分析的服务。并且波长 转换模 块 包括一 基板 以及一波长转换层。基板包括一轴心,轴心位于基板的中心。波长转换层位于基板上,且包括两第一波长转换层以及一第二波长转换层。各第一波长转换层包括一波长转换材料以及一第一结合材料。第二波长转换层在自基板的轴心至基板的一边缘的一径向方向上位于两第一波长转换层之间,且第二波长转换层包括波长转换材料以及一第二结合材料。两第一波长转换层的第一结合材料与第二波长转换层的第二结合材料不同。此外,一种投影装置以及波长转换模块的形成方法亦被提出。本 发明 的波长转换模块具有良好的转换效率以及可靠度,本发明的投影装置具有良好的光学品质以及可靠度。,下面是波长转换模、波长转换模块的形成方法以及投影装置专利的具体信息内容。

1.一种波长转换模,其特征在于,包括基板以及波长转换层,其中:
所述基板包括轴心,所述轴心位于所述基板的中心;以及
所述波长转换层位于所述基板上,且包括:
两第一波长转换层,其中各所述第一波长转换层包括波长转换材料以及第一结合材料,且所述波长转换材料散布于所述第一结合材料中;以及
第二波长转换层,其中所述第二波长转换层在自所述基板的所述轴心至所述基板的边缘的径向方向上位于所述两第一波长转换层之间,且所述第二波长转换层包括所述波长转换材料以及第二结合材料,所述波长转换材料散布于所述第二结合材料中,且所述两第一波长转换层的所述第一结合材料与所述第二波长转换层的所述第二结合材料不同。
2.如权利要求1所述的波长转换模块,其特征在于,所述第一结合材料为有机结合材料,而所述第二结合材料为无机结合材料。
3.如权利要求2所述的波长转换模块,其特征在于,所述第二结合材料包含磷酸盐、酸盐、硫酸盐、酸盐、金属化物或其组合。
4.如权利要求2所述的波长转换模块,其特征在于,所述第二波长转换层的厚度小于各所述第一波长转换层的厚度。
5.如权利要求2所述的波长转换模块,其特征在于,所述波长转换模块还包括抗反射层,位于所述第二波长转换层上。
6.如权利要求2所述的波长转换模块,其特征在于,还包括胶合层,其中所述胶合层位于所述基板与所述第二波长转换层之间。
7.如权利要求1所述的波长转换模块,其特征在于,还包括抗反射层,位于所述波长转换层上。
8.如权利要求1所述的波长转换模块,其特征在于,还包括反射层,位于所述基板与所述波长转换层之间,且所述反射层为漫反射层或高反射层。
9.如权利要求8所述的波长转换模块,其特征在于,当所述反射层为漫反射层时,所述反射层包括:
两第一反射层,各所述第一反射层分别位于所述基板与各所述第一波长转换层之间,且各所述第一反射层包括散射材料与第三结合材料,其中所述散射材料散布于所述第三结合材料中;以及
第二反射层,位于所述基板与所述第二波长转换层之间,且所述第二反射层包括所述散射材料与第四结合材料,其中所述散射材料散布于所述第四结合材料中,且所述第三结合材料与所述第四结合材料不同。
10.如权利要求9所述的波长转换模块,其特征在于,所述第三结合材料为有机结合材料,而所述第四结合材料为无机结合材料。
11.一种波长转换模块的形成方法,其特征在于,包括:
提供基板,其中所述基板包括轴心,所述轴心位于所述基板的中心;
形成两第一波长转换层于所述基板上,其中各所述第一波长转换层包括波长转换材料以及第一结合材料,且所述波长转换材料散布于所述第一结合材料中;以及形成第二波长转换层于所述基板上,其中所述第二波长转换层在自所述基板的所述轴心至所述基板的边缘的径向方向上位于所述两第一波长转换层之间,且所述第二波长转换层包括所述波长转换材料以及第二结合材料,所述波长转换材料散布于所述第二结合材料中,且所述两第一波长转换层的所述第一结合材料与所述第二波长转换层的所述第二结合材料不同。
12.如权利要求11所述的波长转换模块的形成方法,其特征在于,形成所述两第一波长转换层的方法包括:
涂布所述波长转换材料与所述第一结合材料于所述基板上;以及
固化所述波长转换材料与所述第一结合材料。
13.如权利要求11所述的波长转换模块的形成方法,其特征在于,形成所述第二波长转换层的方法包括:
涂布所述波长转换材料与所述第二结合材料于所述基板上;以及
固化所述波长转换材料与所述第二结合材料。
14.如权利要求11所述的波长转换模块的形成方法,其特征在于,形成所述第二波长转换层的方法包括:
以固化温度固化所述波长转换材料与所述第二结合材料,其中所述固化温度大于300℃;以及
藉由胶合层将所述第二波长转换层贴附于所述基板上。
15.如权利要求11所述的波长转换模块的形成方法,其特征在于,所述两第一波长转换层与所述第二波长转换层共同形成波长转换层,且在执行形成所述两第一波长转换层与所述第二波长转换层的步骤之前,先形成反射层于所述基板上,其中所述反射层位于所述基板与所述波长转换层之间。
16.一种投影装置,其特征在于,包括波长转换模块、激发光源、光以及投影镜头,其中:
所述波长转换模块包括基板以及波长转换层,其中:
所述基板包括轴心,所述轴心位于所述基板的中心;以及
所述波长转换层位于所述基板上,且包括:
两第一波长转换层,其中所述两第一波长转换层包括波长转换材料以及第一结合材料,且所述波长转换材料散布于所述第一结合材料中;以及
第二波长转换层,其中所述第二波长转换层在自所述基板的所述轴心至所述基板的边缘的径向方向上位于所述两第一波长转换层之间,且所述第二波长转换层包括所述波长转换材料以及第二结合材料,所述波长转换材料散布于所述第二结合材料中,且所述两第一波长转换层的所述第一结合材料与所述第二波长转换层的所述第二结合材料不同;
所述激发光源适于发出激发光束,其中所述激发光束传递至所述波长转换模块,并经由所述波长转换模块转换为照明光束;
所述光阀位于所述照明光束的传递路径上且适于将所述照明光束转换成影像光束;以及
所述投影镜头位于所述影像光束的传递路径上且适于将所述影像光束转换成投影光束。
17.如权利要求16所述的投影装置,其特征在于,所述第一结合材料为有机结合材料,而所述第二结合材料为无机结合材料。
18.如权利要求17所述的投影装置,其特征在于,当所述激发光束被传递至所述波长转换模块时,所述激发光束于所述波长转换模块上形成光斑,所述光斑的两第一部分分别位于所述两第一波长转换层上,所述光斑的第二部分位于所述第二波长转换层上,且所述光斑的所述第二部分的能量密度大于所述光斑的所述两第一部分的能量密度
19.如权利要求17所述的波长转换模块,其特征在于,所述第二波长转换层的厚度小于各所述第一波长转换层的厚度。
20.如权利要求16所述的投影装置,其特征在于,所述波长转换模块还包括反射层,位于所述基板与所述波长转换层之间。

说明书全文

波长转换模、波长转换模块的形成方法以及投影装置

技术领域

[0001] 本发明是有关于一种光学模块、其形成方法以及包含上述光学构件的光学装置,且特别是有关于一种波长转换模块、波长转换模块的形成方法以及投影装置。

背景技术

[0002] 近来以发光二极管(light-emitting diode,LED)和激光二极管(laser diode)等固态光源为主的投影装置渐渐在市场上占有一席之地。由于激光二极管具有高于约20%的发光效率,为了突破发光二极管的光源限制,因此渐渐发展了以激光光源激发荧光粉而产生投影机所需用的纯色光源。
[0003] 然而,一般而言,现有荧光粉轮的制程是将荧光粉或反射材料混合胶(Silicone)涂布于荧光粉轮的基板上而分别构成荧光粉轮的波长转换层或反射层,但硅胶却有不耐高温的特性与劣化等问题,因此当激光长时间激发荧光粉轮时,硅胶无法耐高温而易导致劣化或烧损,将影响此种荧光粉轮的发光效率以及可靠度。另一方面,有另一种荧光粉轮的制程是以无机胶合材料(其主成分例如为玻璃或金属化物)取代硅胶混合荧光粉或反射材料而构成荧光粉轮的波长转换层或反射层。以此制程形成的荧光粉轮具有较佳的导热率及耐热性,然而此种无机胶合材料的材质较为硬脆,而容易使荧光粉轮产生脆裂的情况,且其与导热基板的附着性较硅胶为差。此外,无机胶合材料在固化后会于波长转换层中产生较多的孔洞,而影响波长转换层的转换效率。
[0004] “背景技术”部分只是用来帮助了解本发明内容,因此在“背景技术”部分所揭露的内容可能包含一些没有构成本领域技术人员所知道的已知技术。在“背景技术”部分所揭露的内容,不代表该内容或者本发明一个或多个实施例所要解决的问题,在本发明申请前已被本领域技术人员所知晓或认知。

发明内容

[0005] 本发明提供一种波长转换模块,具有良好的转换效率以及可靠度。
[0006] 本发明提供一种投影装置,具有良好的光学品质以及可靠度。
[0007] 本发明提供一种波长转换模块的形成方法,能形成具有良好的转换效率以及可靠度的波长转换模块。
[0008] 本发明的其他目的和优点可以从本发明所揭露的技术特征中得到进一步的了解。
[0009] 为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种波长转换模块。波长转换模块包括一基板以及一波长转换层。基板包括一轴心,轴心位于基板的中心。波长转换层位于基板上,且包括两第一波长转换层以及一第二波长转换层。各第一波长转换层包括一波长转换材料以及一第一结合材料,且波长转换材料散布于第一结合材料中。第二波长转换层在自基板的轴心至基板的一边缘的一径向方向上位于两第一波长转换层之间,且第二波长转换层包括波长转换材料以及一第二结合材料,波长转换材料散布于第二结合材料中,且两第一波长转换层的第一结合材料与第二波长转换层的第二结合材料不同。
[0010] 为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种投影装置。投影装置包括上述的波长转换模块、一激发光源、一光以及一投影镜头。激发光源适于发出一激发光束,其中激发光束传递至波长转换模块,并经由波长转换模块转换为一照明光束。光阀位于照明光束的传递路径上且适于将照明光束转换成一影像光束。投影镜头位于影像光束的传递路径上且适于将影像光束转换成一投影光束。
[0011] 为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种波长转换模块的形成方法,包括下列步骤。提供一基板,其中基板包括一轴心,轴心位于基板的中心。形成两第一波长转换层于基板上,其中各第一波长转换层包括一波长转换材料以及一第一结合材料,且波长转换材料散布于第一结合材料中。形成一第二波长转换层于基板上,其中第二波长转换层在自基板的轴心至基板的一边缘的一径向方向上位于两第一波长转换层之间,且第二波长转换层包括波长转换材料以及一第二结合材料,波长转换材料散布于第二结合材料中,且两第一波长转换层的第一结合材料与第二波长转换层的第二结合材料不同。
[0012] 基于上述,本发明的实施例至少具有以下其中一个优点或功效。在本发明的实施例中,波长转换模块藉由第二波长转换层的配置以及其中第二结合材料的材质选择,而可提升波长转换模块的导热率、耐热性以及可靠度。并且,波长转换模块亦可藉由两第一波长转换层的配置以及其中第一结合材料的材质选择,而使波长转换层保持良好的转换效率以及对基板的良好附着性,而亦可提升波长转换模块的可靠度。另一方面,在本发明的实施例中,投影装置藉由使激光光斑中具有高能量密度的区域位于具有高导热率及耐热性的第二波长转换层上,而亦可因此兼顾良好的光学品质以及可靠度。此外,本发明的实施例的波长转换模块的形成方法藉由形成波长转换模块中位于两第一波长转换层之间的第二波长转换层,而能使波长转换模块能兼顾良好的可靠度以及转换效率。
[0013] 为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。

附图说明

[0014] 图1是本发明一实施例的一种投影装置的架构示意图。
[0015] 图2A是图1的一种波长转换模块的爆炸示意图。
[0016] 图2B是图2A的波长转换模块的俯视图。
[0017] 图2C是图2A的波长转换模块的剖视图。
[0018] 图2D是图2B的激光光斑的能量密度与宽度的关系示意图。
[0019] 图3是本发明一实施例的一种波长转换模块的形成方法的流程图
[0020] 图4A至图4B是本发明一实施例的一种波长转换模块的制作流程示意图。
[0021] 图5A至图5C是本发明各实施例的一种波长转换模块的剖视示意图。
[0022] 图6是本发明一实施例的一种第二波长转换层制程步骤的流程图。
[0023] 图7A至图7B是本发明一实施例的一种波长转换模块的制作流程示意图。
[0024] 图8A至图8D是本发明各实施例的一种波长转换模块的剖视示意图。
[0025] 图9是本发明一实施例的一种波长转换模块的形成方法的流程图。
[0026] 图10A是本发明一实施例的另一种波长转换模块的剖视示意图。
[0027] 图10B是本发明一实施例的另一种波长转换模块的形成方法的流程图。
[0028] 图11A是本发明一实施例的另一种波长转换模块的剖视示意图。
[0029] 图11B是本发明一实施例的另一种波长转换模块的形成方法的流程图。
[0030] 图12是本发明一实施例的另一种投影装置的架构示意图。

具体实施方式

[0031] 有关本发明之前述及其他技术内容、特点与功效,在以下配合参考附图之一较佳实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。
[0032] 图1是本发明一实施例的一种投影装置的架构示意图。图2A是图1的一种波长转换模块的爆炸示意图。图2B是图2A的波长转换模块的俯视图。图2C是图2A的波长转换模块的剖视图。图2D是图2B的激光光斑的能量密度与宽度的关系示意图。请参照图1至图2C,投影装置200包括一激发光源210、一分光单元220、一波长转换模块100、一光阀250以及一投影镜头260。举例而言,在本实施例中,光阀250例如为一数字微镜元件(digital micro-mirror device,DMD)或是一硅基液晶面板(liquid-crystal-on-silicon panel,LCOS panel)。然而,在其他实施例中,光阀250亦可以是穿透式液晶面板或其他光束调变器。
[0033] 举例而言,如图1所示,在本实施例中,激发光源210适于发出一激发光束50。在本实施例中,激发光源210为激光光源,而激发光束50为蓝光激光光束。举例而言,激发光源210可包括多个排成阵列的蓝光激光二极管(未绘示),但本发明不局限于此。
[0034] 具体而言,如图1所示,在本实施例中,分光单元220配置于激发光束50的传递路径上,且位于激发光源210与波长转换模块100之间。具体而言,分光单元220可以是部分穿透部分反射元件、分色元件、偏振分光元件或其他各种可将光束分离的元件。举例而言,在本实施例中,分光单元220例如可让蓝色光束穿透,而对其他颜色(如红色、绿色、黄色等)的光束提供反射作用。也就是说,分光单元220可让蓝色的激发光束50穿透,如此一来,激发光束50可穿透分光单元220并入射至波长转换模块100。
[0035] 如图1所示,在本实施例中,波长转换模块100位于激发光束50的传递路径上,并且,如图2A至图2B所示,在本实施例中,波长转换模块100包括至少一波长转换区WR以及光通过区TR。举例而言,如图1至图2B所示,波长转换模块100的至少一波长转换区WR适于将激发光束50转换为至少一转换光束60,波长转换模块100的光通过区TR适于使激发光束50通过而传递至后续光学元件。
[0036] 更具体而言,如图2A至图2C所示,波长转换模块100包括一基板110以及一波长转换层120。基板110包括一轴心O,轴心O位于基板110的中心。波长转换层120位于基板110上,且对应至少一波长转换区WR而设置,且包括两第一波长转换层121、123以及一第二波长转换层122。各第一波长转换层121、123包括一波长转换材料WM以及一第一结合材料BM1,且波长转换材料WM散布于第一结合材料BM1中。第二波长转换层122在自基板110的轴心O至基板110的一边缘E的一径向方向R上位于两第一波长转换层121、123之间,且第二波长转换层
122包括波长转换材料WM以及一第二结合材料BM2,波长转换材料WM散布于第二结合材料BM2中,且两第一波长转换层121、123的第一结合材料BM1与第二波长转换层122的第二结合材料BM2不同。
[0037] 举例而言,在本实施例中,波长转换材料WM可为可激发出红色光的荧光粉、可激发出黄色光的荧光粉或可激发出绿色光的荧光粉,并依不同的波长转换区WR的需求,而对应选择可激发出所需颜色光的荧光粉。另一方面,第一结合材料BM1为有机结合材料,而第二结合材料BM2为无机结合材料。第一结合材料BM1的材质可为硅胶,而对基板110具有良好附着的效果。另一方面,第二结合材料BM2的材质可包含磷酸盐、硅酸盐、硫酸盐、酸盐、金属氧化物等材料或其组合,而具有良好的导热率。如此,藉此形成的第二波长转换层122可具有良好的导热率、耐热性以及可靠度,而能承受较大的激光能量。
[0038] 然而,如图2C所示,藉由此种第二结合材料BM2而形成第二波长转换层122的过程时,较多的孔洞亦会随之在第二波长转换层122中产生,因此第二波长转换层122的孔洞率会大于两第一波长转换层121、123的孔洞率。举例而言,若定义各波长转换层120的孔洞率为位于各波长转换层120中的孔洞在波长转换层120中所占的体积比的话,第一波长转换层121、123中的孔洞率约小于等于1%,而第二波长转换层122中的孔洞率约为10~15%。由于这种较大的孔洞率将会影响波长转换层120的转换效率,因此须适度调整第二波长转换层
122在波长转换层120中所占的宽度比例,以使波长转换层120在藉由第二波长转换层122的配置而提升导热率、耐热性以及可靠度的同时,仍可保持良好的转换效率以及对基板110的良好附着性。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。
[0039] 具体而言,如图1与图2B所示,在本实施例中,当激发光束50被传递至波长转换模块100时,激发光束50会于波长转换模块100上形成一光斑SP,光斑SP的两第一部分SP1分别位于两第一波长转换层121、123上,光斑SP的一第二部分SP2位于第二波长转换层122上,且光斑SP的第二部分SP2的能量密度大于光斑SP的两第一部分SP1的能量密度。举例而言,在本实施例中,第二波长转换层122所能承受的激光能量密度例如约为每平方毫米150至200瓦特(W/mm2),而第一波长转换层121、123所能承受的激光能量密度则例如约小于每平方毫米150瓦特(W/mm2)。换言之,如图1及图2D所示,在本实施例中,光斑SP中能量密度约介于每平方毫米150至200瓦特的区域即为光斑SP的第二部分SP2,而光斑SP中能量密度约小于每平方毫米150瓦特的区域即为光斑SP的第一部分SP1。
[0040] 进一步而言,如图1及图2D所示,在本实施例中,在光斑SP的能量密度的峰值最高点约为每平方毫米200瓦特(W/mm2)时,依比例的对应,光斑SP的第一部分SP1的宽度约占光斑SP宽度的75%,而光斑SP的第二部分SP2的宽度约占光斑SP宽度的25%。如此,即可据此对应的比例来设计第一波长转换层121、123与第二波长转换层122的宽度比例,而使第一波长转换层121、123的宽度仍占有波长转换层120的宽度的大部分比例,进而使得波长转换层120在藉由第二波长转换层122的配置而提升导热率、耐热性以及可靠度的同时,仍可保持良好的转换效率。应注意的是,激光光斑的能量密度会随光源种类或其他元件配置等变动而有所不同,因此此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。
[0041] 如此一来,波长转换模块100可依据入射的光斑SP的能量密度分布来控制第一波长转换层121、123与第二波长转换层122在波长转换层120中所占的宽度比例,而可在提升波长转换模块100的导热率、耐热性以及可靠度的同时,仍可保持良好的转换效率以及对基板110的良好附着性。
[0042] 另一方面,如图2A至图2B所示,在本实施例中,波长转换模块100还包括一散光片130,对应光通过区TR而配置,且波长转换模块100的基板110为透明材质,也不具有反射层的结构。也就是说,在本实施例中,波长转换模块100为穿透式波长转换模块,而光通过区TR适于使激发光束50穿透。
[0043] 如此,请再次参照图1以及图2A至图2B,在本实施例中,波长转换模块100还包括一第一驱动装置(未绘示),适于使光通过区TR与至少一波长转换区WR在不同时间中进入激发光束50的照射范围内,而选择性地使该激发光束50通过或被转换为至少一转换光束60。如图1所示,在本实施例中,当波长转换模块100的光通过区TR进入激发光束50的照射范围时,激发光束50会穿透波长转换模块100,再经由光传递模块LT传递至滤光模块230上。另一方面,在本实施例中,当至少一波长转换区进入激发光束50的照射范围时,激发光束50被至少一波长转换区转换为至少一转换光束60。之后,如图1所示,来自波长转换模块100的至少一转换光束60则可被导引至分光单元220,而被反射至后续的滤光模块230上。
[0044] 具体而言,如图1所示,投影装置200还包括上述滤光模块230,滤光模块230位于激发光束50与转换光束60的传递路径上,并具有滤光区(未绘示)与透光区(未绘示)。滤光模块230还包括一第二驱动装置(未绘示),适于使滤光区(未绘示)在不同时间中对应地进入转换光束60的照射范围内,以例如分别形成红色色光与绿色色光。另一方面,透光区(未绘示)在不同时间中亦会对应地进入被传递至滤光模块230的激发光束50的照射范围内,以形成蓝色色光。如此,即可使激发光束50与转换光束60依时序地被转换成具有多种不同颜色的照明光束70。
[0045] 另一方面,如图1所示,在本实施例中,投影装置200还包括一光均匀化元件240,位于照明光束70的传递路径上。在本实施例中,光均匀化元件240包括一积分柱,但本发明不局限于此。更详细而言,如图1所示,当照明光束70经由照明系统传递至光均匀化元件240时,光均匀化元件240可使照明光束70均匀化,并使其传递至光阀250。
[0046] 接着,如图1所示,光阀250位于照明光束70的传递路径上,且适于将照明光束70转换成一影像光束80。投影镜头260位于影像光束80的传递路径上且适于将影像光束80转换成一投影光束90,以将影像光束80投影至一屏幕(未绘示)上,以形成影像画面。由于照明光束70会聚在光阀250上后,光阀250依序将照明光束70转换成不同颜色的影像光束80传递至投影镜头260,因此,光阀250所转换出的影像光束80所被投影出的影像画面便能够成为彩色画面。
[0047] 如此一来,投影装置200藉由使激光光斑SP中具有高能量密度的区域位于波长转换模块100中具有高导热率及耐热性的第二波长转换层122上,而可兼顾良好的光学品质以及可靠度。
[0048] 图3是本发明一实施例的一种波长转换模块的形成方法的流程图。图4A至图4B是本发明一实施例的一种波长转换模块的制作流程示意图。请参照图3,首先,执行步骤S 110,提供一基板110。接着,执行步骤S120与步骤S130,形成一第二波长转换层122于基板
110上以及形成两第一波长转换层121、123于基板110上。
[0049] 举例而言,如图4A所示,执行步骤S120,在本实施例中,形成一第二波长转换层122于基板110上的方法可以是涂布波长转换材料WM与第二结合材料BM2于基板110上。举例而言,可将波长转换材料WM与第二结合材料BM2形成混合物后,再涂布于基板110上。接着,再固化波长转换材料WM与第二结合材料BM2。
[0050] 另一方面,如图4B所示,执行步骤S130,在本实施例中,形成两第一波长转换层121、123于基板110上的方法可以是将波长转换材料WM与第一结合材料BM1涂布于基板110上。举例而言,可将波长转换材料WM与第一结合材料BM1形成混合物后,再涂布于基板110上。接着,再固化波长转换材料WM与第一结合材料BM1。
[0051] 具体而言,在本实施例中,由于第一结合材料BM1与第二结合材料BM2的固化温度皆不大于300℃,因此可直接于基板110上进行。如此,即可形成图2A至图2C的波长转换模块100的结构。
[0052] 此外,在本实施例中,虽是以先执行图3的步骤S120后再执行步骤S130为例示,即在执行形成一第二波长转换层122的步骤之后,再形成两第一波长转换层121、123,但本发明不局限于此。在另一实施例中,亦可先执行图3的步骤S130后再执行步骤S120,即在形成两第一波长转换层121、123的步骤之后,再形成一第二波长转换层122。此本领域技术人员当可依据产品良率以及实际需求来调整波长转换模块100的制作流程顺序,亦可形成类似的波长转换模块100,在此就不予赘述。
[0053] 图5A至图5C是本发明各实施例的一种波长转换模块100的剖视示意图。图5A至图5C的波长转换模块500A、波长转换模块500B以及波长转换模块500C皆与图2C的波长转换模块100类似,并且波长转换模块500A、波长转换模块500B以及波长转换模块500C亦皆可藉由图3的波长转换模块的形成方法来形成,而其与波长转换模块100的差异如下所述。
[0054] 在图5A的实施例中,波长转换模块100的第二波长转换层122的厚度小于各第一波长转换层121、123的厚度。在本实施例中,由于激发光束50所形成的光斑SP能量极大,而热量亦会随着波长转换层120的厚度而累积,而会对波长转换层120的转换效率造成影响。因此,在本实施例中,可藉由在执行图3的波长转换模块的形成方法中的步骤S120时,适度调降第二波长转换层122的厚度,而形成图5A的波长转换模块500A的结构。如此,可减少能量密度较高的光斑SP的第二部分SP2对第二波长转换层122的转换效率的影响,而可进一步保持波长转换模块500A的良好转换效率。
[0055] 在图5B的实施例中,波长转换模块500B还包括一抗反射层540A,位于第二波长转换层122上。举例而言,在本实施例中,可在执行图3的波长转换模块的形成方法中的步骤S120后,再于第二波长转换层122上形成一抗反射层540A。在本实施例中,抗反射层540A例如为一抗反射膜(AR Coating),而镀于第二波长转换层122上。如此,即可减少入射的激发光束50的反射比率,让不同度入射的激发光束50都能有效的进入第二波长转换层122,进而提升转换效率。
[0056] 在图5C的实施例中,波长转换模块500C与图5B的波长转换模块500B类似,其差异如下所述。波长转换模块500C也包括一抗反射层540B,但抗反射层540B是位于波长转换层120上。举例而言,在本实施例中,是在执行图3的波长转换模块的形成方法中的步骤S120与步骤S130后,再全面于波长转换层120上形成抗反射层540B。如此,可让不同角度入射的激发光束50都能有效的进入波长转换层120,进而提升转换效率。
[0057] 但由于在本实施例中,第一波长转换层121、123中的第一结合材料BM1为硅胶,其材质偏软,因此较为不易镀上抗反射层540B,进而影响波长转换模块500C的可靠度。因此,此本领域技术人员当可依据产品良率以及实际需求来选择抗反射层在波长转换模块的形成方法中的制作顺序以及形成范围,以兼顾波长转换模块的转换效率以及可靠度。
[0058] 图6是本发明一实施例的一种第二波长转换层制程步骤的流程图。图7A至图7B是本发明一实施例的一种波长转换模块的制作流程示意图。图7A与图7B的波长转换模块700的制作流程与图4A与图4B的波长转换模块100的制作流程类似,而差异如下所述。在本实施例中,第二结合材料BM2可选择为陶瓷或二氧化硅等无机胶合材料,并与波长转换材料WM混合后烧结而成。也就是说,第二波长转换层122是藉由荧光玻璃体制程(Phosphor in Glass,PIG)或荧光陶瓷体制程(Phosphor in Ceramic,PIC)而形成。因此,波长转换模块700若以图3的波长转换模块的形成方法制作时,其中的步骤S120时的固化温度会大于300℃,故步骤S120的一部分需先于基板110外执行后,再将第二波长转换层122贴附于基板110上。
[0059] 举例而言,如图6所示,在本实施例中,图3的波长转换模块的形成方法中的步骤S120可包括下列步骤S621、S622、S623。首先,执行步骤S621,提供波长转换材料WM与第二结合材料BM2。接着,执行步骤S622,以一固化温度固化波长转换材料WM与第二结合材料BM2,其中固化温度大于300℃。接着,执行步骤S623,藉由一胶合层750将第二波长转换层122贴附于基板110上。举例而言,在本实施例中,胶合层750可为导热胶层。如此,即可形成图7B的波长转换模块700的结构。如图7B所示,在本实施例中,波长转换模块700还包括一胶合层750,其中胶合层750位于基板110与第二波长转换层122之间。
[0060] 如此,在前述实施例中,由于图5A至图5C以及图7B的波长转换模块波长转换模块500A、500B、500C、700与图2C的波长转换模块100相似,而能达到相同的功能,因此波长转换模块500A、500B、500C、700能达到与前述的波长转换模块100类似的效果与优点,在此就不再赘述。并且,当波长转换模块500A、500B、500C、700应用至前述投影装置200时,亦能使投影装置200达到类似的效果与优点,在此就不再赘述。
[0061] 图8A至图8D是本发明各实施例的一种波长转换模块的剖视示意图。图8A与图8B的波长转换模块800A与波长转换模块800B与图2C的波长转换模块100类似,而图8C与图8D的波长转换模块800C与波长转换模块800D分别与图5A的波长转换模块500A以及图7B的波长转换模块700类似,差异如下所述。波长转换模块800A、800B、800C及800D各还分别包括反射层于基板110上,其中反射层分别位于基板110与波长转换层120之间。举例而言,在本实施例中,图8A至图8D的波长转换模块800A、800B、800C及800D可藉由图9的波长转换模块的形成方法来制作,以下将搭配图9来进行进一步地解说。
[0062] 图9是本发明一实施例的一种波长转换模块的形成方法的流程图。图9的波长转换模块的制作流程与图3的波长转换模块的制作流程类似,而差异如下所述。在本实施例中,两第一波长转换层121、123与第二波长转换层122共同形成一波长转换层120,且在执行形成两第一波长转换层121、123与第二波长转换层122的步骤之前,会先执行步骤S910,而形成一反射层于基板110上,其中反射层位于基板110与波长转换层120之间。
[0063] 举例而言,如图8A所示,在本实施例中,反射层可为高反射层860A,而可为反射镀膜或镜反射层。在图8A的实施例中,高反射层860A的制作方式可为在基板110的表面上镀有具备保护层或介电质层的金属层,该金属层的材料可为、银合金铝合金,或者高反射层860A的制作方式可为在基板110的表面上镀有介电质。
[0064] 或是,如图8B所示,在本实施例中,反射层可为漫反射层860B,而可将散射材料RM混合第一结合材料BM1后,形成于基板110的表面上,其中散射材料RM可为白色散射粒子,而其材质可为二氧化(TiO2)、二氧化硅(SiO2)、氧化铝(Al2O3)、氮化硼(BN)、二氧化锆(ZrO2)。此外,反射层860B亦可为将散射材料RM混合第二结合材料BM2后形成于基板110的表面上,但本发明不局限于此。
[0065] 如此,即可形成图8A至图8B的波长转换模块800A、800B的结构。此外,再配合相关实施例(如图5A的实施例与图7A至图7B的实施例)的说明,亦可形成图8C与图8D的波长转换模块800C、800D的结构,其中波长转换模块800C、800D的反射层为反射层860,反射层860可为高反射层860A或漫反射层860B。相关细节可参照上述实施例的说明,在此不予赘述。
[0066] 图10A是本发明一实施例的另一种波长转换模块的剖视示意图。图10B是本发明一实施例的另一种波长转换模块的形成方法的流程图。图10A的波长转换模块1000与图8B的波长转换模块800B类似,差异如下所述。如图10A所示,在本实施例中,反射层为漫反射层1060,漫反射层1060可包括两第一反射层1061、1063以及一第二反射层1062。各第一反射层
1061、1063分别位于基板110与各第一波长转换层121、123之间,且各第一反射层1061、1063包括一散射材料RM与一第三结合材料BM3,其中散射材料RM散布于第三结合材料BM3中。第二反射层1062位于基板110与第二波长转换层122之间,且第二反射层1062包括散射材料RM与一第四结合材料BM4,其中散射材料RM散布于第四结合材料BM4中,且第三结合材料BM3与第四结合材料BM4不同。
[0067] 举例而言,在本实施例中,第三结合材料BM3可为有机结合材料,材质可为硅胶,而与第一结合材料BM1相同。另一方面,第四结合材料BM4可为无机结合材料,其材质可包含磷酸盐、硅酸盐、硫酸盐、硼酸盐、金属氧化物等材料或其组合,且可选择与第二结合材料BM2相同或不同。但第四结合材料BM4与第二结合材料BM2的共通点是皆具有良好的导热率与耐热性。
[0068] 举例而言,在本实施例中,图10A的波长转换模块1000可藉由图10B的波长转换模块的形成方法来制作。举例而言,请参照图10B,首先,执行步骤S110,提供一基板110。接着,在执行步骤S120与步骤S130之前,先执行步骤S1020与步骤S1030,即分别先形成一第二反射层1062于基板110上与形成两第一反射层1061、1063于基板110上。接着,再执行步骤S120与步骤S130,形成一第二波长转换层122以及形成两第一波长转换层121、123于基板110上。如此,即可形成图10A的波长转换模块1000的结构。
[0069] 此外,在本实施例中,虽是以先执行步骤S1020后再执行步骤S1030为例示,即在执行形成一第二反射层1062的步骤之后,再形成两第一反射层1061、1063,但本发明不局限于此。在另一实施例中,亦可先执行图10B的步骤S1030后再执行步骤S1020,即在形成两第一反射层1061、1063的步骤之后,再形成一第二反射层1062。此本领域技术人员当可依据产品良率以及实际需求来调整波长转换模块1000的制作流程顺序,亦可形成类似的波长转换模块1000,在此就不予赘述。
[0070] 图11A是本发明一实施例的另一种波长转换模块的剖视示意图。图11B是本发明一实施例的另一种波长转换模块的形成方法的流程图。图11A的波长转换模块1100与图10A的波长转换模块1000类似,差异如下所述。如图10A所示,在本实施例中,第二波长转换层122的第二结合材料BM2可选择为陶瓷或二氧化硅等无机胶合材料,并与波长转换材料WM混合后烧结而成。换言之,在本实施例中,形成第二波长转换层122的步骤S120的方法与图7A至图7B的实施例的方法类似,是以大于300℃的固化温度固化波长转换材料WM与第二结合材料BM2形成第二波长转换层122,相关细节可参照上述实施例的说明,在此不予赘述。接着,再执行步骤S1120,形成第二反射层1062于第二波长转换层122上。之后,再执行步骤S623,藉由胶合层750将第二反射层1062与第二波长转换层122贴附于基板110上。如此,即可形成图11A的波长转换模块1100的结构。
[0071] 值得注意的是,图8D的波长转换模块800D与图11A的波长转换模块1100虽皆是以大于300℃的固化温度固化波长转换材料WM与第二结合材料BM2形成第二波长转换层122,但由于形成漫反射层1060的制程顺序的不同,因此胶合层750的位置也因此有所差异,而须依需求进行相关材质的选择。举例而言,在图8D的实施例中,胶合层750位于第二波长转换层122与反射层860之间,而在图11A的实施例中,第二反射层1062位于第二波长转换层122与胶合层750之间。如此,在图8D的实施例中,胶合层750的材质需选择为透明,否则光束无法进入反射层860,而在图11A的实施例中,胶合层750的材质就无相关限制。
[0072] 在前述的实施例中,由于图8A至图8D、图10A以及图11A的波长转换模块800A、800B、800C、800D、1000、1100具有与图2C的波长转换模块100的波长转换层120相似的结构,而能达到相同的功能,因此波长转换模块800A、800B、800C、800D、1000、1100能达到与前述的波长转换模块100类似的效果与优点,在此就不再赘述。
[0073] 此外,图8A至图8D、图10A以及图11A的波长转换模块800A、800B、800C、800D、1000、1100亦可再配合图5B至图5C的实施例的说明,在波长转换模块800A、800B、800C、800D、
1000、1100上选择性地形成抗反射层540A或抗反射层540B,而可形成与图5B与图5C相似的波长转换模块的结构。相关细节可参照上述实施例的说明,在此不予赘述。
[0074] 另一方面,在图1的实施例中,投影装置200虽以包含波长转换模块100为例示,但本发明不局限于此。在其他的实施例中,波长转换模块500A、500B、500C、700、800A、800B、800C、800D、1000、1100亦可被应用至投影装置200中,任何所属领域中具有通常知识者在参照本发明之后,当可对其光路作适当的更动,而使投影装置达到与前述投影装置200类似的效果与优点,惟其仍应属于本发明的范畴内。以下将另举部分实施例作为说明。
[0075] 图12是本发明一实施例的另一种投影装置的架构示意图。请参照图12,本实施例的投影装置400与图1的投影装置200类似,而两者的差异如下所述。在本实施例中,投影装置400采用的是波长转换模块1200,波长转换模块1200为反射式波长转换模块,且波长转换模块1200与波长转换模块100、500A、500B、500C、700、800A、800B、800C、800D、1000及1100类似,差异仅在于,由于波长转换模块1200适于反射激发光束50,因此,波长转换模块1200不具有光通过区TR,而是在对应光通过区TR的位置设置反射区(未绘示)以反射激发光束50。
[0076] 具体而言,如图12所示,在本实施例中,当波长转换模块1200的反射区进入激发光束50的照射范围时,激发光束50会被波长转换模块1200的反射区反射,接着来自波长转换模块1200的激发光束50则可被导引至分光单元220,而被反射至后续的滤光模块230上。另一方面,在本实施例中,当至少一波长转换区进入激发光束50的照射范围时,激发光束50被至少一波长转换区转换为至少一转换光束60。之后,如图12所示,来自波长转换模块1200的至少一转换光束60则可被导引至分光单元220,而被反射至后续的滤光模块230上。之后,滤光模块230的滤光区(未绘示)在不同时间中对应地进入转换光束60的照射范围内,以例如分别形成红色色光与绿色色光。另一方面,滤光模块230的透光区(未绘示)在不同时间中亦会对应地进入被传递至滤光模块230的激发光束50的照射范围内,以形成蓝色色光,并藉此形成之后的照明光束70与影像光束80。
[0077] 如此一来,投影装置200及投影装置400藉由采用了具有良好的可靠度以及转换效率的波长转换模块500A、500B、500C、700、800A、800B、800C、800D、1000、1100及1200,亦可藉由使激光光斑SP中具有高能量密度的区域位于波长转换模块500A、500B、500C、700、800A、800B、800C、800D、1000、1100及1200中具有高导热率及耐热性的第二波长转换层122上,而可兼顾良好的光学品质以及可靠度。
[0078] 综上所述,本发明的实施例至少具有以下其中一个优点或功效。在本发明的实施例中,波长转换模块藉由第二波长转换层的配置以及其中第二结合材料的材质选择,而可提升波长转换模块的导热率、耐热性以及可靠度。并且,波长转换模块亦可藉由两第一波长转换层的配置以及其中第一结合材料的材质选择,而使波长转换层保持良好的转换效率以及对基板的良好附着性,而亦可提升波长转换模块的可靠度。另一方面,在本发明的实施例中,投影装置藉由使激光光斑中具有高能量密度的区域位于具有高导热率及耐热性的第二波长转换层上,而亦可因此兼顾良好的光学品质以及可靠度。此外,本发明的实施例的波长转换模块的形成方法藉由形成波长转换模块中位于两第一波长转换层之间的第二波长转换层,而能使波长转换模块能兼顾良好的可靠度以及转换效率。
[0079] 惟以上所述者,仅为本发明之较佳实施例而已,当不能以此限定本发明实施之范围,即所有依本发明权利要求书及发明内容所作之简单的等效变化与修改,皆仍属本发明专利涵盖之范围内。另外本发明的任一实施例或权利要求不须达成本发明所揭露之全部目的或优点或特点。此外,摘要发明名称仅是用来辅助专利文件检索之用,并非用来限制本发明之权利范围。此外,本说明书或权利要求书中提及的“第一”、“第二”等用语仅用以命名元件(element)的名称或区别不同实施例或范围,而并非用来限制元件数量上的上限或下限。
[0080] 附图标记说明:
[0081] 50:激发光束
[0082] 60:波长转换光束
[0083] 70:照明光束
[0084] 80:影像光束
[0085] 90:投影光束
[0086] 100、500A、500B、500C、700、800A、800B、800C、800D、1000、1100、1200:波长转换模块
[0087] 110:基板
[0088] 120:波长转换层
[0089] 121、123:第一波长转换层
[0090] 122:第二波长转换层
[0091] 130:散光片
[0092] 200、400:投影装置
[0093] 210:激发光源
[0094] 220:分光单元
[0095] 230:滤光模块
[0096] 240:光均匀化元件
[0097] 250:光阀
[0098] 260:投影镜头
[0099] 540A、540B:抗反射层
[0100] 750:胶合层
[0101] 860:反射层
[0102] 860A:高反射层
[0103] 860B、1060:漫反射层
[0104] 1061、1063:第一反射层
[0105] 1062:第二反射层
[0106] BM1:第一结合材料
[0107] BM2:第二结合材料
[0108] BM3:第三结合材料
[0109] BM4:第四结合材料
[0110] E:边缘
[0111] LT:光传递模块
[0112] O:轴心
[0113] R:径向方向
[0114] RM:散射材料
[0115] SP:光斑
[0116] SP1:第一部分
[0117] SP2:第二部分
[0118] S110、S120、S130、S621、S622、S623、S910、S1020、S1030、S1120:步骤[0119] TR:光通过区
[0120] WM:波长转换材料
[0121] WR:波长转换区。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈