首页 / 专利库 / 酸,碱,盐,酸酐和碱 / 盐酸 / 一种三维中空结构电磁屏蔽材料及其制备方法

一种三维中空结构电磁屏蔽材料及其制备方法

阅读:930发布:2021-04-12

专利汇可以提供一种三维中空结构电磁屏蔽材料及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种三维中空结构的聚3,4‑乙撑二 氧 噻吩/聚苯乙烯磺酸(PEDOT/PSS)和掺杂聚苯胺(PANI)复合的 电磁屏蔽 材料及其制备方法。所述电磁屏蔽材料以三维中空 植物 纤维 片材为模板,将其 吸附 PEDOT/PSS的 水 溶液干燥后,使用原位化学氧化聚合的方法,在其表面修饰掺杂PANI,构筑具有多组分,三维中空结构的电磁屏蔽材料。制备的材料充分发挥PEDOT/PSS和掺杂PANI间的协同效应,同时结合材料的中空结构,使 电磁波 在材料内部多个界面处形成多重反射,延长了电磁波通过材料的路径,有效的提高了材料整体的屏蔽效能,并且该种制备方法具有不需要复杂设备,制备工艺简单,可操作性强的特点。,下面是一种三维中空结构电磁屏蔽材料及其制备方法专利的具体信息内容。

1.一种三维中空结构电磁屏蔽材料的制备方法,所述电磁屏蔽材料以三维中空植物纤维片材为模版,将其吸附PEDOT/PSS的溶液,干燥后,在其表面修饰掺杂PANI,构筑具有多组分,三维中空结构的电磁屏蔽材料;所述制备方法包括如下步骤:
(1)植物纤维片材预处理,将植物纤维片材进行酸化化处理,酸化或碱化完成后取出,用去离子水洗涤至中性后烘干,备用,所述纤维片材是未经粉碎处理的原始状态纤维,经压实后制备的;
(2)将步骤(1)得到的植物纤维片材置于10wt.%PEDOT/PSS的水溶液中浸渍180min,室温干燥;
(3)将步骤(2)得到的植物纤维片材置于苯胺单体中浸渍10~180min;
(4)将步骤(3)得到的产物置于溶有化剂的酸溶液中,室温下发生原位化学氧化聚合反应;
(5)反应结束后将反应物取出,清洗烘干,得到三维中空结构的电磁屏蔽材料。
2.根据权利要求1所述方法,其特征在于,步骤(1)所述的植物纤维片材为具有微观三维中空结构,脱糖后的甘蔗纤维片材或竹片。
3.根据权利要求1所述方法,其特征在于,步骤(1)所述酸化或碱化处理是将植物纤维片材置于盐酸或NaOH溶液中浸泡24h,所述盐酸浓度为1mol/L;所述NaOH溶液浓度为1mol/L。
4.根据权利要求1所述方法,其特征在于,步骤(4)所述酸溶液为盐酸、硫酸磷酸、十二烷基苯磺酸、樟脑磺酸中的任意一种,酸浓度为0.5~2mol/L。
5.根据权利要求1所述方法,其特征在于,步骤(4)中所述氧化剂是过硫酸铵和重铬酸的混合物。
6.根据权利要求1所述方法,其特征在于,所述氧化剂中过硫酸铵和重铬酸钾的质量比为1:2~2:1。
7.根据权利要求1所述方法,其特征在于,步骤(4)中所述氧化剂与植物纤维片材吸收的苯胺的摩尔比为1:2~3:2。
8.根据权利要求1所述方法,其特征在于,步骤(4)所述原位化学氧化聚合反应时间为
0.5h~24h。
9.根据权利要求1所述方法,其特征在于,步骤(4)所述原位化学氧化聚合反应时间为
8h。

说明书全文

一种三维中空结构电磁屏蔽材料及其制备方法

技术领域

[0001] 本发明属于电磁屏蔽技术领域,具体涉及一种三维中空结构电磁屏蔽材料及其制备方法。

背景技术

[0002] 随着现代电子工业的高速发展和电子、电器产品的普遍使用,电磁污染已成为一种新的社会公害。电磁辐射会影响人们的身体健康,也会对电子仪器设备造成严重干扰,使它们的工作程序发生紊乱,产生错误动作。电磁辐射还会泄露信息,使计算机等仪器无信息安全保障。为防止电磁辐射造成的危害,采用电磁屏蔽材料进行屏蔽是主要防范方法之一。
[0003] 现有常用的技术中,金属系电磁屏蔽材料的存在密度高,易腐蚀等缺点,使用范围有限;填充复合型电磁屏蔽材料往往需要较厚的厚度(2mm以上)才能实现较高的电磁屏蔽效果,且制备过程复杂。而本征型导电高分子具有分子可设计,结构多样化,电磁参数可调和密度低等优点,其在电磁屏蔽领域具有巨大的实用价值和广阔的应用前景。为了满足理想电磁屏蔽材料的厚度薄、质量轻、屏蔽频带宽、吸收强等性能要求,需要将单一的本征型导电高分子与其他材料进行复合使用,协同发挥不同组分的优势;同时,近年的研究表明中空结构可以使材料的密度降低,还能偏转和散射电磁波,增加材料的电磁屏蔽能
[0004] Hou等人报道了以聚苯乙烯(PS)为模板,使用化学化聚合法在PS表面包覆掺杂PANI,然后使用甲苯作为溶剂,除去模板PS获得中空PANI微球,最后在其表面包覆Fe3O4磁性粒子,材料厚度为2mm时,获得最大反射率损耗为24.3dB的复合材料(Journal of Materials Science:Materials in Electronics 2017,28(13),9279-9288)。但该种方法步骤较多,在去除模板过程中需要使用有机溶剂,且会造成部分中空PANI微球的破裂。

发明内容

[0005] 本发明针对现有技术的不足,提供一种三维中空结构电磁屏蔽材料及其制备方法,所述电磁屏蔽材料以三维中空植物纤维片材为模版,将其吸附聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸(PEDOT/PSS)的溶液,干燥后,在其表面修饰掺杂聚苯胺(PANI),构筑具有多组分,三维中空结构的电磁屏蔽材料。该材料具有质轻,厚度薄,电磁屏蔽性能高的特点。
[0006] 一种三维中空结构电磁屏蔽材料的制备方法,其特征在于,采用原位化学氧化聚合法制备,包括如下步骤:
[0007] (1)三维中空植物纤维预处理,将三维中空植物纤维进行酸化化处理,酸化或碱化完成后取出,用去离子水洗涤至中性后烘干,备用,所述纤维片材是未经粉碎处理的原始状态纤维,经压实后制备的;
[0008] (2)将步骤(1)得到的植物纤维片材置于10wt.%PEDOT/PSS的水溶液中浸渍180min,室温干燥;
[0009] (3)将步骤(2)得到的植物纤维片材置于苯胺单体中浸渍10~180min;
[0010] (4)将步骤(3)得到的产物置于溶有氧化剂酸溶液中,室温下发生原位化学氧化聚合反应;
[0011] (5)反应结束后将反应物取出,清洗烘干,得到三维中空结构的电磁屏蔽材料。
[0012] 进一步,步骤(1)所述的植物纤维片材为具有微观三维中空结构,脱糖后的甘蔗纤维片材或竹片。
[0013] 进一步,所述酸化或碱化处理是将植物纤维片材置于盐酸或NaOH溶液中浸泡24h,所述盐酸浓度为1mol/L;所述NaOH溶液浓度为1mol/L。
[0014] 进一步,步骤(4)所述酸溶液为盐酸、硫酸磷酸、十二烷基苯磺酸、樟脑磺酸中的任意一种,酸浓度为0.5~2mol/L。
[0015] 进一步,步骤(4)中所述氧化剂是过硫酸铵和重铬酸的混合物。
[0016] 进一步,步骤(4)中所述氧化剂中过硫酸铵和重铬酸钾的质量比为1:2~2:1。
[0017] 进一步,步骤(4)中所述氧化剂与植物纤维片材吸收的苯胺的摩尔比为1:2~3:2,优选1.2:1。
[0018] 进一步,步骤(4)中所述原位化学氧化聚合反应时间为0.5~24h,优选8h。
[0019] 本发明的有益效果为:以三维中空植物纤维片材为模板,将其吸附PEDOT/PSS的水溶液干燥后,使用简便、易行的原位化学氧化聚合的方法,在其表面修饰掺杂PANI,构筑具有多组分,三维中空结构的电磁屏蔽材料。制备的材料充分发挥高电导率的PEDOT/PSS和电磁波吸收型的掺杂PANI间的协同效应;结合材料的三维中空结构,材料内部存在PEDOT/PSS和掺杂PANI的界面,掺杂PANI和空气的界面,使电磁波在材料内部的多个界面处更容易形成多重反射,延长了电磁波通过材料的路径,上述因素有效的提高了材料整体的屏蔽效能。此外,该种材料的制备方法具有反应条件简单,可操作性强的特点。
附图说明
[0020] 图1为实施例1中制备的三维中空结构电磁屏蔽材料的扫描电镜照片。
[0021] 图2为实施例1中三维中空结构电磁屏蔽材料的电磁屏蔽效能图。

具体实施方式

[0022] 本发明提供了一种三维中空结构电磁屏蔽材料及其制备方法。下面结合附图和实施例对本发明作进一步说明。
[0023] 实施例1
[0024] 一种三维中空结构电磁屏蔽材料的制备方法,包括如下步骤:(1)将脱糖后的,压实的甘蔗纤维片材置于1mol/L的盐酸中酸化,酸化时间为24h,反应完成后取出,用去离子水洗涤至中性后烘干,备用;(2)将酸化后的甘蔗纤维片材置于10wt.%PEDOT/PSS的水溶液中浸渍180min,室温干燥;(3)将浸渍PEDOT/PSS后的甘蔗纤维片材置于苯胺单体中浸渍60min;(4)取出后置于溶有氧化剂的硫酸溶液中,其中,氧化剂与植物纤维片材吸收的苯胺的摩尔比为1.2:1,室温下发生原位化学氧化聚合反应,反应8h后取出,所述硫酸溶液的浓度是2mol/L;所述氧化剂是过硫酸铵和重铬酸钾的混合物,所述过硫酸铵和重铬酸钾的质量比为1:2;(5)用水和乙醇反复清洗后,40℃烘干,得到三维中空结构电磁屏蔽材料。
[0025] 所述三维中空结构电磁屏蔽材料的扫描电镜照片如图1所示,电磁屏蔽效能如图2所示。检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为62dB左右。
[0026] 实施例2
[0027] 重复实施例1,只是将反应时间改变为0.5h,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为41dB左右。
[0028] 实施例3
[0029] 重复实施例1,只是将反应时间改变为24h,检测厚度为0.4mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为52dB左右。
[0030] 实施例4
[0031] 重复实施例1,只是将过硫酸铵与重铬酸钾的质量比调整为1:1,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为57dB左右。
[0032] 实施例5
[0033] 重复实施例1,只是将过硫酸铵与重铬酸钾的质量比调整为2:1,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为48dB左右。
[0034] 实施例6
[0035] 重复实施例1,只是将氧化剂与植物纤维片材吸收的苯胺的摩尔比改变为1:2,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为34dB左右。
[0036] 实施例7
[0037] 重复实施例1,只是将氧化剂与植物纤维片材吸收的苯胺的摩尔比改变为3:2,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为52dB左右。
[0038] 实施例8
[0039] 重复实施例1,只是将步骤(4)中硫酸浓度改变为0.5mol/L,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为43dB左右。
[0040] 实施例9
[0041] 重复实施例1,只是将步骤(4)中硫酸浓度改变为2mol/L,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为63dB左右。
[0042] 实施例10
[0043] 重复实施例1,只是将步骤(3)中浸渍时间改变为10min,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为34dB左右。
[0044] 实施例11
[0045] 重复实施例1,只是将步骤(3)中浸渍时间改变为80min,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为61dB左右。
[0046] 实施例12
[0047] 重复实施例1,只是将步骤(4)中使用酸改变为盐酸,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为57dB左右。
[0048] 实施例13
[0049] 重复实施例1,只是将步骤(4)中使用酸改变为磷酸,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为59dB左右。
[0050] 实施例14
[0051] 重复实施例1,只是将步骤(4)中使用酸改变为十二烷基苯磺酸,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为46dB左右。
[0052] 实施例15
[0053] 重复实施例1,只是将步骤(4)中使用酸改变为樟脑磺酸,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为57dB左右。
[0054] 实施例16
[0055] 重复实施例1,只是步骤(1)中处理方式改变为碱化处理,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为60dB左右。
[0056] 实施例17
[0057] 重复实施例12,只是步骤(1)中原料改变为竹纤维片材,检测厚度为0.8mm的材料在电磁波频率为8.2~12.4GHz下的电磁屏蔽效能为58dB左右。
[0058] 通过实施例1~17,可以看出本发明公开的三维中空结构电磁屏蔽材料具有优异的电磁屏蔽效能。
[0059] 上述实施例对本发明的技术方案进行了详细说明。显然,本发明并不局限于所描述的实施例。基于本发明中的实施例,熟悉本技术领域的人员还可据此做出多种变化,但任何与本发明等同或相类似的变化都属于本发明保护的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈