首页 / 专利库 / 农用建筑及设备 / 挤奶厅 / 挤奶机 / 集乳器 / 腫瘍浸潤リンパ球拡大培養用の改変人工抗原提示細胞

腫瘍浸潤リンパ球拡大培養用の改変人工抗原提示細胞

阅读:1022发布:2020-06-14

专利汇可以提供腫瘍浸潤リンパ球拡大培養用の改変人工抗原提示細胞专利检索,专利查询,专利分析的服务。并且一部の実施形態において、MOLM−14又はEM−3骨髄系細胞など、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを含めた、単離された人工 抗原 提示細胞(aAPC)に関する組成物及び方法が開示され、骨髄系細胞はHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、及び1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBL及び/又はOX40Lをコードする核酸とを含み、CD86及び4−1BBL及び/又はOX40Lタンパク質を発現するように骨髄系細胞を形質導入する。一部の実施形態において、aAPCで腫瘍浸潤リンパ球(TIL)を拡大培養する方法及びaAPCによる拡大培養後のTILを使用して癌を治療する方法もまた開示される。,下面是腫瘍浸潤リンパ球拡大培養用の改変人工抗原提示細胞专利的具体信息内容。

1又は複数のウイルスベクターが形質導入された骨髄系細胞を含む人工抗原提示細胞(aAPC)であって、前記1又は複数のウイルスベクターが、CD86をコードする核酸と、共刺激分子をコードする1又は複数の核酸とを含み、前記骨髄系細胞がCD86タンパク質と1又は複数の共刺激分子とを発現する、aAPC。前記aAPCと接触した腫瘍浸潤リンパ球(TIL)を刺激し、拡大することができる、請求項1に記載のaAPC。約3000IU/mLの濃度のIL−2と、約30ng/mLの濃度のOKT−3抗体とを含む細胞培養培地において、TIL集団を7日の期間で少なくとも50倍に拡大する、請求項1又は2に記載のaAPC。前記aAPCと接触したT細胞を刺激し、拡大することができる、請求項1又は2に記載のaAPC。前記骨髄系細胞がHLA−A/B/C、ICOS−L、及びCD58を内因的に発現する、請求項1〜4のいずれか一項に記載のaAPC。前記骨髄系細胞がMOLM−14細胞である、請求項1〜5のいずれか一項に記載のaAPC。前記骨髄系細胞がEM−3細胞である、請求項1〜5のいずれか一項に記載のaAPC。前記EM−3細胞が、OKT−3抗体のFcドメインへの結合能を有する単鎖断片可変(scFv)結合ドメインを発現するように更に形質導入される、請求項7に記載のaAPC。前記scFv結合ドメインが、クローン7C12(配列番号27)、クローン8B3(配列番号28)、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項8に記載のaAPC。前記CD86タンパク質が、配列番号8に記載の配列、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項1〜9のいずれか一項に記載のaAPC。CD86をコードする前記核酸が配列番号19を含む、請求項1〜10のいずれか一項に記載のaAPC。前記1又は複数の共刺激分子が4−1BBLタンパク質を含む、請求項1〜11のいずれか一項に記載のaAPC。前記4−1BBLタンパク質が、配列番号9に記載の配列、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項12に記載のaAPC。前記4−1BBLタンパク質をコードする前記1又は複数の核酸が配列番号16を含む、請求項12に記載のaAPC。前記1又は複数の共刺激分子がOX40Lタンパク質を含む、請求項1〜14のいずれか一項に記載のaAPC。前記OX40Lタンパク質が、配列番号10に記載の配列、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項15に記載のaAPC。前記aAPCが無血清培地において成長させたものである、請求項1〜16のいずれか一項に記載のaAPC。腫瘍浸潤リンパ球(TIL)を拡大培養する方法であって、TIL集団を請求項1〜17のいずれか一項に記載のaAPCと接触させるステップを含み、前記TIL集団が拡大培養される、方法。腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法であって、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を得るステップであって、前記1又は複数のウイルスベクターが、CD86をコードする核酸と、1又は複数の共刺激分子をコードする1又は複数の核酸とを含み、前記骨髄系細胞がCD86タンパク質と1又は複数の共刺激分子とを発現するステップ、及び (b)細胞培養培地中で前記TIL集団を前記aAPC集団と接触させるステップ を含む方法。前記細胞培養培地が、約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む、請求項19に記載の方法。前記APC集団が、細胞培養培地において前記TIL集団を7日の期間で少なくとも50倍に拡大する、請求項19又は20に記載の方法。前記骨髄系細胞がHLA−A/B/C、ICOS−L、及びCD58を内因的に発現する、請求項19〜21のいずれか一項に記載の方法。前記骨髄系細胞がMOLM−14細胞である、請求項19〜22のいずれか一項に記載の方法。前記骨髄系細胞がEM−3細胞である、請求項19〜23のいずれか一項に記載の方法。前記EM−3細胞が、OKT−3抗体のFcドメインへの結合能を有する単鎖断片可変(scFv)結合ドメインを発現するように更に形質導入される、請求項24に記載の方法。前記scFv結合ドメインがクローン7C12(配列番号27)、クローン8B3(配列番号28)、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項25に記載の方法。前記CD86タンパク質が、配列番号8、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項19〜26のいずれか一項に記載の方法。CD86をコードする前記核酸が配列番号19を含む、請求項18〜26のいずれか一項に記載の方法。前記1又は複数の共刺激分子が4−1BBLタンパク質を含む、請求項18〜28のいずれか一項に記載の方法。前記4−1BBLタンパク質が、配列番号9に記載の配列、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項29に記載の方法。前記4−1BBLタンパク質をコードする前記1又は複数の核酸が配列番号16を含む、請求項29に記載の方法。前記1又は複数の共刺激分子がOX40Lタンパク質を含む、請求項18〜31のいずれか一項に記載の方法。前記OX40Lタンパク質が、配列番号10に記載の配列、あるいはその1又は複数の保存的アミノ酸置換を含む配列を含む、請求項32に記載の方法。前記拡大培養がガス透過性容器を使用して行われる、請求項18〜33のいずれか一項に記載の方法。前記TIL集団と前記aAPC集団との比が1:200〜1:400である、請求項18〜34のいずれか一項に記載の方法。前記TIL集団と前記aAPC集団との比が約1:300である、請求項35に記載の方法。腫瘍浸潤リンパ球(TIL)を拡大培養する方法であって、前記方法が、TIL集団を含むTIL集団を骨髄系人工抗原提示細胞(aAPC)と接触させることを含み、前記骨髄系aAPCが、CD86と、前記TIL上の少なくとも1つの共刺激分子に特異的に結合する少なくとも1つの共刺激リガンドとを含み、前記共刺激分子が前記共刺激リガンドに結合すると前記TILの増殖が誘導され、それによりTILが特異的に拡大し、そして前記少なくとも1つの共刺激リガンドが4−1BBLを含む、方法。腫瘍浸潤リンパ球(TIL)を拡大培養する方法であって、前記方法が、TIL集団を含むTIL集団を骨髄系人工抗原提示細胞(aAPC)と接触させることを含み、前記骨髄系aAPCが、CD86と、前記TIL上の少なくとも1つの共刺激分子に特異的に結合する少なくとも1つの共刺激リガンドとを含み、前記共刺激分子が前記共刺激リガンドに結合すると前記TILの増殖が誘導され、それによりTILが特異的に拡大し、そして前記少なくとも1つの共刺激リガンドがOX40Lを含む、方法。腫瘍浸潤リンパ球(TIL)を拡大培養する方法であって、前記方法が、TIL集団を含むTIL集団を骨髄系人工抗原提示細胞(aAPC)と接触させることを含み、前記骨髄系aAPCが、CD86と、前記TIL上の少なくとも2つの共刺激分子に特異的に結合する少なくとも2つの共刺激リガンドとを含み、前記共刺激分子が前記共刺激リガンドに結合すると前記TILの増殖が誘導され、それによりTILが特異的に拡大し、そして前記少なくとも2つの共刺激リガンドが4−1BBL及びOX40Lを含む、方法。腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法であって、 (a)患者から切除された腫瘍から第1のTIL集団を得るステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して前記第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を得るステップであって、前記迅速拡大培養の開始から7日後に前記第2のTIL集団が前記第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)前記癌を有する患者に治療上有効な分量の前記第2のTIL集団を投与するステップ を含み; 前記骨髄系aAPCがHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し;そして 前記骨髄系aAPCがCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入される、方法。前記骨髄系aAPCが1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、前記1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、前記MOLM−14細胞がCD86タンパク質と4−1BBLタンパク質とを発現する、請求項40に記載の方法。前記骨髄系aAPCが1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、前記1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、前記EM−3細胞がCD86タンパク質と4−1BBLタンパク質とを発現する、請求項40に記載の方法。前記EM−3細胞が、OKT−3抗体のFcドメインへの結合能を有する単鎖断片可変(scFv)結合ドメインを発現するように更に形質導入される、請求項42に記載の方法。前記scFv結合ドメインが、クローン7C12(配列番号27)、クローン8B3(配列番号28)、又はその保存的アミノ酸置換を含む、請求項43に記載の方法。前記迅速拡大培養が14日以下の期間にわたって行われる、請求項40〜44のいずれか一項に記載の方法。前記細胞培養培地が約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む、請求項40〜45のいずれか一項に記載の方法。前記拡大培養がガス透過性容器を使用して行われる、請求項40〜46のいずれか一項に記載の方法。前記第2のTIL集団と前記aAPC集団との比が1:200〜1:400である、請求項40〜47のいずれか一項に記載の方法。前記第2のTIL集団と前記aAPC集団との比が約1:300である、請求項48に記載の方法。前記癌が、黒色腫、卵巣癌、子宮頸癌、非小細胞癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、腎細胞癌、膵癌、及び膠芽腫からなる群から選択される、請求項40〜49のいずれか一項に記載の方法。前記第2のTIL集団を前記患者に投与する前に骨髄非破壊的リンパ球枯渇レジメンによって前記患者を処置するステップを更に含む、請求項40〜50のいずれか一項に記載の方法。前記骨髄非破壊的リンパ球枯渇レジメンが、60mg/m2/日の用量で2日間のシクロホスファミドの投与ステップと、それに続く25mg/m2/日の用量で5日間のフルダラビンの投与ステップを含む、請求項51に記載の方法。前記第2のTIL集団の前記患者への投与の翌日に開始する高用量IL−2レジメンによって前記患者を治療するステップを更に含む、請求項40〜52のいずれか一項に記載の方法。前記高用量IL−2レジメンが、600,000又は720,000IU/kgのアルデスロイキン、又はそのバイオシミラー若しくは変異体を含み、これらが忍容量まで8時間毎に15分ボーラス静脈内注入として投与される、請求項53に記載の方法。腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法であって、 (a)患者から切除された腫瘍から第1のTIL集団を得るステップ; (b)第1の細胞培養培地中で前記第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を得るステップであって、前記第2のTIL集団が前記第1のTIL集団よりも少なくとも5倍数が多く、そして前記第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地において骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して前記第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を得るステップであって、前記迅速拡大培養の開始から7日後に前記第3のTIL集団が前記第2のTIL集団よりも少なくとも50倍数が多く;そして前記第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)前記癌を有する患者に治療上有効な分量の前記第3のTIL集団を投与するステップ を含む方法。前記骨髄系aAPCが、1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、前記1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、前記MOLM−14細胞がCD86タンパク質と4−1BBLタンパク質とを発現する、請求項55に記載の方法。前記骨髄系aAPCが、1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、前記1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、前記EM−3細胞がCD86タンパク質と4−1BBLタンパク質とを発現する、請求項55に記載の方法。前記EM−3細胞が、OKT−3抗体のFcドメインへの結合能を有する単鎖断片可変(scFv)結合ドメインを発現するように更に形質導入される、請求項57に記載の方法。前記scFv結合ドメインが、クローン7C12(配列番号27)、クローン8B3(配列番号28)、又はその保存的アミノ酸置換を含む、請求項58に記載の方法。前記第2の細胞培養培地中にIL−2が約3000IU/mLの初期濃度で存在し、そしてOKT−3抗体が約30ng/mLの初期濃度で存在する、請求項55〜59のいずれか一項に記載の方法。前記迅速拡大培養が14日以下の期間にわたって行われる、請求項55〜60のいずれか一項に記載の方法。前記初期拡大培養がガス透過性容器を使用して行われる、請求項55〜61のいずれか一項に記載の方法。前記迅速拡大培養がガス透過性容器を使用して行われる、請求項55〜62のいずれか一項に記載の方法。前記迅速拡大培養における前記第2のTIL集団と前記aAPC集団との比が1:80〜1:400である、請求項55〜63のいずれか一項に記載の方法。前記迅速拡大培養における前記第2のTIL集団と前記aAPC集団との比が約1:300である、請求項64に記載の方法。前記癌が、黒色腫、卵巣癌、子宮頸癌、非小細胞肺癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、腎細胞癌、膵癌、及び膠芽腫からなる群から選択される、請求項55〜65のいずれか一項に記載の方法。前記第3のTIL集団を前記患者に投与する前に骨髄非破壊的リンパ球枯渇レジメンによって前記患者を処置するステップを更に含む、請求項55〜65のいずれか一項に記載の方法。前記骨髄非破壊的リンパ球枯渇レジメンが60mg/m2/日の用量で2日間のシクロホスファミドの投与ステップと、それに続く25mg/m2/日の用量で5日間のフルダラビンの投与ステップを含む、請求項67に記載の方法。前記第3のTIL集団を前記患者に投与した翌日に開始する高用量IL−2レジメンによって前記患者を治療するステップを更に含む、請求項55〜68のいずれか一項に記載の方法。前記高用量IL−2レジメンが、600,000又は720,000IU/kgのアルデスロイキン、又はそのバイオシミラー若しくは変異体を含み、これらが忍容量まで8時間毎に15分ボーラス静脈内注入として投与される、請求項69に記載の方法。前記第1の細胞培養培地が第2の骨髄系aAPC集団を更に含み、前記第2の骨髄系aAPC集団が、1又は複数のウイルスベクターが形質導入されたMOLM−14又はEM−3細胞を含み、前記1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBL、OX40L、又はこれらの組み合わせからなる群から選択される共刺激分子をコードする1又は複数の核酸とを含み、前記骨髄系aAPCがCD86タンパク質と共刺激分子とを発現する、請求項55〜70のいずれか一項に記載の方法。公知の共刺激分子を発現する腫瘍浸潤リンパ球の増殖を特異的に誘導するためのキットであって、前記キットが有効量のaAPCを含み、前記aAPCが、レンチウイルスベクター(LV)を使用して形質導入されたMOLM−14細胞又はEM−3細胞を含み、前記LVが、前記公知の共刺激分子に特異的に結合する少なくとも1つの共刺激リガンドをコードする核酸を含み、前記公知の共刺激分子が前記共刺激リガンドに結合すると前記T細胞が刺激されて拡大し、前記キットがアプリケーター及び前記キットの使用説明資料を更に含む、キット。癌細胞に対する腫瘍浸潤リンパ球(TIL)の効を評価する方法であって、 (a)内因性CD16 Fc受容体を発現する複数のマウス肥満細胞腫P815細胞を提供するステップであって、前記P815細胞が高感度緑色蛍光タンパク質(GFP)及びホタルルシフェラーゼをベースとするレンチウイルスベクターで形質導入されるステップ; (b)前記複数のP815細胞とTILとを、OKT−3とともに共培養することにより特異的殺傷に関してT細胞受容体(TCR)活性化を評価し、そして、OKT−3なしで共培養することにより非特異的殺傷に関してリンホカイン活性化キラー性(LAK)を評価するステップ; (c)前記共培養物を4時間インキュベートするステップ; (d)ルシフェリンを加えて5分間インキュベートするステップ; (e)ルミノメーターを使用して前記共培養物から生物発光強度を読み取るステップ;及び (f)パーセント細胞傷害率及び生存率を計算するステップ を含む方法。癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団であって、前記腫瘍浸潤リンパ球集団が第1のTIL集団であり、且つ (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を得るステップであって、前記第1のTIL集団が予め患者から切除された腫瘍から得られ、及び更に前記迅速拡大培養の開始から7日後に前記第2のTIL集団が前記第1のTIL集団よりも少なくとも50倍数が多いステップ を含む方法によって入手可能であり;及び 前記骨髄系aAPCがHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し; 及び前記骨髄系aAPCが、CD86タンパク質と、4−1BBLタンパク質、OX40Lタンパク質、及びこれらの組み合わせからなる群から選択される共刺激分子とを発現するように形質導入される、使用のためのTIL集団。前記迅速拡大培養が14日以下の期間にわたって行われる、請求項74に記載の使用のためのTIL集団。前記細胞培養培地が約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む、請求項74又は75に記載の使用のためのTIL集団。前記拡大培養がガス透過性容器を使用して行われる、請求項74〜76のいずれか一項に記載の使用のためのTIL集団。前記第2のTIL集団と前記aAPC集団との比が1:200〜1:400である、請求項74〜77のいずれか一項に記載の使用のためのTIL集団。前記第2のTIL集団と前記aAPC集団との比が約1:300である、請求項78に記載の使用のためのTIL集団。患者の癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団であって、前記腫瘍浸潤リンパ球集団が第3のTIL集団であり、且つ (a)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を得るステップであって、前記第1のTIL集団が患者から切除された腫瘍から入手可能であり、及び更に前記第2のTIL集団が前記第1のTIL集団よりも少なくとも5倍数が多く、及び前記第1の細胞培養培地がIL−2を含むステップ; (b)第2の細胞培養培地において骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して前記第2のTIL集団の迅速拡大培養を行うことにより前記第3のTIL集団を得るステップであって、前記迅速拡大培養の開始から7日後に前記第3のTIL集団が前記第2のTIL集団よりも少なくとも50倍数が多く;及び前記第2の細胞培養培地がIL−2及びOKT−3を含むステップ を含む方法によって得られる、TIL集団。前記迅速拡大培養が14日以下の期間にわたって行われる、請求項80に記載の使用のためのTIL集団。前記細胞培養培地が約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む、請求項80又は81に記載の使用のためのTIL集団。前記第2の細胞培養培地中にIL−2が約3000IU/mLの初期濃度で存在し、及びOKT−3抗体が約30ng/mLの初期濃度で存在する、請求項80〜82のいずれか一項に記載の使用のためのTIL集団。前記初期拡大培養が14日以下の期間にわたって実施される、請求項80〜83のいずれか一項に記載の使用のためのTIL集団。前記初期拡大培養及び/又は迅速拡大培養がガス透過性容器を使用して行われる、請求項80〜84のいずれか一項に記載の使用のためのTIL集団。前記骨髄系aAPCが、CD86タンパク質と、4−1BBLタンパク質、OX40Lタンパク質、及びこれらの組み合わせからなる群から選択される共刺激分子とを発現するように形質導入されるMOLM−14細胞を含む、請求項80〜85のいずれか一項に記載の使用のためのTIL集団。前記骨髄系aAPCが、CD86タンパク質と、4−1BBLタンパク質、OX40Lタンパク質、及びこれらの組み合わせからなる群から選択される共刺激分子とを発現するように形質導入されるEM−3細胞を含む、請求項80〜86のいずれか一項に記載の使用のためのTIL集団。前記EM−3細胞が、OKT−3抗体のFcドメインへの結合能を有する単鎖断片可変(scFv)結合ドメインを発現するように更に形質導入される、請求項87に記載の使用のためのTIL集団。前記scFv結合ドメインが、クローン7C12(配列番号27)、クローン8B3(配列番号28)、又はその保存的アミノ酸置換を含む、請求項87に記載の使用のためのTIL集団。前記癌が、黒色腫、卵巣癌、子宮頸癌、非小細胞肺癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、腎細胞癌、膵癌、及び膠芽腫からなる群から選択される、請求項80〜89のいずれか一項に記載の使用のためのTIL集団。患者が骨髄非破壊的リンパ球枯渇レジメンを受けた後に前記患者に投与するための、請求項80〜90のいずれか一項に記載の使用のためのTIL集団。60mg/m2/日の用量で2日間のシクロホスファミドの投与と、それに続く25mg/m2/日の用量で5日間のフルダラビンの投与の後に投与するための、請求項91に記載の使用のためのTIL集団。高用量IL−2レジメンの前日に投与するための、請求項80〜92のいずれか一項に記載の使用のためのTIL集団。前記高用量IL−2レジメンが、600,000又は720,000IU/kgのアルデスロイキン、又はそのバイオシミラー若しくは変異体を含み、これらが忍容量まで8時間毎に15分ボーラス静脈内注入として投与される、請求項93に記載の使用のためのTIL集団。(1)請求項80〜94のいずれか一項に記載の使用のためのTIL集団と、(2)シクロホスファミドと(3)フルダラビンとの組み合わせであって、60mg/m2/日の用量で2日間投与するためのシクロホスファミドと、それに25mg/m2/日の用量で5日間投与するためのものであるフルダラビンが続く、組み合わせ。請求項80〜92のいずれか一項に記載の使用のためのTIL集団と高用量のIL−2レジームとの組み合わせであって、前記高用量IL−2レジメンが、忍容量まで8時間毎に15分ボーラス静脈内注入として投与するために、600,000又は720,000IU/kgのアルデスロイキン、又はそのバイオシミラー若しくは変異体を含む、組み合わせ。CD86と、4−1BBL、OX40L、及びこれらの組み合わせからなる群から選択される1又は複数の共刺激分子とを発現するように遺伝子操作された骨髄系細胞を含む人工抗原提示細胞(aAPC)。前記骨髄系細胞がEM−3細胞であり、前記骨髄系細胞が、OKT−3抗体のFcドメインへの結合能を有する単鎖断片可変(scFv)結合ドメインを発現するように更に遺伝子操作される、請求項97に記載のaAPC。前記EM−3細胞が、4−1BBLとOX40Lとを発現するように遺伝子操作される、請求項98に記載のaAPC。

说明书全文

関連出願の相互参照 [001] 本国際出願は、2017年4月5日に出願された米国仮特許出願第62/481,831号、2017年3月22日に出願された米国仮特許出願第62/475,053号、2016年12月23日に出願された米国仮特許出願第62/438,600号、及び2016年10月31日に出願された米国仮特許出願第62/415,274号に対する優先権の利益を主張するものであり、これらは全体として参照により本明細書に援用される。

発明の分野 [002] 腫瘍浸潤リンパ球の拡大培養用の改変人工抗原提示細胞(artificial antigen presenting cell:aAPC)が開示される。

発明の背景 [003] 腫瘍浸潤リンパ球(TIL)の自家養子移入を用いた大型難治性癌の治療は、予後不良の患者に対する強な治療手法に相当する。Gattinoni, et al., Nat. Rev. Immunol. 2006, 6, 383-393。免疫療法の成功には多量のTILが必要であり、商業化に向けてロバストで信頼性のある方法が求められている。これは、細胞拡大培養に関する技術上、物流上、及び規制上の問題に起因して、実現が課題となっている。IL−2ベースのTIL拡大培養と、それに続く「迅速拡大培養法」(REP)が、その速さ及び効率から、TIL拡大培養に好ましい方法となりつつある。Dudley, et al., Science 2002, 298, 850-54;Dudley, et al., J. Clin. Oncol. 2005, 23, 2346-57;Dudley, et al., J. Clin. Oncol. 2008, 26, 5233-39;Riddell, et al., Science 1992, 257, 238-41;Dudley, et al., J. Immunother. 2003, 26, 332-42。しかしながら、REPは14日の期間でTILの1,000倍の拡大培養をもたらすことができるが、それにはフィーダー細胞として、多くの場合に複数のドナーからの、大過剰の(例えば200倍の)照射した同種異系末梢血単核細胞(PBMC)、並びに抗CD3抗体(OKT−3)及び高用量のIL−2が必要である。Dudley, et al., J. Immunother. 2003, 26, 332-42。その高い性能にも関わらず、PBMCには、要求される同種異系PBMCの数の多さ、複数の健常ドナーから白血球アフェレーシスによってPBMCを入手する必要性、結果として生じる凍結保存後のPBMC生存能力のドナー間変動及び変動性のあるTIL拡大培養結果、未検出のウイルス性病原体が下流患者感染を引き起こすリスク、並びに各個別のドナー細胞産物の無菌性及び品質を確認し(ウイルス汚染検査を含む)及び拡大培養特性を試験するための大がかりで費用のかかる実験室検査を含め、欠点が数多くある。

[004] 残念ながら、TILの拡大培養での使用向けに開発されたaAPCは、PBMCと比較すると、入力TILの表現型特性の変化、並びに拡大培養性能の不足及び/又は拡大培養結果の変動性の大きさを含め、性能不足を被っている。aAPCとしての使用に適している可能性のある潜在的細胞は数多くあり、好適な候補を同定するのは予測不可能であるため、これまでポリクローナルTIL用のaAPC開発は、専ら十分に確立されたK562細胞株に焦点が置かれてきた。Butler and Hirano, Immunol. Rev. 2014, 257, 191-209。例えば、4−1BBL(CD137L)を発現するように修飾されたK562細胞がプレREP培養下で(REP培養下ではない)試験され、腫瘍消化物からのTIL拡大培養の増強が決定されたが、しかしTIL拡大培養を達成するには、なおもK562細胞と併せてPBMCを使用する必要があった。Friedman, et al., J. Immunother. 2011, 34, 651-661。CD64、CD86、及び4−1BBLを発現するように修飾された他の改変K562細胞が試験されたが、実現したTIL拡大培養は、良くてもPBMCと同等の、十中八九はPBMCに満たないもので、また、好ましくないCD8+/CD4+ T細胞比の方へのポリクローナルTIL表現型の偏りも被った。Ye, et al., J. Translat. Med. 2011, 9, 131。最近になって、CD86、4−1BBL(CD137L)、高親和性Fc受容体(CD64)及び膜結合型IL−15を発現するように修飾されたK562細胞もまた、TILをPBMCフィーダーと比較して同等の数で増殖させる(ポストREP)ことが示されているが、膜結合型IL−15の更なる複雑性が伴う。Forget, et al., J. Immunother. 2014, 37, 448-60。開発された他のシステムは重要な共刺激分子を欠いているか、好ましくないT細胞表現型の偏りにつながっているか、又は追加のインターロイキン類(IL−21など)が必要になっている。Butler and Hirano, Immunol. Rev. 2014, 257, 191-209。総じて、K562修飾aAPCが許容できる変動性で一貫したTILの拡大培養をもたらすとともに、全体的な拡大培養細胞数を含めた他の尺度でもまたPBMCより良好な性能であるとは明らかになっていない。K562細胞以外の別のaAPCが他の細胞拡大培養方法で成功を収めているが、TILを構成する細胞のユニークなポリクローナルサブセットでPBMCと同じ性能は実現していない。Maus, et al., Nat. Biotechnol. 2002, 20, 143-148;Suhoski, et al., Mol. Ther. 2007, 75, 981-988。

[005] MOLM−14ヒト白血病細胞株は、再発性急性単球性白血病の患者の末梢血から樹立されたもので、初期の表現型の特徴付けから、少なくとも以下のマーカー:CD4、CD9、CD11a、CD13、CD14、CD15、CD32、CD33、CD64、CD65、CD87、CD92、CD93、CD116、CD118、及びCD155の存在が示された。Matsuo, et al., Leukemia 1997, 11, 1469-77。MOLM−14の更なる表現型の特徴付けから、HLA−A/B/C、CD64、CD80、ICOS−L、CD58のレベルがより高く、及びCD86のレベルがより低いことが見出された。これまで、MOLM−14細胞及び近縁のMOLM−13細胞が腫瘍免疫療法適用のための細胞の拡大培養に有用なaAPCであると報告されたことはない。

[006] EM−3ヒト細胞株は、フィラデルフィア染色体陽性CMLの患者の骨髄から樹立された。Konopka, et al., Proc. Nat’l Acad. Sci. USA 1985, 82, 1810-4。これまで、EM−3細胞及び近縁のEM−2細胞株が腫瘍免疫療法適用のための細胞の拡大培養に有用なaAPCであると報告されたことはない。EM−3細胞の表現型の特徴付けから、少なくとも以下のマーカー:CD13、CD15、及びCD33の存在が示される。

[007] 本発明は、CD86(B7−2)、4−1BBL(CD137L)、及びOX40L(CD134L)を含めた追加の共刺激分子が形質導入された、MOLM−13、MOLM−14、EM−3、及びEM−2細胞を含めた改変骨髄系列細胞が、マスターセルバンクから効率的に産生することができるaAPCを使用する利点を伴い、変動性が最小限で、コストが低い、且つPBMC源としてヒト血液試料に頼らない、多数のTILの優れた極めて効率的な拡大培養をもたらすという予期せぬ発見を提供する。CD86及び4−1BBLは、T細胞活性化のための共刺激シグナルを提供する共刺激分子である。追加の共刺激分子が形質導入されたMOLM−14、MOLM−13、EM−3、及び/又はEM−2細胞は、例えば、癌免疫療法及び他の療法に使用されるTILの拡大培養において有用である。

発明の概要 [008] ある実施形態において、本発明は、1又は複数のベクターが形質導入された骨髄系細胞を含む人工抗原提示細胞(aAPC)を提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現する。

[009] ある実施形態において、CD86タンパク質及び4−1BBLタンパク質の各々はヒトタンパク質である。

[0010] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、aAPCは、aAPCと接触した腫瘍浸潤リンパ球(TIL)を刺激し、拡大することができる。

[0011] 本発明の特定の実施形態において、CD86をコードする核酸分子が、4−1BBLをコードする核酸分子と異なるウイルスベクターに含まれても、又は同じウイルスベクターに含まれてもよいことは明らかであろう。

[0012] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、aAPCは約3000IU/mLの濃度のIL−2と、約30ng/mLの濃度のOKT−3抗体とを含む細胞培養培地において、TIL集団を7日の期間で少なくとも50倍に拡大する。

[0013] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、aAPCは、aAPCと接触したT細胞を刺激し、拡大することができる。

[0014] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、骨髄系細胞はHLA−A/B/C、ICOS−L、及びCD58を内因的に発現する。

[0015] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、骨髄系細胞は膜結合型IL−15を本質的に欠いている。

[0016] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、骨髄系細胞はMOLM−14細胞である。

[0017] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、骨髄系細胞はMOLM−13細胞である。

[0018] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、骨髄系細胞はEM−3細胞である。

[0019] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、骨髄系細胞はEM−2細胞である。

[0020] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、CD86タンパク質は配列番号8に記載のアミノ酸配列、あるいはその1又は複数の保存的アミノ酸置換を含むアミノ酸配列を含み、4−1BBLタンパク質は配列番号9、あるいはその1又は複数の保存的アミノ酸置換を含むアミノ酸配列を含む。

[0021] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCを提供し、ここで、は1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現し、CD86をコードする核酸分子は配列番号16に記載の核酸配列を含み、4−1BBLをコードする核酸分子は配列番号19に記載の核酸配列を含む。

[0022] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)を拡大培養する方法を提供し、この方法は、1又は複数のウイルスベクターが形質導入された骨髄系細胞を含むaAPCをTIL集団と接触させるステップを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞はCD86タンパク質と4−1BBLタンパク質とを発現し、及びTIL集団は拡大培養される。ある実施形態において、本方法はインビトロ又はエキソビボ方法である。

[0023] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含む。

[0024] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0025] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、細胞培養培地は約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む。

[0026] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0027] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、APC集団は、細胞培養培地においてTIL集団を7日の期間で少なくとも50倍に拡大する。

[0028] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0029] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はHLA−A/B/C、ICOS−L、及びCD58を内因的に発現する。

[0030] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0031] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はMOLM−14細胞である。

[0032] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0033] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はMOLM−13細胞である。

[0034] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0035] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はEM−3細胞である。

[0036] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0037] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はEM−2細胞である。

[0038] ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0039] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸分子と4−1BBLをコードする核酸分子とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、CD86タンパク質は配列番号8に記載のアミノ酸配列を含むか、あるいはその1又は複数の保存的アミノ酸置換を含むアミノ酸配列を含み、4−1BBLタンパク質は配列番号9に記載のアミノ酸配列を含むか、又はその1つ又は保存的アミノ酸置換を含むアミノ酸配列を含む。

[0040] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、CD86をコードする核酸は配列番号16に記載の核酸配列を含み、4−1BBLをコードする核酸は配列番号19に記載の核酸配列を含む。

[0041] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、拡大培養はガス透過性容器を使用して行われる。

[0042] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、TIL集団とaAPC集団との比は1:200〜1:400である。

[0043] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、TIL集団とaAPC集団との比は約1:300である。

[0044] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)を拡大培養する方法を提供し、この方法は、TIL集団を含むTIL集団を骨髄系人工抗原提示細胞(aAPC)と接触させることを含み、ここで、骨髄系aAPCは、TIL上の少なくとも2つの共刺激分子に特異的に結合する少なくとも2つの共刺激リガンドを含み、共刺激分子が共刺激リガンドに結合するとTILの増殖が誘導され、それによりTILが特異的に拡大し、及び少なくとも2つの共刺激リガンドはCD86及び4−1BBLを含む。ある実施形態において、前述の方法はインビトロ又はエキソビボ方法である。

[0045] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、及び骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入される。

[0046] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TILは第2のTIL集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、TILが患者から切除された腫瘍から得られ/得られたものであり、及び迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ を含む方法から入手可能であり;及びここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、及び骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入される。

[0047] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0048] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤細胞(TIL)集団を提供し、ここで、TIL集団は第2のTIL集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手することであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いこと を含む方法によって入手可能であり;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0049] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−3細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0050] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、TIL集団は第2のTIL集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手することであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、及び迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いこと を含む方法によって入手可能であり;及びここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−3細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0051] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び迅速拡大培養は14日以下の期間にわたって行われる。

[0052] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TIL集団は第2の集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップを含む方法によって入手可能であり、ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び迅速拡大培養は14日以下の期間にわたって行われる。

[0053] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び細胞培養培地は約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む。

[0054] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、TIL集団は第2のTIL集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手することであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、及び迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いことを含む方法によって入手可能であり;及びここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び細胞培養培地は約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む。

[0055] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び拡大培養はガス透過性容器を使用して行われる。

[0056] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、TIL集団は第2のTIL集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手することであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、及び迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いことを含む方法によって入手可能であり;及びここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び拡大培養はガス透過性容器を使用して行われる。

[0057] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び第2のTIL集団とaAPC集団との比は1:200〜1:400である。

[0058] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤細胞(TIL)集団を提供し、TIL集団は第2のTIL集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、及び迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ を含む方法によって入手可能であり;及びここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び第2のTIL集団とaAPC集団との比は1:200〜1:400である。特定の実施形態において、第2のTIL集団とaAPC集団との比は約1:300である。

[0059] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、及び第2のTIL集団とaAPC集団との比は約1:300である。

[0060] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び (c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップ を含み;ここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、癌は、黒色腫、卵巣癌、子宮頸癌、非小細胞癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、及び腎細胞癌からなる群から選択される。

[0061] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、TIL集団は第2のTIL集団であり、及び (a)細胞培養培地中で骨髄系人工抗原提示細胞(骨髄系aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を入手するステップであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、及び迅速拡大培養の開始から7日後に第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ を含む方法によって入手可能であり;及びここで、骨髄系aAPCはHLA−A/B/C、ICOS−L、及びCD58を内因的に発現し、骨髄系aAPCはCD86タンパク質と4−1BBLタンパク質とを発現するように形質導入され、癌は、黒色腫、卵巣癌、子宮頸癌、非小細胞肺癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、及び腎細胞癌からなる群から選択される。

[0062] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含む。

[0063] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0064] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−3細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0065] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TIL集団は第3のTIL集団であり、及び (a)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、及び第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (b)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ を含む方法によって得られる。

[0066] ある実施形態において、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。ある実施形態において、骨髄系細胞は1又は複数のウイルスベクターが形質導入されたMOLM−13細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−13細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。特定の実施形態において、骨髄系細胞は1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−3細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。特定の実施形態において、骨髄系細胞は1又は複数のウイルスベクターが形質導入されたEM−2細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−2細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0067] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)骨髄非破壊的リンパ球枯渇レジメンによって患者を処置するステップであって、骨髄非破壊的リンパ球枯渇レジメンが60mg/m2/日の用量で2日間のシクロホスファミドの投与ステップと、それに続く25mg/m2/日の用量で5日間のフルダラビンの投与ステップを含むステップ; (e)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ;及び (f)高用量IL−2レジメンによって患者を処置するステップであって、高用量IL−2レジメンが、600,000又は720,000IU/kgのアルデスロイキンを含み、これらが忍容量まで8時間毎に15分ボーラス静脈内注入として投与される、ステップ を含み;ここで、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0068] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)骨髄非破壊的リンパ球枯渇レジメンによって患者を処置するステップであって、骨髄非破壊的リンパ球枯渇レジメンが60mg/m2/日の用量で2日間のシクロホスファミドの投与ステップと、それに続く25mg/m2/日の用量で5日間のフルダラビンの投与ステップを含むステップ; (e)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ;及び (f)高用量IL−2レジメンによって患者を処置するステップであって、高用量IL−2レジメンが、600,000又は720,000IU/kgのアルデスロイキンを含み、これらが忍容量まで8時間毎に15分ボーラス静脈内注入として投与される、ステップ を含み;ここで、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−3細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0069] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TIL集団は第3のTIL集団であり、及び (a)第1の細胞培養培地中での第1のTIL集団の初期拡大培養により第2のTIL集団を入手するステップであって、第1のTIL集団が患者から切除された腫瘍から得られ/得られたものであり、及び第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ;及び (b)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ を含む方法によって入手可能であり; 及び更にここで、TIL集団は骨髄非破壊的リンパ球枯渇レジメンとの組み合わせで患者に投与するためのものであり、骨髄非破壊的リンパ球枯渇レジメンは、60mg/m2/日の用量で2日間投与するためのシクロホスファミドと、それに続く25mg/m2/日の用量で5日間投与するためのフルダラビンを含み、更にここで、TIL集団は高用量IL−2レジメンとの組み合わせで投与するためのものであり、高用量IL−2レジメンは、忍容量まで8時間毎に15分ボーラス静脈内注入として投与するための、600,000又は720,000IU/kgのアルデスロイキンを含む。特定の実施形態において、TIL集団は、高用量IL−2レジメンの前且つ骨髄非破壊的リンパ球枯渇レジメンの後に投与するためのものである。

[0070] 特定の実施形態において、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−13細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−13細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。特定の実施形態において、骨髄系aAPCは1又は複数のウイルスベクターが形質導入されたEM−3細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−3細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。

[0071] ある実施形態において、TIL集団は、黒色腫、卵巣癌、子宮頸癌、非小細胞肺癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、及び腎細胞癌からなる群から選択される癌の治療における使用のためのものである。

[0072] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ;及び (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、第2の細胞培養培地中にIL−2は約3000IU/mLの初期濃度で存在し、及びOKT−3抗体は約30ng/mLの初期濃度で存在する。

[0073] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TIL集団は第3のTIL集団であり、及び (a)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第1のTIL集団は患者から切除された腫瘍から得られ/得られたものであり、及び第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ;及び (b)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップを含む方法によって入手可能であり;ここで、第2の細胞培養培地中にIL−2は約3000IU/mLの初期濃度で存在し、及びOKT−3抗体は約30ng/mLの初期濃度で存在する。

[0074] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ;及び (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、迅速拡大培養は14日以下の期間にわたって行われる。

[0075] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TIL集団は第3のTIL集団であり、及び (a)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第1のTIL集団は患者から切除された腫瘍から得られ/得られたものであり、及び第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ;及び (b)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップを含む方法によって入手可能であり;ここで、迅速拡大培養は14日以下の期間にわたって行われる。

[0076] 実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ;及び (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、初期拡大培養はガス透過性容器を使用して行われる。

[0077] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ;及び (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、迅速拡大培養はガス透過性容器を使用して行われる。

[0078] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TIL集団は第3のTIL集団であり、及び (a)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第1のTIL集団は患者から切除された腫瘍から得られ/得られたものであり、及び第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (b)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップを含む方法によって入手可能であり;ここで、初期拡大培養及び/又は迅速拡大培養はガス透過性容器を使用して行われる。

[0079] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、迅速拡大培養における第2のTIL集団とaAPC集団との比は1:80〜1:400である。

[0080] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、迅速拡大培養における第2のTIL集団とaAPC集団との比は約1:300である。

[0081] ある実施形態において、本発明は、癌の治療における使用のための腫瘍浸潤リンパ球(TIL)集団を提供し、ここで、TIL集団は第3のTIL集団であり、及び (a)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第1のTIL集団は患者から切除された腫瘍から得られ/得られたものであり、及び第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (b)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップを含む方法によって入手可能であり、及びここで、迅速拡大培養における第2のTIL集団とaAPC集団との比は1:80〜1:400である。

[0082] ある実施形態において、迅速拡大培養における第2のTIL集団とaAPC集団との比は約1:300である。

[0083] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を提供し、これは、 (a)患者から切除された腫瘍から第1のTIL集団を入手するステップ; (b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を入手するステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも5倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ; (c)第2の細胞培養培地中で骨髄系人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を入手するステップであって、迅速拡大培養の開始から7日後に第3のTIL集団が第2のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ; (d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップ を含み、ここで、癌は、黒色腫、卵巣癌、子宮頸癌、非小細胞肺癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、及び腎細胞癌からなる群から選択される。

[0084] ある実施形態において、本発明は、公知の共刺激分子を発現する腫瘍浸潤リンパ球の増殖を特異的に誘導するためのキットを提供し、このキットは有効量のaAPCを含み、ここで、前記aAPCは、レンチウイルスベクター(LV)を使用して形質導入されたMOLM−14細胞又はEM−3細胞を含み、LVは、前記公知の共刺激分子に特異的に結合する少なくとも1つの共刺激リガンドをコードする核酸を含み、公知の共刺激分子が前記共刺激リガンドに結合すると前記T細胞が刺激されて拡大し、キットは、アプリケーター及び前記キットの使用説明資料を更に含む。

[0085] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)の効力を評価する方法を提供し、これは、 (a)内因性CD16 Fc受容体を発現する複数のマウス肥満細胞腫P815細胞を提供するステップであって、P815細胞が高感度緑色蛍光タンパク質(GFP)及びホタルルシフェラーゼをベースとするレンチウイルスベクターで形質導入されるステップ; (b)複数のP815細胞とTILとを、OKT−3とともに及びOKT−3なしで共培養するステップであって、それぞれ、T細胞受容体(TCR)活性化(特異的殺傷)又はリンホカイン活性化キラー性(LAK、非特異的殺傷)を評価するステップ; (c)4時間インキュベートするステップ; (d)ルシフェリンを加えて5分間インキュベートするステップ; (e)ルミノメーターを使用して生物発光強度を読み取るステップ;及び (f)及びパーセント細胞傷害率及び生存率を計算するステップ を含む。

図面の簡単な説明 [0086] 前述の概要、並びに以下の発明の詳細な説明は、添付の図面と併せて読むときより良く理解されるであろう。

[0087]照射した同種異系PBMCフィーダー細胞を使用したTILの迅速拡大培養の結果を示す。各TIL株(M1015T及びM1016T)(1.3×105細胞)をT25フラスコ内で46個の異なる照射フィーダー(1.3×10
7細胞)、IL−2(3000IU/mL)及びOKT−3(30ng/mL)と7日間共培養した。7日目にTILの拡大倍数値を計算した。この図は、46個の異なるフィーダーロットを試験した、別個の刺激実験における2つのTIL株の拡大倍数の数字を示し、PBMCフィーダー細胞を使用した拡大培養結果の変動性が明らかである。


[0088]pLV430Gヒト4−1BBLベクターのベクター図を示す。

[0089]pLV430Gヒト4−1BBLベクターの4−1BBL PCRP(ポリメラーゼ連鎖反応産物)部分の図を示す。

[0090]pLV430GヒトCD86ベクターのベクター図を示す。

[0091]pLV430GヒトCD86ベクターのCD86 PCRP部分の図を示す。

[0092]pDONR221ヒトCD86ドナーベクターのベクター図を示す。

[0093]pDONR221ヒト4−1BBLドナーベクターのベクター図を示す。

[0094]pLV430Gエンプティベクターのベクター図を示す。

[0095]pDONR221エンプティベクターのベクター図を示す。

[0096]レンチウイルス作製用のpsPAX2ヘルパープラスミドのベクター図を示す。

[0097]レンチウイルス作製用のpCIGO−VSV.Gヘルパープラスミドのベクター図を示す。

[0098]レンチウイルストランスフェクション前(「非トランスフェクト」)及びトランスフェクション後(「トランスフェクト」)のMOLM−14細胞に対するフローサイトメトリー実験の結果を示し、改変MOLM−14細胞上でのCD137及びCD86の発現が確認される。

[0099]TILロットM1032−T2についての照射した親非修飾MOLM−14細胞(「親MOLM14」)、改変MOLM−14細胞(CD86/4−1BBL、「改変MOLM14」)、又はPBMCフィーダー(「フィーダー」)を使用したTILの迅速拡大培養の結果を示す。TILをPBMCフィーダー又は親若しくは改変MOLM14細胞と1:100の比で、OKT−3(30ng/mL)及びIL−2(3000IU/mL)を添加して共培養した。6及び11日目に細胞をカウントして分割した。各点が、それぞれ0、6、11及び14日目に決定された細胞数を表す。対数目盛を用いる。

[00100]線形目盛を用いて図示した、図13に記載の結果を示す。


[00101]対数目盛を用いたTILロットM1033−T6の結果を示し、他のパラメータは図13に提供するとおりである。


[00102]線形目盛を用いて図示した、図14に記載の結果を示す。


[00103]CD86と4−1BBLとを発現する改変MOLM−14細胞(「TIL+改変MOLM14(CD86/41BB)+OKT3」)又は照射PBMCフィーダー(「TIL+フィーダー+OKT3」)を使用したTILの迅速拡大培養の結果を示す。TILをPBMCフィーダー又は改変MOLM−14細胞(aMOLM14)と1:100の比で、OKT−3(30ng/mL)及びIL−2(3000IU/mL)を加えて共培養した。6及び11日目に細胞をカウントして分割した。各点は、14日目に決定された細胞数を表す。


[00104]24ウェルG-Rexプレートのウェル内でTIL(2×10
4)を異なる比(1:10、1:30、及び1:100、それぞれ「10」、「30」、及び「100」と表示する)の親MOLM−14(「MOLM14」)細胞、CD86と4−1BBLとを発現するように形質導入されたMOLM−14細胞(「aMOLM14」)、又はPBMCフィーダー(「PBMC+」)と共に、各々OKT−3(30ng/mL)及びIL−2(3000IU/mL)を添加して培養した実験の結果を示す。対照はOKT−3(30ng/mL)及びIL−2(3000IU/mL)のみ(「PBMC−」)を使用して実施した。各条件につきトリプリケートで培養した。4及び7日目に培養物に新鮮培地及びIL−2を供給した。7日目に生細胞をカウントした。ここに表す棒グラフは、11日目にカウントされた生細胞数の平均値+標準偏差(SD)を示す。p値はスチューデント「t」検定によって計算した。


[00105]シングル24ウェルG-Rex培養プレートにおいて異なる比(1:30、1:100、及び1:300、それぞれ「30」、「100」、及び「300」と表示される)のPBMCフィーダー(「PBMC」)、親MOLM−14細胞(「MOLM14」)、又はCD86と4−1BBLとを発現するように形質導入されたMOLM−14細胞(「aMOLM14」)と共に、各々OKT−3(30ng/mL)及びIL−2(3000IU/mL)を添加して培養したTILの結果を示す。11日目に生細胞をカウントしてプロットした。他の条件は図18にあるとおりである。


[00106]シングル24ウェルG-Rex培養プレートにおいて異なる比(1:50、1:100、及び1:200、それぞれ「50」、「100」、及び「200」と表示される)のPBMCフィーダー(「PBMC」)、親MOLM−14細胞(「MOLM14」)、又はCD86と4−1BBLとを発現するように形質導入されたMOLM−14細胞(「aMOLM14」)と共に、各々OKT−3(30ng/mL)及びIL−2(3000IU/mL)を添加して培養したTILの結果を示す。14日目に細胞をカウントした。他の条件は図18にあるとおりである。


[00107]シングル24ウェルG-Rex培養プレートにおいて異なる比(1:100、1:200、1:400、及び1:800、それぞれ「100」、「200」、「400」、及び「800」と表示される)のPBMCフィーダー(「PBMC」)、親MOLM−14細胞(「MOLM14」)、又はCD86と4−1BBLとを発現するように形質導入されたMOLM−14細胞(「aMOLM14」)と共に、各々OKT−3(30ng/mL)及びIL−2(3000IU/mL)を添加して培養したTILの結果を示す。14日目に細胞をカウントした。他の条件は図18にあるとおりである。


[00108]PBMCフィーダーで拡大培養した生細胞、T細胞受容体(TCR)α/β、CD4、CD8、CD27、CD28、及びCD57 TILの詳細な分布を示すサンバースト図による視覚化を示す。


[00109]aMOLM14 aAPCで拡大培養した生細胞、TCRα/β、CD4、CD8、CD27、CD28、及びCD57 TILの詳細な分布を示すサンバースト図による視覚化を示す。


[00110]生細胞、TCRα/β+、CD4
+、又はCD8
+ TILにゲートをかけたメモリーサブセット(CD45RA+/−、CCR7+/−)を示すフローサイトメトリー等高線プロットを図示する。


[00111]SPADEツリーを使用してCD3
+細胞にゲートをかけたT細胞サブセット、CD4
+及びCD8
+ ポストREP TIL(aMOLM14 aAPCで拡大培養した)の表現型の特徴付けを示す。色のグラデーションはLAG3、TIM3、PD1、及びCD137の平均蛍光強度(MFI)に比例する。


[00112]SPADEツリーを使用してCD3
+細胞にゲートをかけたT細胞サブセット、CD4
+及びCD8
+ ポストREP TIL(aMOLM14 aAPCで拡大培養した)の表現型の特徴付けを示す。色のグラデーションはMFI CD69、CD154、KLRG1、及びTIGITに比例する。


[00113]ミトコンドリアストレステスト中に測定された、フィーダー又はaMOLM14で拡大培養した後のTILの酸素消費速度(OCR)を示す。各データ点は、トリプリケートで測定した平均値±平均値の標準誤差(SEM)を表す。


[00114]ミトコンドリアストレステスト中に測定された、フィーダー又はaMOLM14で拡大培養した後のTILの細胞外酸性化速度(ECAR)を示す。各データ点は、トリプリケートで測定した平均値±SEMを表す。


[00115]デスティネーションベクターpLV4301Gのベクター図を示す。


[00116]ドナーベクター1、pMK 7c12抗mFC scFv CoOp ECORV SacII L1R5のベクター図を示す。


[00117]ドナーベクター2、pMK hCD8a足場TN L5 L2のベクター図を示す。


[00118]レンチウイルス作製に使用される最終的なベクター、pLV4301G 7C12 scFv mIgG hCD8 flagのベクター図を示す。


[00119]デスティネーションベクターpLV4301Gのベクター図を示す。


[00120]ドナーベクター1、pMK 8B3抗mFC scFv CoOp ECORV SacII L1R5のベクター図を示す。


[00121]ドナーベクター2、pMK hCD8a足場TN L5 L2のベクター図を示す。


[00122]レンチウイルス作製に使用される最終的なベクター、pLV4301G 8B3 scFv mIgG hCD8 flagのベクター図を示す。


[00123]レンチウイルストランスフェクション前(「非トランスフェクト」)及びトランスフェクション後(「トランスフェクト」)のEM−3細胞に対するフローサイトメトリー実験の結果を示し、改変EM−3細胞上でのCD137及びCD86の発現が確認される。


[00124]TILをaEM3(7C12又は8B3)と1:100の比で、OKT−3(30ng/mL)及びIL−2(3000IU/mL)を加えて共培養した実験の結果を示す。11及び14日目に細胞をカウントした。


[00125]TILをaEM3(7C12又は8B3)と1:100の比で、OKT−3(30ng/mL)及びIL−2(3000IU/mL)を加えて共培養した実験の結果を示す。11及び14日目に細胞をカウントした。


[00126]TILをaEM3又はPBMCフィーダーと1:100比で、IL−2(3000IU/mL)を添加して、OKT−3(30ng/mL)を添加して又は添加せずに共培養した実験の結果を示す。棒グラフは、11日目に決定された細胞数を示す。


[00127]種々のTIL:aAPC比でのEM−3 aAPCによるTIL拡大培養の結果を示す。


[00128]EM−3 aAPCによるTIL拡大培養の結果を示す。G-Rex 24ウェルプレートにおいてTIL(2×10
4)を5つの異なるPBMCフィーダーロット又はaEM3(トリプリケート)と1:100比で、IL−2(3000IU/mL)を添加して共培養した。14日目に生細胞をカウントした。グラフは、14日目にカウントした生細胞数(平均値)を95%信頼区間と共に示す。


[00129]EM−3 aAPC及びMOLM−14 aAPCによるTIL拡大培養の結果を示す。G-Rex 24ウェルプレートにおいてTIL(2×10
4)を5つの異なるPBMCフィーダーロット又はaMOLM14(トリプリケート)又はaEM3(同様にトリプリケート)と1:100比で、IL−2(3000IU/mL)を添加して共培養した。グラフは、14日目にカウントした生細胞数(平均値)を95%信頼区間と共に示す。


[00130]aEM3 aAPC又はPBMCフィーダーで拡大培養した生細胞、TCRα/β、CD4
+、及びCD8
+ TIL(TILバッチM1054)の詳細な分布を明らかにするためのサンバースト図による視覚化を示す。


[00131]aEM3 aAPC又はPBMCフィーダーで拡大培養した生細胞、TCRα/β、CD4
+、及びCD8
+ TIL(TILバッチM1055)の詳細な分布を明らかにするためのサンバースト図による視覚化を示す。


[00132]CD3
+細胞を使用してaEM3 aAPC又はPBMCフィーダーで拡大培養したTILのCD4
+及びCD8
+ SPADEツリーを示す。色のグラデーションは、LAG−3、TIM−3、PD−1、及びCD137のMFIに比例する。


[00133]CD3
+細胞を使用してaEM3 aAPC又はPBMCフィーダーで拡大培養したTILのCD4
+及びCD8
+ SPADEツリーを示す。色のグラデーションは、CD69、CD154、KLRG1、及びTIGITのMFIに比例する。


[00134]Seahorse XFミトストレステストによって測定した予備呼吸容量の概要を示す。


[00135]Seahorse XFミトストレステストによって測定した解糖予備能の概要を示す。


[00136]生細胞のミトコンドリアを染色する、且つその蓄積が膜電位に依存するMitoTracker色素を使用した、PBMC又はaEM3に対して拡大培養した生細胞TILのミトコンドリア染色を示す。PBMC又はaEM3に対して拡大培養したTILをL/D Aquaと、続いてMitoTracker赤色色素で染色した。示されるデータは、生細胞集団にゲートをかけたMitoTracker陽性(MFI)細胞である。


[00137]細胞傷害効力及び機能活性に関するP815 BRLAの結果について、PBMCフィーダーで拡大培養したTILとaMOLM14 aAPCを使用して拡大培養したTILとの比較を示す。


[00138]細胞傷害効力及び機能活性に関するP815 BRLAの結果について、PBMCフィーダーで拡大培養したTILとaEM3 aAPCを使用して拡大培養したTILとの比較を示す。


[00139]非刺激(「US」)TILと比較した、抗CD3/CD28/4−1BBでコートしたマイクロビーズで一晩刺激(「S」)した後のTILの2つのバッチのIFN−γ遊離について、PBMCフィーダーで拡大培養したTILとaMOLM14 aAPCを使用して拡大培養したTILとの比較を示す。
*p<0.05、
**p<0.005、
***p<0.001、ns=有意差なし。


[00140]非刺激(「US」)TILと比較した、抗CD3/CD28/4−1BBでコートしたマイクロビーズで一晩刺激(「S」)した後のTILの3つのバッチのIFN−γ遊離について、PBMCフィーダーで拡大培養したTILとaEM3 aAPCを使用して拡大培養したTILとの比較を示す。
*p<0.05、
**p<0.005、
***p<0.001、ns=有意差なし。


[00141]非刺激(「US」)TILと比較した、抗CD3/CD28/4−1BBでコートしたマイクロビーズで一晩刺激(「S」)した後のTILの2つのバッチのグランザイムB遊離について、PBMCフィーダーで拡大培養したTILとaMOLM14 aAPCを使用して拡大培養したTILとの比較を示す。
*p<0.05、
**p<0.005、
***p<0.001、ns=有意差なし。


[00142]非刺激(「US」)TILと比較した、抗CD3/CD28/4−1BBでコートしたマイクロビーズで一晩刺激(「S」)した後のTILの3つのバッチのグランザイムB遊離について、PBMCフィーダーで拡大培養したTILとaEM3 aAPCを使用して拡大培養したTILとの比較を示す。
*p<0.05、
**p<0.005、
***p<0.001、ns=有意差なし。


[00143]TIL拡大培養及び処理プロセスを示す。本発明のaAPCはプレREP段階(図の上半分)又はREP段階(図の下半分)の両方で使用されてもよく、各細胞培養物にIL−2を加えるときに加えてもよい。ステップ1は、4つの腫瘍断片を10個のG-Rex 10フラスコに加えることを指す。ステップ2では、約40×10
6個又はそれ以上のTILが得られる。ステップ3では、REPのため36個のG-Rex 100フラスコへの分割が行われる。ステップ4でTILを遠心によって回収する。約43日の総処理時間の後にステップ5で新鮮なTIL産物が得られ、この時点でTILを患者に輸注することができる。


[00144]aAPCにより拡大培養したTILで用いられる治療プロトコルを示す。初めに手術(及び腫瘍切除)が行われ、及びリンパ球枯渇化学療法は、本明細書の他の部分に記載されるとおりの化学療法による骨髄非破壊的リンパ球枯渇を指す。


[00145]生物発光リダイレクト溶解アッセイ(Bioluminescent Redirected Lysis Assay:BRLA)の結果を示し、個別のエフェクター:標的比でP815クローンG6と共培養(抗CD3を添加して及び無しで)したときのTILバッチM1033T−1のパーセンテージ細胞傷害率が示される。


[00146]異なるエフェクター対標的細胞比に対するIFN−γ遊離量を示す酵素結合免疫吸着アッセイ(ELISA)データを示す。


[00147]P815クローンG6と抗CD3の存在下において1:1のエフェクター対標的細胞比で共培養したときのTILバッチM1033T−1が発現したLAMP1(%)を4時間及び24時間共培養について示す。


[00148]TILバッチM1030のBRLA結果を示す。BRLAによる細胞傷害性(LU
50/1×10
6TILとして測定した)は26±16である。


[00149]TILバッチM1030の標準クロム遊離アッセイを示す。クロム遊離アッセイによる細胞傷害性(LU
50/1×10
6TILとして測定した)は22である。


[00150]TILバッチM1053のBRLA結果を示し、BRLAによるTILの溶解単位を70±17として示す。


[00151]TILバッチM1053の標準クロム遊離アッセイ結果を示し、同様にクロムアッセイによるTILの溶解単位を14±5として示す。この結果を図64と比較すると、BRLA及びクロム遊離アッセイの性能が同等であることが示される。


[00152]IFN−γ遊離とTILの細胞傷害能との間の直線関係を示す。


[00153]IFN−γについてのELISpot結果を示す。


[00154]TILバッチM1053の酵素IFN−γ遊離を示す。


[00155]TILバッチM1030の酵素IFN−γ遊離を示す。


[00156]M1053T及びM1030TによるグランザイムB遊離を示すELISpotデータを示す。このデータから、BRLAによって示されるTILの効力が確認される。


[00157]TILバッチM1053の酵素グランザイムB遊離を示す。


[00158]TILバッチM1030の酵素グランザイムB遊離を示す。


[00159]M1053T及びM1030TによるTNF−α遊離を示すELISpotデータを示す。このデータから、BRLAによって示されるTILの効力が確認される。


[00160]TILバッチM1053の酵素TNF−α遊離を示す。


[00161]TILバッチM1030の酵素TNF−α遊離を示す。


[00162]かかる細胞集団をFBSからhAB血清培地へとウィーニングしたときのaEM3細胞(C712(A)及び8B5(B))の細胞集団の変化を示す。


[00163]aEM3細胞集団を様々な凍結培地に懸濁した凍結−融解−回収サイクルの間の細胞集団の変化を示す。


[00164]8日間の時間経過にわたるガス透過性細胞培養フラスコ内でのaEM3細胞の成長を示す。


[00165]aEM3細胞の純度を決定するフローパネル分析を示す。


[00166]aEM3細胞の純度の決定に用いられるフローパネル分析の結果を示す。


[00167]OKT3によって刺激したaEM3フィーダー細胞とPBMCフィーダーとの間のサイトカイン発現の差を示す。


[00168]TILを有利には無血清培地(即ち、CTS Optmizer)で拡大培養(プレREP)してもよく、CM1と比較したとき細胞数の増加がもたらされ得ることを示す。


[00169]TILを有利には無血清培地(即ち、CTS Optmizer)で拡大培養してもよく、11日目(プレREP)にCM1と比較したとき細胞数の増加がもたらされ得る(図83)ことを示す。


[00169]TILを有利には無血清培地(即ち、CTS Optmizer)で拡大培養してもよく、22日目(プレ及びポストREP)にCM1と比較したとき細胞数の増加がもたらされ得る(図84)ことを示す。


[00170]aAPC細胞(即ち、aEM3細胞)を無血清培地を使用して成長させることができることを示す。具体的には、CTS OpTimizer及びPrime-TCDMが、cDMEM(10%hSerum)と比較したときaEM3を成長させるのに有効であることが分かった。示されるデータは5つの別個の実験の平均値+SDであった。p値はスチューデントt検定により計算した。
*P<0.05。


[00171]凍結保存後3日目におけるTIL−R3細胞株からのaEM3細胞の急速回復を実証する実験の結果を示す。図86は実験1の総細胞数を示す。


[00171]凍結保存後3日目におけるTIL−R3細胞株からのaEM3細胞の急速回復を実証する実験の結果を示す。図87は実験2の総細胞数を示す。


[00172]凍結保存後のTIL−R3細胞株からのaEM3細胞の成長を示し、ここで、細胞はプレーティングして9日間成長させた。細胞数は解凍後3日毎に測定した。


[00173]凍結保存後のTIL−R3細胞株からのaEM3細胞の成長を示し、ここで、細胞はGREX 10フラスコにプレーティングし、8日間成長させた。細胞数は解凍後4日毎に測定した。


[00174]pLenti−C−Myc−DDKヒトOX40Lベクターのベクター図を示す。


[00175]aEM3細胞株及びPBMCフィーダーによりREPで拡大培養したTILのフローサイトメトリー分析の結果を示し、aEM3と共に培養したTILがCD8
+ TILの偏りを促進することが示される。


[00176]aEM3細胞株及びPBMCフィーダーによりREPでTILを拡大培養した実験から得られた生細胞の数を示す。


[00177]aEM3細胞株及びPBMCフィーダーによりREPでTILを拡大培養した実験から得られたCD3
+細胞の数を示す。


[00178]aEM3細胞株及びPBMCフィーダーによりREPでTILを拡大培養した実験から得られたCD3
細胞の数を示す。


[00179]qPCR方法を用いたテロメア長分析の結果を示す。


[00180]本発明のaAPCの実施形態の概略図を示す。


[00181]本発明のaAPCの実施形態の概略図を示す。


[00182]本発明のaAPCの実施形態の概略図を示す。




配列表の簡単な説明 [00183] 配列番号1はムロモナブの重鎖のアミノ酸配列である。


[00184] 配列番号2はムロモナブの軽鎖のアミノ酸配列である。


[00185] 配列番号3は組換えヒトIL−2のアミノ酸配列である。


[00186] 配列番号4はアルデスロイキンのアミノ酸配列である。


[00187] 配列番号5は組換えヒトIL−7のアミノ酸配列である。


[00188] 配列番号6は組換えヒトIL−15のアミノ酸配列である。


[00189] 配列番号7は組換えIL−21のアミノ酸配列である。


[00190] 配列番号8はヒトCD86のアミノ酸配列である。


[00191] 配列番号9はヒト4−1BBL(CD137L)のアミノ酸配列である。


[00192] 配列番号10はヒトOX40L(CD134L)のアミノ酸配列である。


[00193] 配列番号11はヒトCD28のアミノ酸配列である。


[00194] 配列番号12はヒトCTLA−4のアミノ酸配列である。


[00195] 配列番号13はヒト4−1BB(CD137)のアミノ酸配列である。


[00196] 配列番号14はヒトOX40(CD134)のアミノ酸配列である。


[00197] 配列番号15はpLV430G 4−1BBLエンプティベクターのヌクレオチド配列である。


[00198] 配列番号16はpLV430Gヒト4−1BBLベクターの4−1BBL CoOP部分のヌクレオチド配列である。


[00199] 配列番号17は4−1BBL PCRPのヌクレオチド配列である。


[00200] 配列番号18はpLV430G hCD86エンプティベクターのヌクレオチド配列である。


[00201] 配列番号19はpLV430GヒトhCD86ベクターのhCD86 CoOP部分のヌクレオチド配列である。


[00202] 配列番号20はpLV430GヒトhCD86ベクターのhCD86 CoOP B1 B2 PCRP部分のヌクレオチド配列である。


[00203] 配列番号21はpDONR221 hCD86ベクターのヌクレオチド配列である。


[00204] 配列番号22はpDONR221 4−1BBLベクターのヌクレオチド配列である。


[00205] 配列番号23はpLV430Gベクターのヌクレオチド配列である。


[00206] 配列番号24はpDONR221ベクターのヌクレオチド配列である。


[00207] 配列番号25はレンチウイルス作製用のpsPAX2ヘルパープラスミドのヌクレオチド配列である。


[00208] 配列番号26はレンチウイルス作製用のpCIGO−VSV.Gヘルパープラスミドのヌクレオチド配列である。


[00209] 配列番号27はmFc−7C12 scFvクローンのアミノ酸配列である。


[00210] 配列番号28はmFc−8B3 scFvクローンのアミノ酸配列である。


[00211] 配列番号29はmFC−7C12 scFvのヌクレオチド配列である。


[00212] 配列番号30はmFC−8B3 scFvのヌクレオチド配列である。


[00213] 配列番号31はデスティネーションベクターpLV4301Gのヌクレオチド配列である。


[00214] 配列番号32は、ドナーベクター1、pMK 7c12抗mFC scFv CoOp ECORV SacII L1R5のヌクレオチド配列である。


[00215] 配列番号33は、ドナーベクター2、pMK hCD8a足場TN L5 L2のヌクレオチド配列である。


[00216] 配列番号34は、レンチウイルス作製に使用される最終的なベクター、pLV4301G 7C12 scFv mIgG hCD8 flagのヌクレオチド配列である。


[00217] 配列番号35は、デスティネーションベクター、pLV4301Gのヌクレオチド配列である。


[00218] 配列番号36は、ドナーベクター1、pMK 8B3抗mFC scFv CoOp ECORV SacII L1R5のヌクレオチド配列である。


[00219] 配列番号37は、ドナーベクター2、pMK hCD8a足場TN L5 L2のヌクレオチド配列である。


[00220] 配列番号38は、レンチウイルス作製に使用される最終的なベクター、pLV4301G 8B3 scFv mIgG hCD8 flagのヌクレオチド配列である。


[00221] 配列番号39はレンチウイルス作製用のpLenti−C−Myc−DDK OX40Lベクターのヌクレオチド配列である。


[00222] 配列番号40は、テロメア長の定量的ポリメラーゼ連鎖反応測定に使用されるTel−1bプライマーのヌクレオチド配列である。


[00223] 配列番号41は、テロメア長の定量的ポリメラーゼ連鎖反応測定に使用されるTel−2bプライマーのヌクレオチド配列である。


[00224] 配列番号42は、テロメア長の定量的ポリメラーゼ連鎖反応測定に使用されるTel−1bプライマーのヌクレオチド配列である。


[00225] 配列番号43は、テロメア長の定量的ポリメラーゼ連鎖反応測定に使用されるTel−1bプライマーのヌクレオチド配列である。


発明の詳細な説明 [00226] 特に定義されない限り、本明細書で使用される全ての科学技術用語は、本発明が属する技術分野の当業者が一般的に理解するのと同じ意味を有する。本明細書において言及される特許及び刊行物は全て、全体として参照により援用される。


定義 [00227] 用語「共投与」、「共投与する」、「〜との組み合わせで投与される」、「〜との組み合わせで投与する」、「同時の」、及び「並行した」は、本明細書で使用する場合、両方の医薬品有効成分及び/又はその代謝産物がヒト対象に同じ時点で存在するようなヒト対象への2つ以上の医薬品有効成分の投与を包含する。共投与には、別個の組成物での同時投与、別個の組成物での異なる時点における投与、又は2つ以上の医薬品有効成分が存在する組成物での投与が含まれる。別個の組成物での同時投与及び両方の薬剤が存在する組成物での投与もまた本発明の方法に包含される。


[00228] 用語「インビボ」は、対象の体内で起こる事象を指す。


[00229] 用語「インビトロ」は、対象の体外で起こる事象を指す。インビトロアッセイは、生細胞又は死細胞を利用した細胞ベースのアッセイを包含し、また、インタクトな細胞を利用しない無細胞アッセイも包含し得る。


[00230] 用語「エキソビボ」は、対象の体から取り出された細胞、組織及び/又は臓器を処理すること又はそれに手順を施すことを伴う事象を指す。適切には、細胞、組織及び/又は臓器は手術又は治療方法において対象の体に戻され得る。


[00231] 用語「抗原」は、免疫応答を誘導する物質を指す。一部の実施形態において、抗原は、主要組織適合遺伝子複合体(MHC)分子によって提示された場合に抗体又はT細胞受容体(TCR)による結合を受ける能力を有する分子である。用語「抗原」は、本明細書で使用する場合、T細胞エピトープもまた包含する。抗原は、加えて、免疫系により認識される能力を有する。一部の実施形態において、抗原は、Bリンパ球及び/又はTリンパ球の活性化につながる体液性免疫応答又は細胞性免疫応答を誘導する能力を有する。ある場合には、そのために抗原がTh細胞エピトープを含むか又はそれに連結されている必要があることもある。抗原はまた、1又は複数のエピトープ(例えば、B−及びT−エピトープ)も有し得る。一部の実施形態において、抗原は、好ましくは、その対応する抗体又はTCRと典型的には高度に特異的且つ選択的に反応し、他の抗原によって誘導され得る他の多数の抗体又はTCRとは反応しないであろう。


[00232] 用語「有効量」又は「治療有効量」は、意図した適用、限定しないが、疾患治療を達成するのに十分な本明細書に記載されるとおりの化合物又は化合物の組み合わせの量を指す。治療有効量は、意図した適用(インビトロ又はインビボ)、又は治療下のヒト対象及び疾患病態(例えば、対象の体重、年齢及び性別)、疾患病態の重症度、投与方法等に応じて異なってもよく、これは当業者が容易に判断することができる。この用語はまた、標的細胞において特定の応答(例えば、血小板粘着及び/又は細胞遊走の低減)を生じさせるであろう用量にも適用される。具体的な用量は、選択した詳細な化合物、従うべき投与レジメン、化合物が他の化合物との組み合わせで投与されるかどうか、投与タイミング、その投与先の組織、及び化合物を運ぶ物理的デリバリーシステムに応じて異なることになる。


[00233] 「治療効果」は、本明細書において当該の用語が使用されるとき、ヒト対象における治療利益及び/又は予防利益を包含する。予防効果としては、疾患又は病態の出現を遅延させる又は消失させること、疾患又は病態の症状の発生を遅延させる又は消失させること、疾患又は病態の進行を遅延させる、止める、又は好転させること、又はこれらの任意の組み合わせが挙げられる。


[00234] 「薬学的に許容可能な担体」又は「薬学的に許容可能な賦形剤」は、あらゆる溶媒、分散媒、コーティング、抗細菌剤及び抗真菌剤、等張剤及び吸収遅延剤、及び不活性成分を含むことが意図される。かかる薬学的に許容可能な担体又は薬学的に許容可能な賦形剤の医薬品有効成分への使用は当該技術分野において周知である。任意の従来の薬学的に許容可能な担体又は薬学的に許容可能な賦形剤が医薬品有効成分と適合しない場合を除き、本発明の治療用組成物中におけるその使用が企図される。他の薬物など、追加的な医薬品有効成分もまた、記載される組成物及び方法に取り入れることができる。


[00235] 用語「迅速拡大培養」は、1週間の期間で少なくとも約3倍(又は4倍、5倍、6倍、7倍、8倍、又は9倍)、より好ましくは1週間の期間で少なくとも約10倍(又は20倍、30倍、40倍、50倍、60倍、70倍、80倍、又は90倍)、又は最も好ましくは1週間の期間で少なくとも約100倍の抗原特異的TIL数の増加を意味する。幾つもの迅速拡大培養プロトコルが本明細書に記載される。


[00236] 本明細書において「腫瘍浸潤リンパ球」又は「TIL」とは、対象の血流を離れて腫瘍中に遊走した、当初白血球細胞として得られた細胞の集団が意味される。TILとしては、限定はされないが、CD8+細胞傷害性T細胞(リンパ球)、Th1及びTh17 CD4+ T細胞、ナチュラルキラー細胞、樹状細胞及びM1マクロファージが挙げられる。TILには、初代TIL及び二次TILの両方が含まれる。「初代TIL」は、本明細書に概説されるとおり患者組織試料から得られるものであり(時に本明細書において「新鮮に回収された」又は「第1のTIL集団」と称される)、及び「二次TIL」は、本明細書で考察するとおり拡大培養された又は増殖した任意のTIL細胞集団、限定しないが、例えばバルクTIL及び拡大培養されたTIL(適切な場合には「REP TIL」又は「ポストREP TIL」、又は「第2のTIL集団」又は「第3のTIL集団」)、である。


[00237] TILは、概して、細胞表面マーカーを使用して生化学的に定義することも、又は腫瘍に浸潤して治療を達成するその能力によって機能的に定義することもできる。TILは、概して、以下のバイオマーカー:CD4、CD8、TCRαβ、CD27、CD28、CD56、CCR7、CD45Ra、CD95、PD−1、及びCD25のうちの1又は複数の発現によって分類することができる。加えて、及び或いは、TILは、患者への再導入時に固形腫瘍に浸潤するその能力によって機能的に定義することができる。


[00238] 本明細書において「凍結保存TIL」とは、TILが約−150℃〜−60℃の範囲で処理及び保存されることを意味する。一般的な凍結保存方法はまた、実施例を含め、本明細書の他の部分にも記載される。明確にするために言えば、「凍結保存TIL」は、初代TILの供給源として用いられ得る凍結組織試料と区別可能なものである。


[00239] 本明細書において「解凍した凍結保存TIL」とは、かつて凍結保存されていたが、次に処理により、室温以上、限定しないが、例えば細胞培養温度又はTILを患者に投与し得る温度、に戻されたTIL集団を意味する。


[00240] 本明細書において「細胞集団」(TILを含む)は、共通の形質を共有する多数の細胞を意味する。


[00241] 用語「セントラルメモリーT細胞」は、ヒトではCD45R0+であり、且つCCR7(CCR7hi)及びCD62L(CD62hi)を構成的に発現するT細胞のサブセットを指す。セントラルメモリーT細胞の表面表現型にはまた、TCR、CD3、CD127(IL−7R)、及びIL−15Rも含まれる。セントラルメモリーT細胞の転写因子には、BCL−6、BCL−6B、MBD2、及びBMI1が含まれる。セントラルメモリーT細胞はTCR惹起後にエフェクター分子としてIL−2及びCD40Lを主に分泌する。セントラルメモリーT細胞は血中のCD4コンパートメントにおいて優勢であり、ヒトではリンパ節及び扁桃腺に比例的に高濃度化する。


[00242] 用語「エフェクターメモリーT細胞」は、セントラルメモリーT細胞と同様にCD45R0+であるが、CCR7の構成的発現が欠損しており(CCR7lo)、且つCD62L発現が不均一であるか又は低い(CD62Llo)、ヒト又は哺乳類T細胞のサブセットを指す。セントラルメモリーT細胞の表面表現型にはまた、TCR、CD3、CD127(IL−7R)、及びIL−15Rも含まれる。セントラルメモリーT細胞の転写因子には、BLIMP1が含まれる。エフェクターメモリーT細胞は抗原刺激後に、インターフェロン−γ、IL−4、及びIL−5を含め、高レベルの炎症性サイトカインを急速に分泌する。エフェクターメモリーT細胞は血中のCD8コンパートメントにおいて優勢であり、ヒトでは肺、肝臓、及び腸に比例的に高濃度化する。CD8+ エフェクターメモリーT細胞は大量のパーフォリンを有する。


[00243] 2つ以上の核酸又はポリペプチドの文脈で用語「配列同一性」、「パーセント同一性」、及び「配列パーセント同一性」は、いかなる保存的アミノ酸置換も配列同一性の一部として考慮せず、対応が最大となるように比較及びアラインメント(必要に応じてギャップを導入する)したときに同じである、又は同じであるヌクレオチド若しくはアミノ酸残基を特定の割合だけ有する2つ以上の配列又は部分配列を指す。パーセント同一性は、配列比較ソフトウェア又はアルゴリズムを用いるか、又は目視検査によって測定することができる。アミノ酸又はヌクレオチド配列のアラインメントを達成するために使用し得る様々なアルゴリズム及びソフトウェアが当該技術分野において公知である。パーセント配列同一性の決定に好適なプログラムとしては、例えば、米国政府の国立バイオテクノロジー情報センター(National Center for Biotechnology Information)BLASTウェブサイトから利用可能なBLASTプログラムスイートが挙げられる。2つの配列間の比較は、BLASTN又はBLASTPのいずれかのアルゴリズムを使用して行うことができる。BLASTNは核酸配列の比較に使用され、一方、BLASTPはアミノ酸配列の比較に使用される。ALIGN、ALIGN-2(Genentech、South San Francisco, California)又はDNASTARから利用可能なMegAlignが、配列のアラインメントに使用し得る更なる公的に利用可能なソフトウェアプログラムである。当業者は、特定のアラインメントソフトウェアによるアラインメントを最大化するための適切なパラメータを決定することができる。特定の実施形態では、アラインメントソフトウェアのデフォルトパラメータが使用される。


[00244] 用語「保存的アミノ酸置換」は、抗体の抗原への結合又はタンパク質のそのリガンドへの結合を無効にしないアミノ酸配列修飾を意味する。保存的アミノ酸置換としては、あるクラスのアミノ酸における同じクラスのアミノ酸による置換が挙げられ、ここで、クラスは、共通の物理化学的アミノ酸側鎖特性及び例えば標準的なデイホフ頻度交換行列又はBLOSUM行列によって決定されるとおりの、天然に見られる相同タンパク質における高い置換頻度によって定義される。6つの一般的なアミノ酸側鎖クラスが分類されており、クラスI(Cys);クラスII(Ser、Thr、Pro、Ala、Gly);クラスIII(Asn、Asp、Gln、Glu);クラスIV(His、Arg、Lys);クラスV(Ile、Leu、Val、Met);及びクラスVI(Phe、Tyr、Trp)が含まれる。例えば、AspをAsn、Gln、又はGluなどの別のクラスIII残基に代える置換は保存的置換である。従って、4−1BBL又はCD86タンパク質中の予測非必須アミノ酸残基が好ましくは同じクラスの別のアミノ酸残基に置き換えられる。抗原又はリガンド結合を消失させることのないアミノ酸保存的置換を同定する方法は当該技術分野において周知である(例えば、Brummell, et al., Biochemistry 1993, 32, 1180-1187;Kobayashi, et al., Protein Eng. 1999, 12, 879-884 (1999);及びBurks, et al., Proc. Natl. Acad. Sci. USA 1997, 94, 412-417を参照のこと)。


[00245] 用語「レトロウイルス」は、その複製サイクルの間に逆転写酵素を利用するRNAウイルスを指し、ここで、レトロウイルスゲノムRNAは逆転写酵素によって二本鎖DNAに変換される。二本鎖DNA形態は感染細胞の染色体に組み込まれる(「プロウイルス」)。プロウイルスはRNAポリメラーゼIIの鋳型として働き、新規ウイルス粒子の産生に必要な構造タンパク質及び酵素をコードするRNA分子の発現を導く。プロウイルスの各末端には、「長末端反復配列」又は「LTR」と呼ばれる構造がある。LTRは、転写制御エレメント、ポリアデニル化シグナル並びにウイルスゲノムの複製及び組込みに必要な配列を含め、数多くの調節シグナルを含む。レトロウイルス科(Retroviridae)の中には、A型システルナウイルス属(Cisternavirus A)、A型オンコウイルス属(Oncovirus A)、B型オンコウイルス属(Oncovirus B)、C型オンコウイルス属(Oncovirus C)、D型オンコウイルス属(Oncovirus D)、レンチウイルス属(Lentivirus)、ガンマレトロウイルス属(Gammaretrovirus)、及びスプーマウイルス属(Spumavirus)を含め、幾つかの属が含まれる。一部のレトロウイルスは発癌性(即ち腫瘍形成性)であるが、そうでないものもある。オンコウイルスは、感受性のある種において肉腫、白血病、リンパ腫、及び乳癌を誘導する。レトロウイルスは多種多様な種に感染し、平にも垂直にも伝播し得る。レトロウイルスは宿主DNAに組み込まれるため、宿主DNAの配列を細胞から細胞へと伝播させる能力を有する。例示的なガンマレトロウイルスベクターには、細胞表面リン酸輸送体受容体を用いて侵入し、次に増殖細胞染色体に永久に組み込まれるアンホトロピックなモロニーマウス白血病ウイルス(MLV−A)に由来するものが含まれる。アンホトロピックMLVベクター系は十分に確立されており、よく用いられる遺伝子デリバリーツールである(例えば、Gordon and Anderson, Curr. Op. Biotechnol., 1994, 5, 611-616及びMiller, et al., Meth. Enzymol., 1993, 217, 581-599(これらの開示は参照により本明細書に援用される)を参照のこと。


[00246] 用語「レンチウイルス」は、HIV(ヒト免疫不全ウイルス;HIV1型、及びHIV2型を含む)、ヒツジに脳炎(ビスナ)又は肺炎(マエディ)を引き起こすビスナ・マエディ、ヤギに免疫不全、関節炎、及び脳症を引き起こすヤギ関節炎脳炎ウイルス;ウマに自己免疫性溶血性貧血、及び脳症を引き起こすウマ伝染性貧血ウイルス;ネコに免疫不全を引き起こすネコ免疫不全ウイルス(FIV);ウシにリンパ節症、リンパ球増加症、及び場合により中枢神経系感染症を引き起こすウシ免疫不全ウイルス(BIV);及び類人霊長類に免疫不全及び脳症を引き起こすサル免疫不全ウイルス(SIV)を含む属を指す。これらのウイルスによって引き起こされる疾患は、長い潜伏期間及び経過の長期化を特徴とする。通常、これらのウイルスは単球及びマクロファージに潜伏感染し、そこから他の細胞に広がる。HIV、FIV、及びSIVはまた、Tリンパ球(即ちT細胞)にも容易に感染する。


[00247] 用語「抗CD3抗体」は、抗体又はその変異体、例えばモノクローナル抗体であって、成熟T細胞のT細胞抗原受容体におけるCD3受容体に対するヒト、ヒト化、キメラ又はマウス抗体を含むものを指す。抗CD3抗体には、ムロモナブとしても知られるOKT−3が含まれる。抗CD3抗体にはまた、T3及びCD3εとしても知られるUHCT1クローンも含まれる。他の抗CD3抗体には、例えば、オテリキシズマブ、テプリズマブ、及びビジリズマブが含まれる。


[00248] 用語「OKT−3」(本明細書では「OKT3」とも称される)は、成熟T細胞のT細胞抗原受容体におけるCD3受容体に対する、ヒト、ヒト化、キメラ、若しくはマウス抗体を含めたモノクローナル抗体又はその変異体を指し、OKT−3(30ng/mL、MACS GMP CD3 pure、Miltenyi Biotec GmbH、Bergisch Gladbach, Germany)及びムロモナブ又はその変異体、保存的アミノ酸置換、グリコフォーム、若しくはバイオシミラーなど、市販されている形態を含む。ムロモナブの重鎖及び軽鎖のアミノ酸配列を表1に提供する(配列番号1及び配列番号2)。OKT−3の産生能を有するハイブリドーマが米国培養細胞系統保存機関(American Type Culture Collection)に寄託されており、ATCC受託番号CRL 8001が付与されている。OKT−3の産生能を有するハイブリドーマはまた、欧州認証細胞培養株保存機関(European Collection of Authenticated Cell Cultures:ECACC)にも寄託されており、カタログ番号86022706が付与されている。






[00249] 用語「IL−2」(本明細書では「IL2」とも称される)は、インターロイキン−2として知られるT細胞成長因子を指し、そのヒト及び哺乳類形態、保存的アミノ酸置換、グリコフォーム、バイオシミラー、及び変異体を含め、あらゆる形態のIL−2が含まれる。IL−2については、例えば、Nelson, J. Immunol. 2004, 172, 3983-88及びMalek, Annu. Rev. Immunol. 2008, 26, 453-79(これらの開示は参照により本明細書に援用される)に記載される。本発明での使用に好適な組換えヒトIL−2のアミノ酸配列を表2に提供する(配列番号3)。例えば、用語IL−2には、ヒトの組換え形態のIL−2、例えばアルデスロイキン(PROLEUKIN、使い捨てバイアル当たり2200万IUで複数の供給業者から市販されている)、並びにCellGenix, Inc.、Portsmouth, NH, USA(CELLGRO GMP)又はProSpec-Tany TechnoGene Ltd.、East Brunswick, NJ, USA(カタログ番号CYT-209-b)によって商業的に供給されている組換えIL−2の形態及び他の販売業者からの他の市販の均等物が包含される。アルデスロイキン(des−アラニル−1,セリン−125ヒトIL−2)は、分子量が約15kDaの非グリコシル化ヒト組換え形態のIL−2である。本発明での使用に好適なアルデスロイキンのアミノ酸配列を表2に提供する(配列番号4)。用語IL−2にはまた、Nektar Therapeutics、South San Francisco, CA, USAから入手可能なペグ化IL2プロドラッグNKTR-214を含め、本明細書に記載されるとおりの、ペグ化形態のIL−2も包含される。本発明での使用に好適なNKTR-214及びペグ化IL−2が米国特許出願公開第2014/0328791 A1号及び国際公開第2012/065086 A1号(これらの開示は参照により本明細書に援用される)に記載されている。本発明での使用に好適な別の形態のコンジュゲート型IL−2が、米国特許第4,766,106号、同第5,206,344号、同第5,089,261号及び同第4902,502号(これらの開示は参照により本明細書に援用される)に記載されている。本発明での使用に好適なIL−2の製剤が米国特許第6,706,289号(この開示は参照により本明細書に援用される)に記載されている。


[00250] 用語「IL−7」(本明細書では「IL7」とも称される)は、インターロイキン7として知られるグリコシル化組織由来サイトカインを指し、これは間質及び上皮細胞、並びに樹状細胞から入手し得る。Fry and Mackall, Blood 2002, 99, 3892-904。IL−7はT細胞の発達を刺激することができる。IL−7は、IL−7受容体αと共通γ鎖受容体とからなるヘテロ二量体のIL−7受容体に結合し、それが胸腺内でのT細胞発達及び末梢内での生存にとって重要な一連のシグナルとなる。本発明での使用に好適な組換えヒトIL−7は、ProSpec-Tany TechnoGene Ltd.、East Brunswick, NJ, USA(カタログ番号CYT-254)及びThermoFisher Scientific, Inc.、Waltham, MA, USA(ヒトIL−7組換えタンパク質、カタログ番号Gibco PHC0071)を含め、複数の供給業者から市販されている。本発明での使用に好適な組換えヒトIL−7のアミノ酸配列を表2に提供する(配列番号5)。


[00251] 用語「IL−15」(本明細書では「IL15」とも称される)は、インターロイキン−15として知られるT細胞成長因子を指し、そのヒト及び哺乳類形態、保存的アミノ酸置換、グリコフォーム、バイオシミラー、及び変異体を含め、あらゆる形態のIL−2が含まれる。IL−15については、例えば、Fehniger and Caligiuri, Blood 2001, 97, 14-32(この開示は参照により本明細書に援用される)に記載されている。IL−15はβ及びγシグナル伝達受容体サブユニットをIL−2と共有している。組換えヒトIL−15は、分子質量が12.8kDaの、114アミノ酸(及びN末端メチオニン)を含む単一の非グリコシル化ポリペプチド鎖である。組換えヒトIL−15は、ProSpec-Tany TechnoGene Ltd.、East Brunswick, NJ, USA(カタログ番号CYT-230-b)及びThermoFisherScientific, Inc.、Waltham, MA, USA(ヒトIL−15組換えタンパク質、カタログ番号34-8159-82)を含め、複数の供給業者から市販されている。本発明での使用に好適な組換えヒトIL−15のアミノ酸配列を表2に提供する(配列番号6)。


[00252] 用語「IL−21」(本明細書では「IL21」とも称される)は、インターロイキン−21として知られるプレイオトロピックサイトカインタンパク質を指し、そのヒト及び哺乳類形態、保存的アミノ酸置換、グリコフォーム、バイオシミラー、及び変異体を含め、あらゆる形態のIL−21が含まれる。IL−21については、例えば、Spolski and Leonard, Nat. Rev. Drug. Disc. 2014, 13, 379-95(この開示は参照により本明細書に援用される)に記載されている。IL−21は、主としてナチュラルキラーT細胞及び活性化ヒトCD4+ T細胞によって産生される。組換えヒトIL−21は、分子質量が15.4kDaの、132アミノ酸を含む単一の非グリコシル化ポリペプチド鎖である。組換えヒトIL−21は、ProSpec-Tany TechnoGene Ltd.、East Brunswick, NJ, USA(カタログ番号CYT-408-b)及びThermoFisherScientific, Inc.、Waltham, MA, USA(ヒトIL−21組換えタンパク質、カタログ番号14-8219-80)を含め、複数の供給業者から市販されている。本発明での使用に好適な組換えヒトIL−21のアミノ酸配列を表2に提供する(配列番号7)。






[00253] 用語「骨髄系細胞」は、本明細書で使用する場合、骨髄系列の細胞又はそれに由来する細胞を指す。骨髄系列には、顆粒球(好中球、好酸球、及び好塩基球)、単球、マクロファージ、赤血球、巨核球、及びマスト細胞の種々のサブセットを含めた幾つもの形態学的、表現型的、及び機能的に異なる細胞型が含まれる。特定の実施形態において、骨髄系細胞は、骨髄系列の細胞株に由来する細胞である。


[00254] 「MOLM−14」は、再発性急性単球性白血病の患者の末梢血から樹立されたヒト白血病細胞株を指し、初期の表現型の特徴付けから、少なくとも以下のマーカー:CD4、CD9、CD11a、CD13、CD14、CD15、CD32、CD33、CD64、CD65、CD87、CD92、CD93、CD116、CD118、及びCD155の存在が示された。Matsuo, et al., Leukemia 1997, 11, 1469-77。MOLM−14の更なる表現型の特徴付けから、HLA−A/B/C、CD64、CD80、ICOS−L、CD58のレベルがより高く、及びCD86のレベルがより低いことが見出された。MOLM−14細胞株はDSMZに受託番号ACC777で寄託されている。近縁のMOLM−13細胞株はDSMZに受託番号ACC554で寄託されている。本明細書で使用する場合、用語「MOLM−14細胞」は、MOLM−14細胞及び/又は寄託されたMOLM−14親細胞株に由来する細胞を指す。本明細書で使用する場合、用語「MOLM−13細胞」は、MOLM−13細胞及び/又は寄託されたMOLM−13親細胞株に由来する細胞を指す。


[00255] 「EM−3」は、フィラデルフィア染色体陽性CMLの患者の骨髄から樹立されたヒト細胞株を指す。Konopka, et al., Proc. Nat’l Acad. Sci. USA 1985, 82, 1810-4。EM−3細胞の表現型の特徴付けから、少なくとも以下のマーカー:CD13、CD15、及びCD33の存在が示される。EM−3細胞株はDSMZに受託番号ACC134で寄託されており、一方、近縁のEM−2細胞株はDSMZに受託番号ACC135で寄託されている。本明細書で使用する場合、用語「EM−3細胞」は、EM−3細胞及び/又は寄託されたEM−3親細胞株に由来する細胞を指す。


[00256] 本明細書で使用する場合、用語「CD86タンパク質」は、配列番号8に記載のアミノ酸配列を含むタンパク質又は配列番号8に示されるアミノ酸配列と少なくとも90%、例えば、91%、92%、93%、94%、95%、96%、97%、98%又は99%の配列同一性を有するアミノ酸配列を含むタンパク質を指し得る。


[00257] 本明細書で使用する場合、用語「4−1BBL」又は「CD137L」は、配列番号9に記載のアミノ酸配列を含むタンパク質又は配列番号9に示されるアミノ酸配列と少なくとも90%、例えば、91%、92%、93%、94%、95%、96%、97%、98%又は99%の配列同一性を有するアミノ酸配列を含むタンパク質を指し得る。


[00258] 本明細書で使用する場合、用語「OX40L」又は「CD137L」は、配列番号10に記載のアミノ酸配列を含むタンパク質又は配列番号10に示されるアミノ酸配列と少なくとも90%、例えば、91%、92%、93%、94%、95%、96%、97%、98%又は99%の配列同一性を有するアミノ酸配列を含むタンパク質を指し得る。


[00259] 用語「バイオシミラー」は、臨床的に不活性な成分に軽微な違いがあるにも関わらず、米国で認可されている先発バイオ製剤と高度に類似した、且つそれに関して製剤の安全性、純度、及び効力の点でそのバイオ製剤と先発製剤との間に臨床的に有意味な違いがない、モノクローナル抗体又は融合タンパク質を含めたバイオ製剤を意味する。更に、後発バイオ医薬品又は「バイオシミラー」医薬品は、欧州医薬品庁(European Medicines Agency)によって使用が既に許可されている別のバイオ医薬品に類似したバイオ医薬品である。用語「バイオシミラー」はまた、他の国及び地域の規制機関によっても同義的に使用される。バイオ製剤又はバイオ医薬品は、細菌又は酵母などの生物学的供給源によって作られる又はそれに由来する医薬品である。これはヒトインスリン又はエリスロポエチンなどの比較的小さい分子、又はモノクローナル抗体などの複合的な分子からなり得る。例えば、先発IL−2タンパク質がアルデスロイキン(PROLEUKIN)である場合、アルデスロイキンに準拠して医薬品規制当局により承認されたタンパク質は、アルデスロイキンと「バイオシミラー」であり、又はアルデスロイキンの「そのバイオシミラー」である。欧州では、後発バイオ医薬品又は「バイオシミラー」医薬品は、欧州医薬品庁(European Medicines Agency:EMA)によって使用が既に許可されている別のバイオ医薬品に類似したバイオ医薬品である。欧州における後発バイオ適用についての関連する法的根拠は、規則(EC)第726/2004号の第6条及び指令2001/83/ECの第10条(4)(その後の改正を含む)であり、従って欧州では、バイオシミラーは、規則(EC)第726/2004号の第6条及び指令2001/83/ECの第10条(4)に基づき認可を受け、認可が承認され、又は認可申請の対象となり得る。既に認可を受けている元のバイオ医薬品製剤は、欧州では「先発医薬品製剤」と称され得る。ある製剤がバイオシミラーと見なされるための要件の一部が、後発バイオ医薬品製剤に関するCHMPガイドライン(CHMP Guideline on Similar Biological Medicinal Products)に概説されている。加えて、モノクローナル抗体バイオシミラーに関するガイドラインを含め、製剤固有のガイドラインがEMAによって製剤毎に提供されており、そのウェブサイトに公開されている。本明細書に記載されるとおりのバイオシミラーは、品質特性、生物学的活性、作用機序、安全性プロファイル及び/又は有効性の点で先発医薬品製剤に類似したものであり得る。加えて、バイオシミラーは先発医薬品製剤と同じ病態の治療に使用される又はそれへの使用が意図されるものであり得る。従って、本明細書に記載されるとおりのバイオシミラーは、先発医薬品製剤に類似した又は高度に類似した品質特性を有すると見なされ得る。或いは、又は加えて、本明細書に記載されるとおりのバイオシミラーは、先発医薬品製剤に類似した又は高度に類似した生物学的活性を有すると見なされ得る。或いは、又は加えて、本明細書に記載されるとおりのバイオシミラーは、先発医薬品製剤に類似した又は高度に類似した安全性プロファイルを有すると見なされ得る。或いは、又は加えて、本明細書に記載されるとおりのバイオシミラーは、先発医薬品製剤に類似した又は高度に類似した有効性を有すると見なされ得る。本明細書に記載されるとおり、欧州におけるバイオシミラーは、EMAによって認可済みの先発医薬品製剤と比較される。しかしながら、一部の例では、バイオシミラーは、欧州経済地域外においてある種の試験で認可を受けたバイオ医薬品製剤(非EEA認可「対照薬」)と比較されてもよい。かかる試験には、例えば、ある種の臨床試験及びインビボ非臨床試験が含まれる。本明細書で使用する場合、用語「バイオシミラー」はまた、非EEA認可対照薬と比較済みの又はそれと比較され得るバイオ医薬品製剤にも関する。ある種のバイオシミラーは、抗体、抗体断片(例えば抗原結合部分)及び融合タンパク質などのタンパク質である。タンパク質バイオシミラーは、ポリペプチドの機能に有意な影響を及ぼさない軽微なアミノ酸構造の修飾(例えばアミノ酸の欠失、付加、及び/又は置換を含む)を有するアミノ酸配列を有し得る。バイオシミラーは、その先発医薬品製剤のアミノ酸配列と97%以上、例えば、97%、98%、99%又は100%の配列同一性を有するアミノ酸配列を含み得る。バイオシミラーは、先発医薬品製剤の翻訳後修飾と異なる1又は複数の翻訳後修飾、例えば、限定しないが、グリコシル化、酸化、アミド分解、及び/又はトランケーションを含んでもよく、但しその差異が医薬品製剤の安全性及び/又は有効性に変化をもたらさないものとする。バイオシミラーは先発医薬品製剤と同一の又は異なるグリコシル化パターンを有し得る。特に、限定的ではないが、バイオシミラーは、先発医薬品製剤に関連する安全性についての懸念がその差異によって対処される又は対処されるように意図される場合、異なるグリコシル化パターンを有し得る。加えて、バイオシミラーは、例えばその強度、医薬品形態、製剤化、賦形剤及び/又は体裁の点で先発医薬品製剤から逸脱してもよく、但し医薬品製剤の安全性及び有効性が損なわれないものとする。バイオシミラーは、例えば薬物動態学的(PK)及び/又は薬力学的(PD)プロファイルの点で先発医薬品製剤と比較して差異を含み得るが、なおも認可を受ける又は認可に好適であると考えるのに十分に先発医薬品製剤に類似していると見なされる。ある種の状況では、バイオシミラーは先発医薬品製剤と比較して異なる結合特性を呈し、ここで、この異なる結合特性は、EMAなどの規制当局により後発バイオ製剤としての認可を妨げるものではないと見なされる。用語「バイオシミラー」はまた、他の国及び地域の規制機関によっても同義的に使用される。


[00260] 本明細書で使用する場合、用語「変異体」は、限定しないが、タンパク質、抗体又は融合タンパク質であって、参照タンパク質又は抗体のアミノ酸配列の範囲内の又はそれに隣接する特定の位置における1又は複数の置換、欠失及び/又は付加の点で参照タンパク質又は抗体のアミノ酸配列と異なるアミノ酸配列を含むタンパク質、抗体又は融合タンパク質を包含する。変異体は、参照タンパク質又は抗体のアミノ酸配列と比較して、そのアミノ酸配列に1又は複数の保存的置換を含み得る。保存的置換は、例えば、同様の荷電又は非荷電アミノ酸の置換を含み得る。変異体は、参照タンパク質又は抗体の抗原に特異的に結合する能力を保持している。用語「変異体」はまた、ペグ化抗体又はタンパク質も含む。


[00261] 「ペグ化」は、1又は複数のPEG基が抗体、抗体断片、又はタンパク質に結合するようになる条件下でポリエチレングリコール(PEG)、例えばPEGの反応性エステル又はアルデヒド誘導体などと典型的に反応する修飾された抗体、又はその断片、又はタンパク質を指す。ペグ化により、例えば、抗体又はタンパク質の生物学的(例えば血清)半減期が増加し得る。好ましくは、ペグ化は、反応性PEG分子(又は類似の反応性水溶性ポリマー)とのアシル化反応又はアルキル化反応で行われる。本明細書で使用する場合、用語「ポリエチレングリコール」は、モノ(C1〜C10)アルコキシ−若しくはアリールオキシ−ポリエチレングリコール又はポリエチレングリコール−マレイミドなど、他のタンパク質の誘導体化に用いられている形態のPEGのいずれかを包含することが意図される。ペグ化される抗体又はタンパク質は非グリコシル化抗体であってもよい。ペグ化方法は、例えば欧州特許第0154316号及び同第0401384号に記載されるとおり、当該技術分野において公知であり、本明細書に記載される抗体及びタンパク質に適用することができる。


[00262] 用語「約」及び「近似的に」は、ある値の統計的に意味のある範囲内であることを意味する。かかる範囲は、所与の値又は範囲のあるオーダー内、好ましくは50%以内、より好ましくは20%以内、より好ましくはなおも10%以内、及び更により好ましくは5%以内であり得る。用語「約」又は「近似的に」に包含される許容可能な変動は研究下の詳細な系に依存し、当業者は容易に理解することができる。更に、本明細書で使用する場合、用語「約」及び「近似的に」は、寸法、サイズ、配合、パラメータ、形状並びに他の数量及び特性が正確にそのものでなく、及び正確にそのものでなくてもよく、必要に応じて、公差、変換係数、丸め、測定誤差など、及び当業者に公知の他の要因を反映して、近似的であってもよく、及び/又はより大きくても若しくは小さくてもよいことを意味する。一般に、寸法、サイズ、配合、パラメータ、形状又は他の数量若しくは特性は、そのように明示されるか否かに関わらず、「約」又は「近似的」である。極めて異なるサイズ、形状及び寸法の実施形態は記載される構成を用い得ることが注記される。


[00263] 移行句「〜を含む(comprising)」、「〜から本質的になる(consisting essentially of)」、及び「〜からなる(consisting of)」は、出願当初及び補正後の形態の添付の特許請求の範囲において使用されるとき、存在する場合に、どのような記載されていない追加的クレーム要素又はステップが特許請求の範囲から除外されるかに関して特許請求の範囲を定義する。用語「〜を含む」は包含的又はオープンエンドであることが意図され、いかなる記載されていない追加の要素、方法、ステップ又は材料も除外しない。用語「〜からなる」は、クレームに指定されるもの以外のいかなる要素、ステップ又は材料も除外し、後者の材料の例では、指定される材料に通常付随する不純物も除外する。用語「〜から本質的になる」は、指定される要素、ステップ又は材料及び特許請求される発明の基本的な新規の特徴に実質的に影響しないものに範囲を限定する。本発明を具現化する本明細書に記載される全ての組成物、方法、及びキットが、代替的実施形態では、移行句「〜を含む」、「〜から本質的になる」、及び「〜からなる」のいずれかによってより具体的に定義され得る。


人工抗原提示細胞 [00264] ある実施形態において、本発明は、HLA−A/B/C、CD64、CD80、ICOS−L、及びCD58を発現し、且つ1又は複数の共刺激分子を発現するように修飾されている細胞を含む単離された人工抗原提示細胞(aAPC)を含む。ある実施形態において、本発明は、1又は複数の共刺激分子を発現するように修飾されているMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、1又は複数の共刺激分子を発現するように修飾されているMOLM−13細胞を含むaAPCを含む。


[00265] ある実施形態において、本発明は、HLA−A/B/C、CD64、CD80、ICOS−L、及びCD58を内因的に発現するMOLM−14細胞を含むaAPCを含み、ここで、細胞は、配列番号8に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む4−1BBLタンパク質とを発現するように修飾され、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。


[00266] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含むaAPCを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86と4−1BBLとを発現する。ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入されたMOLM−13細胞を含むaAPCを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−13細胞はCD86と4−1BBLとを発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00267] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と配列番号9に記載のアミノ酸配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00268] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と99%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と98%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と97%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と96%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と95%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と90%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00269] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00270] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と99%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と98%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と97%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と96%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と95%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と90%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00271] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含むaAPCを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、OX40Lをコードする核酸とを含み、MOLM−14細胞はCD86とOX40Lとを発現する。ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入されたMOLM−13細胞を含むaAPCを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、OX40Lをコードする核酸とを含み、MOLM−13細胞はCD86とOX40Lとを発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00272] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列を含むOX40Lタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むOX40Lタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−13細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00273] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と99%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と98%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と97%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と96%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と95%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と90%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はMOLM−14細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00274] 前述の実施形態のいずれにおいても、MOLM−14又はMOLM−13細胞を含むaAPCがOX40Lと4−1BBLとの両方を発現するように修飾され得ることは理解されるであろう。


[00275] ヒトCD86、ヒト4−1BBL(CD137L)、及びヒトOX40L(CD134L)の配列を表3に提供する。






[00276] ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00277] ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00278] ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00279] ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00280] ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−14細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00281] ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたMOLM−13細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00282] ヒトCD86が結合するリガンド(CD28及びCTLA−4)、ヒト4−1BBLが結合するリガンド(4−1BB)、及びヒトOX40Lが結合するリガンド(OX40)の配列を表4に提供する。






[00283] ある実施形態において、本発明は、HLA−A/B/C、ICOS−L、及びCD58を発現し、且つ1又は複数の共刺激分子を発現するように修飾されている細胞を含む単離された人工抗原提示細胞(aAPC)を含み、ここで、aAPCはEM−3親細胞株に由来する。ある実施形態において、本発明は、1又は複数の共刺激分子を発現するように修飾されているEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、1又は複数の共刺激分子を発現するように修飾されているEM−2細胞を含むaAPCを含む。


[00284] ある実施形態において、本発明は、HLA−A/B/C、ICOS−L、及びCD58を発現するEM−3細胞を含むaAPCを含み、ここで、細胞は、配列番号8に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む4−1BBLタンパク質とを発現するように修飾され、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。


[00285] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入されたEM−3細胞を含むaAPCを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、EM−3細胞はCD86と4−1BBLとを発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00286] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00287] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と99%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と98%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と97%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と96%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と95%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と90%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00288] ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00289] ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00290] ある実施形態において、本発明は、更なる増殖シグナルを提供するOKT−3などのモノクローナル抗体のFcドメインに結合するため、本明細書に記載されるクローン7C12及び8B3など、単鎖断片可変(scFv)結合ドメインを発現するように修飾されたEM−3細胞を含むaAPCを含む。


[00291] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00292] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と99%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と98%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と97%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と96%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と95%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と90%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00293] ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00294] ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号13に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00295] ある実施形態において、本発明は、更なる増殖シグナルを提供するOKT−3などのモノクローナル抗体のFcドメインに結合するため、本明細書に記載されるクローン7C12及び8B3など、単鎖断片可変(scFv)結合ドメインを発現するように修飾されたEM−2細胞を含むaAPCを含む。


[00296] ある実施形態において、本発明は、図96に図示すとおり修飾されたEM−3又はEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、図97に図示すとおり修飾されたEM−3又はEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、図98に図示すとおり修飾されたEM−3又はEM−2細胞を含むaAPCを含む。


[00297] ある実施形態において、本発明は、HLA−A/B/C、ICOS−L、及びCD58を発現するEM−3細胞を含むaAPCを含み、ここで、細胞は、配列番号8に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むOX40Lタンパク質とを発現するように修飾され、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。


[00298] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入されたEM−3細胞を含むaAPCを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、OX40Lをコードする核酸とを含み、EM−3細胞はCD86とOX40Lとを発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00299] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列を含むOX40Lタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00300] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と99%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と98%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と97%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と96%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と95%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と90%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−3細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00301] ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00302] ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−3細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00303] ある実施形態において、本発明は、更なる増殖シグナルを提供するOKT−3などのモノクローナル抗体のFcドメインに結合するため、本明細書に記載されるクローン7C12及び8B3など、単鎖断片可変(scFv)結合ドメインを発現するように修飾されたEM−3細胞を含むaAPCを含む。


[00304] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列を含むOX40Lタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00305] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と99%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と98%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と97%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と96%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と95%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号10に記載のアミノ酸配列と90%より高い同一性を有する配列を含むOX40Lタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含み、ここで、CD86タンパク質及びOX40Lタンパク質はEM−2細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00306] ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00307] ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号14に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号11又は配列番号12に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00308] ある実施形態において、本発明は、更なる増殖シグナルを提供するOKT−3などのモノクローナル抗体のFcドメインに結合するため、本明細書に記載されるクローン7C12及び8B3など、単鎖断片可変(scFv)結合ドメインを発現するように修飾されたEM−2細胞を含むaAPCを含む。


[00309] ある実施形態において、本発明は、図96に図示すとおり修飾されたEM−3又はEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、図97に図示すとおり修飾されたEM−3又はEM−2細胞を含むaAPCを含む。ある実施形態において、本発明は、図98に図示すとおり修飾されたEM−3又はEM−2細胞を含むaAPCを含む。


[00310] 前述の実施形態のいずれにおいても、EM−3又はEM−2細胞を含むaAPCがOX40Lと4−1BBLとの両方を発現するように修飾されてもよいことが理解される。


[00311] ある実施形態において、本発明は、CD58を発現し、且つ1又は複数の共刺激分子を発現するように修飾されている細胞を含む単離された人工抗原提示細胞(aAPC)を含み、ここで、aAPCはK562系列親細胞株に由来する。ある実施形態において、本発明は、1又は複数の共刺激分子を発現するように修飾されているK562系列細胞を含むaAPCを含む。ある実施形態において、K562系列親細胞株は受託番号ATCC CCL−243で寄託されており、また、欧州認証細胞培養株保存機関にも寄託されている(ECACCECACC 89121407)。


[00312] ある実施形態において、本発明は、CD58を発現するK562系列細胞を含むaAPCを含み、ここで、細胞は、配列番号8に記載のアミノ酸配列、及びその保存的アミノ酸置換を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む4−1BBLタンパク質とを発現するように修飾され、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。


[00313] ある実施形態において、本発明は、1又は複数のウイルスベクターが形質導入されたK562系列細胞を含むaAPCを含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、K562系列細胞はCD86と4−1BBLとを発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00314] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列を含む4−1BBLタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00315] ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と99%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と99%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と98%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と98%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と97%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と97%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と96%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と96%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と95%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と95%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。ある実施形態において、本発明は、配列番号8に記載のアミノ酸配列と90%より高い同一性を有する配列を含むCD86タンパク質と、配列番号9に記載のアミノ酸配列と90%より高い同一性を有する配列を含む4−1BBLタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含み、ここで、CD86タンパク質及び4−1BBLタンパク質はK562系列細胞の表面上に発現する。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00316] ある実施形態において、本発明は、配列番号11に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第2のタンパク質に結合する第1のタンパク質と、配列番号12又は配列番号13に記載のアミノ酸配列、及びその保存的アミノ酸置換を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00317] ある実施形態において、本発明は、配列番号11に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号12又は配列番号13に記載のアミノ酸配列と99%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号11に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号12又は配列番号13に記載のアミノ酸配列と98%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号11に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号12又は配列番号13に記載のアミノ酸配列と97%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたK562系列を含むaAPCを含む。ある実施形態において、本発明は、配列番号11に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号12又は配列番号13に記載のアミノ酸配列と96%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号11に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号12又は配列番号13に記載のアミノ酸配列と95%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含む。ある実施形態において、本発明は、配列番号11に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第2のタンパク質に結合する第1のタンパク質と、配列番号12又は配列番号13に記載のアミノ酸配列と90%より高い同一性を有する配列を含む第4のタンパク質に結合する第3のタンパク質とを発現するように修飾されたK562系列細胞を含むaAPCを含む。ある実施形態において、本発明は、前述のaAPCの実施形態のいずれかを調製する方法を含む。


[00318] ある実施形態において、本発明は、更なる増殖シグナルを提供するOKT−3などのモノクローナル抗体のFcドメインに結合するため、本明細書に記載されるクローン7C12及び8B3など、単鎖断片可変(scFv)結合ドメインを発現するように修飾されたK562系列細胞を含むaAPCを含む。


人工抗原提示細胞の調製方法 [00319] ある実施形態において、aAPCを調製する方法は、CD86及び4−1BBLの産生用遺伝子の安定取込みステップを含む。ある実施形態において、aAPCを調製する方法は、レトロウイルス形質導入ステップを含む。ある実施形態において、aAPCを調製する方法は、レンチウイルス形質導入ステップを含む。レンチウイルス形質導入システムは当該技術分野において公知であり、例えば、Levine, et al., Proc. Nat’l Acad. Sci. 2006,103, 17372-77;Zufferey, et al., Nat. Biotechnol. 1997,15, 871-75;Dull, et al., J. Virology 1998, 72, 8463-71、及び米国特許第6,627,442号(これらの各々の開示は参照により本明細書に援用される)に記載されている。ある実施形態において、aAPCを調製する方法は、ガンマレトロウイルス形質導入ステップを含む。ガンマレトロウイルス形質導入システムは当該技術分野において公知であり、例えば、Cepko and Pear, Cur. Prot. Mol. Biol. 1996, 9.9.1-9.9.16(この開示は参照により本明細書に援用される)に記載されている。ある実施形態において、aAPCを調製する方法は、トランスポゾン媒介性遺伝子導入ステップを含む。トランスポゾン媒介性遺伝子導入システムは当該技術分野において公知であり、トランスポザーゼがDNA発現ベクターとして提供されるか、又は発現可能RNA若しくはタンパク質として提供されて、トランスジェニック細胞においてトランスポザーゼの長期発現が起こらないシステム、例えば、mRNA(例えば、cap及びポリAテールを含むmRNA)として提供されるトランスポザーゼが含まれる。好適なトランスポゾン媒介性遺伝子導入システム、例えば、SB10、SB11、及びSB100xなどのサケ科型Tel様トランスポザーゼ(SB又はスリーピング・ビューティー(Sleeping Beauty)トランスポザーゼ)、及び酵素活性が増加した改変酵素について、例えば、Hackett, et al.,Mol. Therapy 2010,18, 674-83及び米国特許第6,489,458号(これらの各々の開示は参照により本明細書に援用される)に記載されている。


[00320] ある実施形態において、aAPCを調製する方法は、CD86及び4−1BBLの一過性産生用遺伝子の安定取込みステップを含む。ある実施形態において、aAPCを調製する方法は、電気穿孔ステップを含む。電気穿孔方法は当該技術分野において公知であり、例えば、Tsong, Biophys. J. 1991, 60, 297-306、及び米国特許出願公開第2014/0227237 A1号(これらの各々の開示は参照により本明細書に援用される)に記載されている。ある実施形態において、aAPCを調製する方法は、リン酸カルシウムトランスフェクションステップを含む。リン酸カルシウムトランスフェクション方法(リン酸カルシウムDNA沈殿、細胞表面コーティング、及びエンドサイトーシス)は当該技術分野において公知であり、Graham and van der Eb, Virology 1973, 52, 456-467;Wigler, et al., Proc. Natl. Acad. Sci. 1979, 76, 1373-1376;及びChen and Okayarea, Mol. Cell. Biol. 1987, 7, 2745-2752;並びに米国特許第5,593,875号(これらの各々の開示は参照により本明細書に援用される)に記載されている。ある実施形態において、aAPCを調製する方法は、リポソームトランスフェクションステップを含む。リポソームトランスフェクション方法、例えば、ろ水中のカチオン性脂質N−[1−(2,3−ジオレイルオキシ)プロピル]−n,n,n−トリメチルアンモニウムクロリド(DOTMA)とジオレオイルホスファチジルエタノールアミン(phophotidylethanolamine)(DOPE)との1:1(w/w)リポソーム配合物を用いる方法などは当該技術分野において公知であり、Rose, et al., Biotechniques 1991,10, 520-525及びFeigner, et al., Proc. Natl. Acad. Sci. USA, 1987, 84, 7413-7417並びに米国特許第5,279,833号;同第5,908,635号;同第6,056,938号;同第6,110,490号;同第6,534,484号;及び同第7,687,070号(これらの各々の開示は参照により本明細書に援用される)に記載されている。ある実施形態において、aAPCを調製する方法は、米国特許第5,766,902号;同第6,025,337号;同第6,410,517号;同第6,475,994号;及び同第7,189,705号(これらの各々の開示は参照により本明細書に援用される)に記載される方法を用いたトランスフェクションステップを含む。


[00321] ある実施形態において、aAPCの形質導入は、初めにGatewayクローニング方法(ThermoFisher, Inc.から市販されている)を用いてレンチウイルス形質導入用のベクターを調製し、続いてこのベクター及び本明細書の他の部分にもまた記載されるとおりの1又は複数の関連するヘルパープラスミドを使用してレンチウイルス形質導入することにより行われる。Gatewayクローニング方法では、ある遺伝子を選択し(CD86など)、次にプライマーを提供し、attBタグ付加プライマー対の助けによりPCR技術を用いて増幅する。次にBP反応を用いてこのPCR断片をattP部位を含むドナーベクター(pDONR221などのpDONR)と組み合わせると、エントリークローンが提供される。attB部位とattP部位との間の組み込み反応によってPCR断片がドナーベクターと組み合わされる。得られるエントリークローンは、attL部位に隣接した目的の遺伝子を含む。次にLR反応を用いてエントリークローンをデスティネーションベクターと組み合わせると、発現ベクターが作製される。LR反応では、attL及びattR部位並びにクロナーゼ(clonase)酵素を使用した組換え反応を用いてエントリークローンがデスティネーションベクター(pLV430Gなど)に連結される。attL部位はエントリークローンに既に存在し、一方、デスティネーションベクターはattR部位を含む。LR反応を行うと、同時反応で目的の配列が1又は複数のデスティネーションベクターに移る。


[00322] 一部の実施形態において、本明細書に記載されるaAPCは血清ベースの培地下及び/又は無血清培地下で成長させ、維持してもよい。例示的方法によれば、aAPCは24ウェルプレートにおいてウェル当たり約1×106細胞の細胞密度で3〜5日間培養してもよい。次に細胞を遠心によって単離及び/又は洗浄し、培地中に再懸濁するか、又は適切な凍結保存培地(例えば、CryoStor 10(BioLife Solutions))に凍結保存して−80℃のフリーザーで保管してもよい。


[00323] 一部の実施形態において、本明細書に記載されるaAPCは血清ベースの培地の存在下で成長させてもよい。一部の実施形態において、本明細書に記載されるaAPCは、ヒト血清(hSerum)含有培地(例えば、10%hSerumのcDMEM)を含む血清ベースの培地の存在下で成長させてもよい。一部の実施形態において、血清ベースの培地の存在下で成長させるaAPCは、aMOLM−13細胞、aMOLM−14細胞、及びaEM3細胞からなる群から選択され得る。


[00324] 一部の実施形態において、本明細書に記載されるaAPCは無血清培地の存在下で成長させてもよい。一部の実施形態において、無血清培地は、CTS Optmizer(ThermoFisher)、Xvivo-20(Lonza)、Prime T Cell CDM(Irvine)、XFSM(MesenCult)などからなる群から選択され得る。一部の実施形態において、無血清培地の存在下で成長させるaAPCは、aMOLM−13細胞、aMOLM−14細胞、及びaEM3細胞からなる群から選択され得る。


腫瘍浸潤リンパ球及びT細胞の拡大培養方法 [00325] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)を拡大培養する方法を含み、この方法は、少なくとも1つのTILを含むTIL集団を本明細書に記載されるaAPCと接触させることを含み、ここで、前記aAPCは、TILの細胞表面上に発現する共刺激分子に特異的に結合する少なくとも1つの共刺激リガンドを含み、前記共刺激分子が前記共刺激リガンドに結合するとTILの増殖が誘導され、それによりTILが特異的に拡大する。


[00326] ある実施形態において、本発明は、本開示のaAPCのいずれかを使用して腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、Jin, et al., J. Immunotherapy 2012, 35, 283-292(この開示は参照により本明細書に援用される)に記載されるとおりのステップを含む。例えば、腫瘍を酵素培地に置き、約1分間機械的に解離し得る。次に混合物を37℃5%CO2で30分間インキュベートし、次に再び約1分間機械的に破壊し得る。37℃5%CO2で30分間インキュベートした後、腫瘍を3度目に約1分間機械的に破壊し得る。3度目の機械的破壊後に大型の組織片が存在する場合、1回又は2回の更なる機械的解離が、37℃5%CO2での更に30分間のインキュベーションを伴い又は伴わず試料に適用されてもよい。最終回のインキュベーションの終了時、細胞懸濁液が多数の赤血球又は死細胞を含有する場合、Ficollを使用した密度勾配分離を実施して、そうした細胞を除去し得る。TIL培養は24ウェルプレート(Costar24ウェル細胞培養クラスター、平底;Corning Incorporated、Corning, NY)で開始したが、各ウェルには、IL−2(6000IU/mL;Chiron Corp.、Emeryville, CA)を含む2mLの完全培地(CM)中1×106個の腫瘍消化物細胞又は約1〜8mm3のサイズの1個の腫瘍断片を播種し得る。CMは、10%ヒトAB血清、25mMヘペス、及び10mg/mLゲンタマイシンを補足したGlutaMAX含有RPMI 1640からなる。培養は、10cm2ガス透過性シリコン底を有する40mL容量のガス透過性フラスコ(G-Rex 10;Wilson Wolf Manufacturing、New Brightonで開始してもよく、各フラスコには、10〜40mLのIL−2含有CM中10〜40×106個の腫瘍消化物生細胞又は5〜30個の腫瘍断片をロードし得る。G-Rex 10及び24ウェルプレートを加湿インキュベーターにおいて37℃5%CO2でインキュベートしてもよく、培養開始から5日後、培地の半分を取り出して新鮮なCM及びIL−2を補充してもよく、5日目以降、2〜3日毎に培地の半分を交換し得る。TILの迅速拡大培養プロトコル(REP)は、本開示のaAPCを使用して、本明細書の他の部分に記載されるとおり、T−175フラスコ及びガス透過性バッグ又はガス透過性G-Rexフラスコを使用して実施し得る。T−175フラスコにおけるREPについては、各フラスコ内の150mLの培地中に1×106個のTILを懸濁し得る。3000IU/mLのIL−2及び30ng/mLの抗CD3抗体(OKT−3)を補足したCM及びAIM-V培地の1対1混合物(50/50培地)中において、TILを本開示のaAPCと本明細書に記載される比で培養し得る。T−175フラスコは37℃5%CO2でインキュベートし得る。5日目に、3000IU/mLのIL−2を含有する50/50培地を使用して培地の半分を交換し得る。7日目、2つのT−175フラスコからの細胞を3Lバッグに合わせてもよく、その300mLのTIL懸濁液に5%ヒトAB血清及び3000IU/mLのIL−2を含有する300mLのAIM-Vを加え得る。毎日又は2日毎に各バッグの細胞数をカウントしてもよく、新鮮培地を加えて細胞数を0.5〜2.0×106細胞/mLに保ち得る。100cm2ガス透過性シリコン底を有する500mL容量フラスコ(例えば、G-Rex 100、Wilson Wolf Manufacturing、本明細書の他の部分に記載されるとおり)におけるREPについては、3000IU/mLのIL−2及び30ng/mLの抗CD3抗体(OKT−3)を補足した400mLの50/50培地中において、5×106又は10×106個のTILをaAPCと本明細書に記載される比(例えば1:100)で培養し得る。G-Rex100フラスコは37℃5%CO2でインキュベートし得る。5日目、250mLの上清を取り出して遠心ボトルに入れ、1500rpm(491g)で10分間遠心し得る。得られたTILペレットは、3000IU/mLのIL−2を含有する150mLの新鮮50/50培地に再懸濁し、G-Rex 100フラスコに戻し加え得る。G-Rex 100フラスコ内でTILを連続的に拡大培養する場合、7日目に各フラスコ中に存在する300mLの培地に各G-Rex 100のTILを懸濁してもよく、この細胞懸濁液は、3つのG-Rex100フラスコの播種に使用し得る3つの100mLアリコートに分割し得る。次に5%ヒトAB血清及び3000IU/mLのIL−2を含有する約150mLのAIM-Vを各フラスコに加え得る。次にG-Rex100フラスコを37℃5%CO2でインキュベートしてもよく、4日後、各G-Rex100フラスコに3000IU/mLのIL−2を含有する150mLのAIM-Vを加え得る。この後、培養14日目に細胞を回収することによりREPを完了し得る。


[00327] 本明細書に記載されるとおり、TILは有利には無血清培地の存在下で拡大培養し得る。一部の実施形態において、本明細書に記載されるTIL拡大培養方法は、血清ベースの培地(例えば、完全培地又はCM1)よりむしろ、無血清培地の使用を含み得る。一部の実施形態において、本明細書に記載されるTIL拡大培養方法は、血清ベースの培地よりむしろ、無血清培地を使用し得る。一部の実施形態において、無血清培地は、CTS Optmizer(ThermoFisher)、Xvivo-20(Lonza)、Prime T Cell CDM(Irvine)などからなる群から選択され得る。


[00328] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含む。


[00329] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、細胞培養培地は約3000IU/mLの初期濃度のIL−2と、約30ng/mLの初期濃度のOKT−3抗体とを更に含む。


[00330] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、APC集団は、細胞培養培地においてTIL集団を7日の期間で少なくとも50倍に拡大する。


[00331] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はHLA−A/B/C、ICOS−L、及びCD58を内因的に発現する。


[00332] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はMOLM−14細胞である。


[00333] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はMOLM−13細胞である。


[00334] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (c)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (d)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、骨髄系細胞はEM−3細胞である。


[00335] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、CD86タンパク質は配列番号8に記載のアミノ酸配列、又はその保存的アミノ酸置換を含み、4−1BBLタンパク質は配列番号9に記載のアミノ酸配列、又はその保存的アミノ酸置換を含む。


[00336] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、CD86をコードする核酸は配列番号19に記載の核酸配列を含み、4−1BBLをコードする核酸は配列番号16に記載の核酸配列を含む。


[00337] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップを含み、ここで、拡大培養はガス透過性容器を使用して行われる。


[00338] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、TIL集団とaAPC集団との比は1:200〜1:400である。


[00339] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団を拡大培養する方法を提供し、この方法は、 (a)骨髄系細胞を1又は複数のウイルスベクターで形質導入して人工抗原提示細胞(aAPC)集団を入手するステップであって、1又は複数のウイルスベクターが、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、骨髄系細胞がCD86タンパク質と4−1BBLタンパク質とを発現するステップ、及び (b)細胞培養培地中でTIL集団をaAPC集団と接触させるステップ を含み、ここで、TIL集団とaAPC集団との比は約1:300である。


[00340] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)を拡大培養する方法を提供し、この方法は、TIL集団を含むTIL集団を骨髄系人工抗原提示細胞(aAPC)と接触させることを含み、ここで、骨髄系aAPCは、TIL上の少なくとも2つの共刺激分子に特異的に結合する少なくとも2つの共刺激リガンドを含み、共刺激分子が共刺激リガンドに結合するとTILの増殖が誘導され、それによりTILが特異的に拡大し、及び少なくとも2つの共刺激リガンドはCD86及び4−1BBLを含む。


[00341] 前述の実施形態のいずれにおいても、aAPCは4−1BBLに加えてOX40Lを更に含んでもよく、又は4−1BBLの代わりにOX40Lを含んでもよい。


[00342] ある実施形態において、拡大培養する方法又は癌を治療する方法は、患者腫瘍試料からTILを入手するステップを含む。患者腫瘍試料は当該技術分野において公知の方法を用いて得てもよい。例えば、TILは、酵素的腫瘍消化物及び鋭的剥離からの腫瘍断片(約1〜約8mm3のサイズ)から培養されてもよい。かかる腫瘍消化物は、酵素培地(例えば、ロズウェルパーク記念研究所(Roswell Park Memorial Institute:RPMI)1640緩衝液、2mMグルタミン酸塩、10mcg/mLゲンタマイシン、30単位/mLのDNアーゼ及び1.0mg/mLのコラゲナーゼ)中でのインキュベーションと、それに続く機械的解離(例えば、組織解離装置を用いる)によって作製されてもよい。腫瘍消化物は、腫瘍を酵素培地中に置き、腫瘍を約1分間機械的に解離した後、続いて37℃5%CO2で30分間インキュベートし、続いてごく小さい組織片しか存在しなくなるまで前述の条件下で機械的解離及びインキュベーションのサイクルを繰り返すことにより作製されてもよい。この処理の終了時、細胞懸濁液が多数の赤血球又は死細胞を含有する場合、FICOLL分枝状親水性多糖を使用した密度勾配分離を実施して、それらの細胞を除去し得る。米国特許出願公開第2012/0244133 A1号(この開示は参照により本明細書に援用される)に記載されるものなど、当該技術分野において公知の代替的な方法を用いてもよい。前述の方法のいずれも、TILの拡大培養方法又は癌の治療方法に関して本明細書に記載される任意の実施形態において用いることができる。


[00343] ある実施形態において、REPは、任意の好適な方法によって本開示のaAPCを使用してガス透過性容器内で実施することができる。例えば、TILは、インターロイキン−2(IL−2)又はインターロイキン−15(IL−15)の存在下で非特異的T細胞受容体刺激を用いて迅速に拡大培養することができる。非特異的T細胞受容体刺激としては、例えば、約30ng/mLの抗CD3抗体、例えば、モノクローナル抗CD3抗体であるOKT−3(Ortho-McNeil、Raritan, NJ, USA又はMiltenyi Biotech、Auburn, CA, USAから市販されている)又はUHCT−1(BioLegend、San Diego, CA, USAから市販されている)を挙げることができる。TILは、任意選択で300IU/mL IL−2又はIL−15などのT細胞成長因子の存在下で、ヒト白血球抗原A2(HLA−A2)結合ペプチド、例えば、0.3μM MART−1:26−35(27L)又はgp100:209−217(210M)など、任意選択でベクターから発現させることのできる、1つ又は複数のエピトープなど、その抗原性部分を含めた癌の1又は複数の抗原によってインビトロでTILを更に刺激することにより、迅速に拡大培養することができる。他の好適な抗原としては、例えば、NY−ESO−1、TRP−1、TRP−2、チロシナーゼ癌抗原、MAGE−A3、SSX−2、及びVEGFR2、又はその抗原性部分を挙げることができる。TILはまた、HLA−A2発現抗原提示細胞にパルスした癌の同じ1つ又は複数の抗原による再刺激によっても迅速に拡大培養し得る。或いは、TILは、例えば照射自己リンパ球によるか、又は照射HLA−A2+同種異系リンパ球及びIL−2によって更に再刺激することができる。


[00344] ある実施形態において、TILの拡大培養方法は、約5000mL〜約25000mLの細胞培養培地、約5000mL〜約10000mLの細胞培養培地、又は約5800mL〜約8700mLの細胞培養培地を使用することを含み得る。ある実施形態において、TILの拡大培養方法は、約1000mL〜約2000mLの細胞培地、約2000mL〜約3000mLの細胞培養培地、約3000mL〜約4000mLの細胞培養培地、約4000mL〜約5000mLの細胞培養培地、約5000mL〜約6000mLの細胞培養培地、約6000mL〜約7000mLの細胞培養培地、約7000mL〜約8000mLの細胞培養培地、約8000mL〜約9000mLの細胞培養培地、約9000mL〜約10000mLの細胞培養培地、約10000mL〜約15000mLの細胞培養培地、約15000mL〜約20000mLの細胞培養培地、又は約20000mL〜約25000mLの細胞培養培地を使用することを含み得る。ある実施形態において、TIL数の拡大には1種類以下の細胞培養培地が使用される。任意の好適な細胞培養培地、例えば、AIM-V細胞培地(L−グルタミン、50μM硫酸ストレプトマイシン、及び10μM硫酸ゲンタマイシン)細胞培養培地(Invitrogen、Carlsbad, CA, USA)を使用し得る。この点に関して、本発明の方法では有利には、TIL数の拡大に必要な培地の量及び培地の種類の数が減少する。ある実施形態において、TIL数の拡大は、2日又は3日おき以下の頻度で細胞をフィードすることを含み得る。ガス透過性容器内で細胞の数を拡大すると、細胞の拡大培養に必要なフィーディング頻度が減少することにより細胞の数の拡大に必要な手順が簡便になる。


[00345] ある実施形態において、迅速拡大培養はガス透過性容器を使用して行われる。かかる実施形態は、細胞集団を約5×105細胞/cm2から10×106〜30×106細胞/cm2へと拡大培養することを可能にする。ある実施形態において、この拡大培養はフィーディングなしに行われる。ある実施形態において、この拡大培養は、培地がガス透過性フラスコ内に約10cmの高さで存在する限りフィーディングなしに行われる。ある実施形態において、これにはフィーディングはないが、1又は複数のサイトカインの添加はある。ある実施形態において、サイトカインは、サイトカインを培地と混合する必要は一切ななしにボーラスとして添加することができる。かかる容器、装置、及び方法は当該技術分野において公知で、TILの拡大培養に用いられており、米国特許出願公開第2014/0377739 A1号、国際公開第2014/210036 A1号、米国特許出願公開第2013/0115617 A1号、国際公開第2013/188427 A1号、米国特許出願公開第2011/0136228 A1号、米国特許第8,809,050号、国際公開第2011/072088 A2号、米国特許出願公開第2016/0208216 A1号、米国特許出願公開第2012/0244133 A1号、国際公開第2012/129201 A1号、米国特許出願公開第2013/0102075 A1号、米国特許第8,956,860号、国際公開第2013/173835 A1号、及び米国特許出願公開第2015/0175966 A1号(これらの開示は参照により本明細書に援用される)に記載されるものが含まれる。かかるプロセスはまた、Jin, et al., J. Immunotherapy 2012, 35, 283-292(この開示は参照により本明細書に援用される)にも記載されている。


[00346] ある実施形態において、ガス透過性容器はG-Rex 10フラスコ(Wilson Wolf Manufacturing Corporation、New Brighton, MN, USA)である。ある実施形態において、ガス透過性容器は10cm2のガス透過性培養表面を含む。ある実施形態において、ガス透過性容器は40mLの細胞培養培地容量を含む。ある実施形態において、ガス透過性容器は2回の培地交換後に1〜3億個のTILを提供する。


[00347] ある実施形態において、ガス透過性容器はG-Rex 100フラスコ(Wilson Wolf Manufacturing Corporation、New Brighton, MN, USA)である。ある実施形態において、ガス透過性容器は100cm2のガス透過性培養表面を含む。ある実施形態において、ガス透過性容器は450mLの細胞培養培地容量を含む。ある実施形態において、ガス透過性容器は2回の培地交換後に10〜30億個のTILを提供する。


[00348] ある実施形態において、ガス透過性容器はG-Rex 100Mフラスコ(Wilson Wolf Manufacturing Corporation、New Brighton, MN, USA)である。ある実施形態において、ガス透過性容器は100cm2のガス透過性培養表面を含む。ある実施形態において、ガス透過性容器は1000mLの細胞培養培地容量を含む。ある実施形態において、ガス透過性容器は培地交換なしに10〜30億個のTILを提供する。


[00349] ある実施形態において、ガス透過性容器はG-Rex 100Lフラスコ(Wilson Wolf Manufacturing Corporation、New Brighton, MN, USA)である。ある実施形態において、ガス透過性容器は100cm2のガス透過性培養表面を含む。ある実施形態において、ガス透過性容器は2000mLの細胞培養培地容量を含む。ある実施形態において、ガス透過性容器は培地交換なしに10〜30億個のTILを提供する。


[00350] ある実施形態において、ガス透過性容器はG-Rex 24ウェルプレート(Wilson Wolf Manufacturing Corporation、New Brighton, MN, USA)である。ある実施形態において、ガス透過性容器はウェルを備えたプレートを含み、ここで、各ウェルは2cm2のガス透過性培養表面を含む。ある実施形態において、ガス透過性容器はウェルを備えたプレートを含み、ここで、各ウェルは8mLの細胞培養培地容量を含む。ある実施形態において、ガス透過性容器は2回の培地交換後にウェル当たり2000〜6000万個の細胞を提供する。


[00351] ある実施形態において、ガス透過性容器はG-Rex 6ウェルプレート(Wilson Wolf Manufacturing Corporation、New Brighton, MN, USA)である。ある実施形態において、ガス透過性容器はウェルを備えたプレートを含み、ここで、各ウェルは10cm2のガス透過性培養表面を含む。ある実施形態において、ガス透過性容器はウェルを備えたプレートを含み、ここで、各ウェルは40mLの細胞培養培地容量を含む。ある実施形態において、ガス透過性容器は2回の培地交換後にウェル当たり1〜3億個の細胞を提供する。


[00352] ある実施形態において、第1及び/又は第2のガス透過性容器内の細胞培地はろ過されていない。ろ過されていない細胞培地を使用すると、細胞の数の拡大に必要な手順が簡便になり得る。ある実施形態において、第1及び/又は第2のガス透過性容器内の細胞培地はβ−メルカプトエタノール(BME)を含まない。


[00353] ある実施形態において、哺乳類から腫瘍組織試料を得ること;細胞培地が中に入った第1のガス透過性容器内で腫瘍組織試料を培養すること;腫瘍組織試料からTILを得ること;aAPCを使用して細胞培地が中に入った第2のガス透過性容器内でTIL数を約14〜約42日間、例えば約28日間拡大することを含む本方法の所要期間。


[00354] ある実施形態において、迅速拡大培養には約1×109〜約1×1011個のaAPCが使用される。ある実施形態において、迅速拡大培養には約1×109個のaAPCが使用される。ある実施形態において、迅速拡大培養には約1×1010個のaAPCが使用される。ある実施形態において、迅速拡大培養には約1×1011個のaAPCが使用される。


[00355] ある実施形態において、TIL対aAPC比(TIL:aAPC)は、1:5、1:10、1:15、1:20、1:25、1:30、1:35、1:40、1:45、1:50、1:55、1:60、1:65、1:70、1:75、1:80、1:85、1:90、1:95、1:100、1:105、1:110、1:115、1:120、1:125、1:130、1:135、1:140、1:145、1:150、1:155、1:160、1:165、1:170、1:175、1:180、1:185、1:190、1:195、1:200、1:225、1:250、1:275、1:300、1:350、1:400、1:450、及び1:500からなる群から選択される。好ましい実施形態において、TIL対aAPC比(TIL:aAPC)は約1:90である。好ましい実施形態において、TIL対aAPC比(TIL:aAPC)は約1:95である。好ましい実施形態において、TIL対aAPC比(TIL:aAPC)は約1:100である。好ましい実施形態において、TIL対aAPC比(TIL:aAPC)は約1:105である。好ましい実施形態において、TIL対aAPC比(TIL:aAPC)は約1:110である。


[00356] ある実施形態において、迅速拡大培養におけるTIL対aAPC比は、約1:25、約1:50、約1:100、約1:125、約1:150、約1:175、約1:200、約1:225、約1:250、約1:275、約1:300、約1:325、約1:350、約1:375、約1:400、又は約1:500である。ある実施形態において、迅速拡大培養におけるTIL対aAPC比は1:50〜1:300である。ある実施形態において、迅速拡大培養におけるTIL対aAPC比は1:100〜1:200である。


[00357] ある実施形態において、細胞培養培地はIL−2を更に含む。好ましい実施形態において、細胞培養培地は約3000IU/mLのIL−2を含む。ある実施形態において、細胞培養培地は、約1000IU/mL、約1500IU/mL、約2000IU/mL、約2500IU/mL、約3000IU/mL、約3500IU/mL、約4000IU/mL、約4500IU/mL、約5000IU/mL、約5500IU/mL、約6000IU/mL、約6500IU/mL、約7000IU/mL、約7500IU/mL、又は約8000IU/mLのIL−2を含む。ある実施形態において、細胞培養培地は、1000〜2000IU/mL、2000〜3000IU/mL、3000〜4000IU/mL、4000〜5000IU/mL、5000〜6000IU/mL、6000〜7000IU/mL、7000〜8000IU/mL、又は8000IU/mLの間のIL−2を含む。


[00358] ある実施形態において、細胞培養培地はOKT−3抗体を含む。好ましい実施形態において、細胞培養培地は約30ng/mLのOKT−3抗体を含む。ある実施形態において、細胞培養培地は、約0.1ng/mL、約0.5ng/mL、約1ng/mL、約2.5ng/mL、約5ng/mL、約7.5ng/mL、約10ng/mL、約15ng/mL、約20ng/mL、約25ng/mL、約30ng/mL、約35ng/mL、約40ng/mL、約50ng/mL、約60ng/mL、約70ng/mL、約80ng/mL、約90ng/mL、約100ng/mL、約200ng/mL、約500ng/mL、及び約1μg/mLのOKT−3抗体を含む。ある実施形態において、細胞培養培地は、0.1ng/mL〜1ng/mL、1ng/mL〜5ng/mL、5ng/mL〜10ng/mL、10ng/mL〜20ng/mL、20ng/mL〜30ng/mL、30ng/mL〜40ng/mL、40ng/mL〜50ng/mL、及び50ng/mL〜100ng/mLのOKT−3抗体を含む。


[00359] ある実施形態において、TILの迅速拡大培養プロセスは、先述のとおりT−175フラスコ及びガス透過性バッグ(Tran, et al., J. Immunother. 2008, 31, 742-51;Dudley, et al., J. Immunother. 2003, 26, 332-42)又はガス透過性培養ウェア(G-Rexフラスコ、Wilson Wolf Manufacturing Corporation、New Brighton, MN, USAから市販されている)を使用して実施し得る。T−175フラスコ内でのTIL迅速拡大培養については、150mLの培地に懸濁された1×106個のTILを各T−175フラスコに加え得る。TILはaAPCと1 TIL対100 aAPCの比で培養してもよく、及び細胞は、3000IU(国際単位)/mLのIL−2及び30ng/mlの抗CD3抗体(例えばOKT−3)を補足したCMとAIM-V培地との1対1混合物中で培養した。T−175フラスコは37℃5%CO2でインキュベートし得る。5日目に、3000IU/mLのIL−2を含む50/50培地を使用して培地の半分を交換し得る。7日目に2つのT−175フラスコからの細胞を3リットルバッグに合わせ、その300mlのTIL懸濁液に5%ヒトAB血清及び3000IU/mLのIL−2を含有する300mLのAIM Vを加えた。各バッグの細胞数を毎日又は2日毎にカウントし、新鮮培地を加えて細胞数を0.5〜2.0×106細胞/mLに保った。


[00360] ある実施形態において、100cmガス透過性シリコン底の500mL容量ガス透過性フラスコ(G-Rex 100、Wilson Wolf Manufacturing Corporation、New Brighton, MN, USAから市販されている)におけるTIL迅速拡大培養については、5%ヒトAB血清、3000IU/mLのIL−2及び30ng/mLの抗CD3(OKT−3)を補足した400mLの50/50培地中で5×106又は10×106個のTILをaAPCと1:100の比で培養し得る。G-Rex 100フラスコは37℃5%CO2でインキュベートし得る。5日目、250mLの上清を取り出して遠心ボトルに入れ、1500rpm(毎分回転数;491×g)で10分間遠心し得る。TILペレットは、5%ヒトAB血清、3000IU/mLのIL−2を含有する150mLの新鮮培地に再懸濁し、元のG-Rex 100フラスコに戻し加え得る。G-Rex 100フラスコ内でTILを連続的に拡大培養する場合、7日目に各フラスコ中に存在する300mLの培地に各G-Rex 100のTILを懸濁してもよく、この細胞懸濁液は、3つのG-Rex 100フラスコの播種に使用し得る3つの100mLアリコートに分割し得る。次に、5%ヒトAB血清及び3000IU/mLのIL−2を含有する150mLのAIM-Vを各フラスコに加え得る。G-Rex 100フラスコは37℃5%CO2でインキュベートしてもよく、4日後、各G-Rex 100フラスコに3000IU/mLのIL−2を含有する150mLのAIM-Vを加え得る。培養14日目に細胞を回収し得る。


[00361] ある実施形態において、TILは以下のとおり調製し得る。2mMグルタミン(Mediatech, Inc. Manassas, VA)、100U/mLペニシリン(Invitrogen Life Technologies)、100μg/mLストレプトマイシン(Invitrogen Life Technologies)、5%熱失活ヒトAB血清(Valley Biomedical, Inc. Winchester, VA)及び600IU/mL rhIL−2(Chiron、Emeryville, CA)を補足したAIM-V培地(Invitrogen Life Technologies、Carlsbad, CA)を含む完全培地(CM)中で2mm3腫瘍断片を培養する。固形腫瘍の酵素消化のため、腫瘍標本をRPMI−1640中にダイシングし、洗浄し、15〜22℃において800rpmで5分間遠心し、酵素消化緩衝液(RPMI−1640中0.2mg/mLコラゲナーゼ及び30単位/mlのDNアーゼ)に再懸濁した後、続いて室温で一晩回転させた。断片から樹立したTILはCM中で3〜4週間成長させて、新鮮に拡大培養してもよく、又は10%ジメチルスルホキシド(DMSO)を含有する熱失活HAB血清中に凍結保存して、試験時まで−180℃で保管してもよい。採取腹水から得られた腫瘍関連リンパ球(tumor associated lymphocyte:TAL)を3×106細胞/ウェルで24ウェルプレートのCM中に播種した。ほぼ隔日で、低倍率倒立顕微鏡を使用してTIL成長を調べた。


[00362] ある実施形態において、TILはガス透過性容器内で拡大培養される。ガス透過性容器は、米国特許出願公開第2005/0106717 A1号(この開示は参照により本明細書に援用される)に記載されるものを含め、当該技術分野において公知の方法、組成物、及び装置を用いたPBMCを使用したTILの拡大培養に用いられている。ある実施形態において、TILはガス透過性バッグ内で拡大培養される。ある実施形態において、TILは、Xuri Cell Expansion System W25(GE Healthcare)など、ガス透過性バッグ内でTILを拡大培養する細胞拡大培養システムを使用して拡大培養される。ある実施形態において、TILは、Xuri Cell Expansion System W5(GE Healthcare)としても知られるWAVE Bioreactor Systemなど、ガス透過性バッグ内でTILを拡大培養する細胞拡大培養システムを使用して拡大培養される。ある実施形態において、細胞拡大培養システムは、約100mL、約200mL、約300mL、約400mL、約500mL、約600mL、約700mL、約800mL、約900mL、約1L、約2L、約3L、約4L、約5L、約6L、約7L、約8L、約9L、約10L、約11L、約12L、約13L、約14L、約15L、約16L、約17L、約18L、約19L、約20L、約25L、及び約30Lからなる群から選択される容積を有するガス透過性細胞バッグを含む。ある実施形態において、細胞拡大培養システムは、50〜150mL、150〜250mL、250〜350mL、350〜450mL、450〜550mL、550〜650mL、650〜750mL、750〜850mL、850〜950mL、及び950〜1050mLからなる群から選択される容積範囲を有するガス透過性細胞バッグを含む。ある実施形態において、細胞拡大培養システムは、1L〜2L、2L〜3L、3L〜4L、4L〜5L、5L〜6L、6L〜7L、7L〜8L、8L〜9L、9L〜10L、10L〜11L、11L〜12L、12L〜13L、13L〜14L、14L〜15L、15L〜16L、16L〜17L、17L〜18L、18L〜19L、及び19L〜20Lからなる群から選択される容積範囲を有するガス透過性細胞バッグを含む。ある実施形態において、細胞拡大培養システムは、0.5L〜5L、5L〜10L、10L〜15L、15L〜20L、20L〜25L、及び25L〜30Lからなる群から選択される容積範囲を有するガス透過性細胞バッグを含む。ある実施形態において、細胞拡大培養システムは、約30分、約1時間、約2時間、約3時間、約4時間、約5時間、約6時間、約7時間、約8時間、約9時間、約10時間、約11時間、約12時間、約24時間、約2日、約3日、約4日、約5日、約6日、約7日、約8日、約9日、約10日、約11日、約12日、約13日、約14日、約15日、約16日、約17日、約18日、約19日、約20日、約21日、約22日、約23日、約24日、約25日、約26日、約27日、及び約28日の揺動時間を利用する。ある実施形態において、細胞拡大培養システムは、30分〜1時間、1時間〜12時間、12時間〜1日、1日〜7日、7日〜14日、14日〜21日、及び21日〜28日の揺動時間を利用する。ある実施形態において、細胞拡大培養システムは、約2回揺動/分、約5回揺動/分、約10回揺動/分、約20回揺動/分、約30回揺動/分、及び約40回揺動/分の揺動速度を利用する。ある実施形態において、細胞拡大培養システムは、2回揺動/分〜5回揺動/分、5回揺動/分〜10回揺動/分、10回揺動/分〜20回揺動/分、20回揺動/分〜30回揺動/分、及び30回揺動/分〜40回揺動/分の揺動速度を利用する。ある実施形態において、細胞拡大培養システムは、約2°、約3°、約4°、約5°、約6°、約7°、約8°、約9°、約10°、約11°、及び約12°の揺動度を利用する。ある実施形態において、細胞拡大培養システムは、2°〜3°、3°〜4°、4°〜5°、5°〜6°、6°〜7°、7°〜8°、8°〜9°、9°〜10°、10°〜11°、及び11°〜12°の揺動角度を利用する。


[00363] ある実施形態において、aAPCを使用してTILを拡大培養する方法は、優れた腫瘍応答性に関してTILを選択するステップを更に含む。当該技術分野において公知の任意の選択方法を用いることができる。例えば、優れた腫瘍応答性に関するTILの選択には、米国特許出願公開第2016/0010058 A1号(この開示は参照により本明細書に援用される)に記載される方法が用いられてもよい。


[00364] ある実施形態において、本発明のaAPCはT細胞の拡大培養に使用され得る。TILの拡大培養について記載している本発明の前述の任意の実施形態もまた、T細胞の拡大培養に適用し得る。ある実施形態において、本発明のaAPCを使用してCD8+ T細胞が拡大培養されてもよい。ある実施形態において、本発明のaAPCを使用してCD4+ T細胞が拡大培養されてもよい。ある実施形態において、本発明のaAPCを使用して、キメラ抗原受容体(CAR−T)が形質導入されたT細胞が拡大培養されてもよい。ある実施形態において、本発明のaAPCを使用して、修飾T細胞受容体(TCR)を含むT細胞が拡大培養されてもよい。CAR−T細胞は、当該技術分野において、例えば米国特許第7,070,995号;同第7,446,190号;同第8,399,645号;同第8,916,381号;及び同第9,328,156号(これらの開示は参照により本明細書に援用される)に記載されるとおり、CD19を含めた任意の好適な抗原に対して標的化し得る。修飾TCR細胞は、当該技術分野において、例えば米国特許第8,367,804号及び同第7,569,664号(これらの開示は参照により本明細書に援用される)に記載されるとおり、NY−ESO−1、TRP−1、TRP−2、チロシナーゼ癌抗原、MAGE−A3、SSX−2、及びVEGFR2を含めた任意の好適な抗原、又はその抗原性部分に対して標的化し得る。


癌及び他の疾患を治療する方法 [00365] 本明細書に記載される組成物及び方法は、疾患の治療方法において使用することができる。ある実施形態において、本組成物及び方法は、過剰増殖性障害の治療における使用のためのものである。本組成物及び方法はまた、本明細書及び以下の段落に記載されるとおりの他の障害の治療においても使用され得る。本明細書に記載されるTIL、その集団及び組成物は、疾患の治療における使用のためのものであり得る。ある実施形態において、本明細書に記載されるTIL、集団及び組成物は、過剰増殖性障害の治療における使用のためのものである。


[00366] 一部の実施形態において、過剰増殖性障害は癌である。一部の実施形態において、過剰増殖性障害は固形腫瘍癌である。一部の実施形態において、固形腫瘍癌は、黒色腫、卵巣癌、子宮頸癌、非小細胞肺癌(NSCLC)、肺癌、膀胱癌、乳癌、ヒトパピローマウイルスによって引き起こされる癌、頭頸部癌、腎癌、及び腎細胞癌、膵癌、及び膠芽腫からなる群から選択される。一部の実施形態において、過剰増殖性障害は血液学的悪性腫瘍である。一部の実施形態において、血液学的悪性腫瘍は、慢性リンパ球性白血病、急性リンパ芽球性白血病、びまん性大細胞型B細胞リンパ腫、非ホジキンリンパ腫、ホジキンリンパ腫、濾胞性リンパ腫、及びマントル細胞リンパ腫からなる群から選択される。


[00367] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を含み、これは、(a)患者から切除された腫瘍から第1のTIL集団を得るステップ;(b)細胞培養培地中で人工抗原提示細胞(aAPC)集団を使用して第1のTIL集団の迅速拡大培養を行うことにより第2のTIL集団を得るステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも50倍数が多いステップ;及び(c)癌を有する患者に治療上有効な分量の第2のTIL集団を投与するステップを含む。ある実施形態において、aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。ある実施形態において、迅速拡大培養は14日以下の期間にわたって行われる。


[00368] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を含み、これは、(a)患者から切除された腫瘍から第1のTIL集団を得るステップ;(b)第1の細胞培養培地中で第1の人工抗原提示細胞(aAPC)集団を使用して第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を得るステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも10倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ;(c)第2の細胞培養培地中で第2のaAPC集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を得るステップであって、第3のTIL集団が第1のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ;(d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップを含む。ある実施形態において、aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。ある実施形態において、迅速拡大培養は14日以下の期間にわたって行われる。ある実施形態において、初期拡大培養はガス透過性容器を使用して行われる。


[00369] ある実施形態において、本発明は、腫瘍浸潤リンパ球(TIL)集団によって癌を治療する方法を含み、これは、(a)患者から切除された腫瘍から第1のTIL集団を得るステップ;(b)第1の細胞培養培地中で第1のTIL集団の初期拡大培養を行うことにより第2のTIL集団を得るステップであって、第2のTIL集団が第1のTIL集団よりも少なくとも10倍数が多く、及び第1の細胞培養培地がIL−2を含むステップ;(c)第2の細胞培養培地中で人工抗原提示細胞(aAPC)集団を使用して第2のTIL集団の迅速拡大培養を行うことにより第3のTIL集団を得るステップであって、第3のTIL集団が第1のTIL集団よりも少なくとも50倍数が多く;及び第2の細胞培養培地がIL−2及びOKT−3を含むステップ;(d)癌を有する患者に治療上有効な分量の第3のTIL集団を投与するステップを含む。ある実施形態において、aAPCは1又は複数のウイルスベクターが形質導入されたMOLM−14細胞を含み、ここで、1又は複数のウイルスベクターは、CD86をコードする核酸と、4−1BBLをコードする核酸とを含み、MOLM−14細胞はCD86タンパク質と4−1BBLタンパク質とを発現する。ある実施形態において、迅速拡大培養は14日以下の期間にわたって行われる。


[00370] ある実施形態において、本発明は、TIL集団で癌を治療する方法を含み、ここで、患者は本開示に係るTILの注入前に骨髄非破壊的化学療法で前処置される。ある実施形態において、骨髄非破壊的化学療法はシクロホスファミド60mg/kg/日を2日(TIL注入前27日目及び26日目)、及びフルダラビン25mg/m2/日を5日(TIL注入前27〜23日目)である。ある実施形態において、骨髄非破壊的化学療法及び本開示に係るTIL注入(0日目)の後、患者は生理学的忍容量まで8時間毎に静脈内に720,000IU/kgのIL−2の静脈内注入を受ける。


[00371] 適応される疾患又は障害の治療、予防及び/又は管理における本明細書に記載される化合物及び化合物の組み合わせの有効性は、ヒト疾患の治療指針を提供する当該技術分野において公知の様々なモデルを用いて試験することができる。例えば、卵巣癌治療の有効性を決定するためのモデルについては、例えば、Mullany, et al., Endocrinology 2012, 153, 1585-92;及びFong, et al., J. Ovarian Res. 2009, 2, 12に記載されている。膵癌治療の有効性を決定するためのモデルについては、Herreros- Villanueva, et al., World J. Gastroenterol. 2012, 18, 1286-1294に記載されている。乳癌治療の有効性を決定するためのモデルについては、例えば、Fantozzi, Breast Cancer Res. 2006, 8, 212に記載されている。黒色腫治療の有効性を決定するためのモデルについては、例えば、Damsky, et al., Pigment Cell & Melanoma Res. 2010, 23, 853-859に記載されている。肺癌治療の有効性を決定するためのモデルについては、例えば、Meuwissen, et al., Genes & Development, 2005, 19, 643-664に記載されている。肺癌治療の有効性を決定するためのモデルについては、例えば、Kim, Clin. Exp. Otorhinolaryngol. 2009, 2, 55-60;及びSano, Head Neck Oncol. 2009, 1, 32に記載されている。


化学療法による骨髄非破壊的リンパ球枯渇 [00372] ある実施形態において、本発明は、TIL集団で癌を治療する方法を含み、ここで、患者は本開示に係るTILの注入前に骨髄非破壊的化学療法で前処置される。ある実施形態において、本発明は、癌の治療における使用のための、本明細書に記載される方法によって入手可能なTIL集団を提供し、ここで、TIL集団は、骨髄非破壊的化学療法で前処置される患者を治療するためのものである。ある実施形態において、骨髄非破壊的化学療法はシクロホスファミド60mg/kg/日を2日(TIL注入前27日目及び26日目)、及びフルダラビン25mg/m2/日を5日(TIL注入前27〜23日目)である。ある実施形態において、骨髄非破壊的化学療法及び本開示に係るTIL注入(0日目)の後、患者は生理学的忍容量まで8時間毎に静脈内に720,000IU/kgのIL−2(アルデスロイキン、PROLEUKINとして市販されている)の静脈内注入を受ける。


[00373] 実験的知見から、腫瘍特異的Tリンパ球の養子移入前のリンパ球枯渇が、調節性T細胞及び免疫系の競合エレメント(「サイトカインシンク」)の除去により、治療有効性の増強において重要な役割を果たすことが指摘される。従って、本発明の一部の実施形態は、本発明のaAPCで拡大培養したTILを導入する前に患者に対してリンパ球枯渇ステップ(時に「免疫抑制コンディショニング」とも称される)を利用する。


[00374] 一般に、リンパ球枯渇は、フルダラビン又はシクロホスファミド(その活性型はマホスファミドと称される)及びこれらの組み合わせの投与を用いて実現される。かかる方法については、Gassner, et al., Cancer Immunol. Immunother. 2011, 60, 75-85、Muranski, et al., Nat. Clin. Pract. Oncol., 2006, 3, 668-681、Dudley, et al., J. Clin. Oncol. 2008, 26, 5233-5239、及びDudley, et al., J. Clin. Oncol. 2005, 23, 2346-2357(これらは全て、本明細書において全体として参照により援用される)に記載されている。


[00375] 一部の実施形態において、フルダラビンは0.5μg/mL〜10μg/mLフルダラビンの濃度で投与される。一部の実施形態において、フルダラビンは1μg/mLフルダラビンの濃度で投与される。一部の実施形態において、フルダラビン治療は、1日、2日、3日、4日、5日、6日、又は7日間又はそれ以上投与される。一部の実施形態において、フルダラビンは、10mg/kg/日、15mg/kg/日、20mg/kg/日、25mg/kg/日、30mg/kg/日、35mg/kg/日、40mg/kg/日、又は45mg/kg/日の投薬量で投与される。一部の実施形態において、フルダラビン治療は35mg/kg/日で2〜7日間投与される。一部の実施形態において、フルダラビン治療は35mg/kg/日で4〜5日間投与される。一部の実施形態において、フルダラビン治療は25mg/kg/日で4〜5日間投与される。


[00376] 一部の実施形態において、活性型のシクロホスファミドであるマホスファミドは、シクロホスファミドの投与によって0.5μg/ml〜10μg/mlの濃度で達成される。一部の実施形態において、活性型のシクロホスファミドであるマホスファミドは、シクロホスファミドの投与によって1μg/mLの濃度で達成される。一部の実施形態において、シクロホスファミド治療は1日、2日、3日、4日、5日、6日、又は7日間又はそれ以上投与される。一部の実施形態において、シクロホスファミドは、100mg/m2/日、150mg/m2/日、175mg/m2/日、200mg/m2/日、225mg/m2/日、250mg/m2/日、275mg/m2/日、又は300mg/m2/日の投薬量で投与される。一部の実施形態において、シクロホスファミドは静脈内に(i.v.)投与される。一部の実施形態において、シクロホスファミド治療は35mg/kg/日で2〜7日間投与される。一部の実施形態において、シクロホスファミド治療は250mg/m2/日i.v.で4〜5日間投与される。一部の実施形態において、シクロホスファミド治療は250mg/m2/日i.v.で4日間投与される。


[00377] 一部の実施形態において、リンパ球枯渇は、フルダラビン及びシクロホスファミドを一緒に患者に投与することにより実施される。一部の実施形態において、フルダラビンは25mg/m2/日i.v.で投与され、シクロホスファミドは250mg/m2/日i.v.で4日間にわたって投与される。


[00378] ある実施形態において、リンパ球枯渇は、60mg/m2/日の用量で2日間のシクロホスファミドの投与と、それに続く25mg/m2/日の用量で5日間のフルダラビンの投与によって実施される。


医薬組成物、投薬量、及び投与レジメン [00379] ある実施形態において、本開示のaAPCを使用して拡大培養したTILは、患者に医薬組成物として投与される。ある実施形態において、医薬組成物は滅菌緩衝液中のTILの懸濁液である。本開示のaAPCを使用して拡大培養したTILは、当該技術分野において公知のとおりの任意の好適な経路によって投与されてもよい。好ましくは、TILは、動脈内注入又は静脈内注入など、単回注入として投与され、これは好ましくは約30〜60分続く。他の好適な投与経路としては、腹腔内、髄腔内、及びリンパ内投与が挙げられる。


[00380] 任意の好適な用量のTILを投与することができる。好ましくは、約2.3×1010〜約13.7×1010 TILが投与され、特に癌が黒色腫である場合、平均約7.8×1010 TILである。ある実施形態において、約1.2×1010〜約4.3×1010のTILが投与される。


[00381] 一部の実施形態において、本発明の医薬組成物中に提供されるTILの数は、約1×106、2×106、3×106、4×106、5×106、6×106、7×106、8×106、9×106、1×107、2×107、3×107、4×107、5×107、6×107、7×107、8×107、9×107、1×108、2×108、3×108、4×108、5×108、6×108、7×108、8×108、9×108、1×109、2×109、3×109、4×109、5×109、6×109、7×109、8×109、9×109、1×1010、2×1010、3×1010、4×1010、5×1010、6×1010、7×1010、8×1010、9×1010、1×1011、2×1011、3×1011、4×1011、5×1011、6×1011、7×1011、8×1011、9×1011、1×1012、2×1012、3×1012、4×1012、5×1012、6×1012、7×1012、8×1012、9×1012、1×1013、2×1013、3×1013、4×1013、5×1013、6×1013、7×1013、8×1013、及び9×1013である。ある実施形態において、本発明の医薬組成物中に提供されるTILの数は、1×106〜5×106、5×106〜1×107、1×107〜5×107、5×107〜1×108、1×108〜5×108、5×108〜1×109、1×109〜5×109、5×109〜1×1010、1×1010〜5×1010、5×1010〜1×1011、5×1011〜1×1012、1×1012〜5×1012、及び5×1012〜1×1013の範囲である。


[00382] 一部の実施形態において、本発明の医薬組成物中に提供されるTILの濃度は、例えば、医薬組成物の100%、90%、80%、70%、60%、50%、40%、30%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.4%、0.3%、0.2%、0.1%、0.09%、0.08%、0.07%、0.06%、0.05%、0.04%、0.03%、0.02%、0.01%、0.009%、0.008%、0.007%、0.006%、0.005%、0.004%、0.003%、0.002%、0.001%、0.0009%、0.0008%、0.0007%、0.0006%、0.0005%、0.0004%、0.0003%、0.0002%又は0.0001%w/w、w/v又はv/v未満である。


[00383] 一部の実施形態において、本発明の医薬組成物中に提供されるTILの濃度は、医薬組成物の90%、80%、70%、60%、50%、40%、30%、20%、19.75%、19.50%、19.25% 19%、18.75%、18.50%、18.25% 18%、17.75%、17.50%、17.25% 17%、16.75%、16.50%、16.25% 16%、15.75%、15.50%、15.25% 15%、14.75%、14.50%、14.25% 14%、13.75%、13.50%、13.25% 13%、12.75%、12.50%、12.25% 12%、11.75%、11.50%、11.25% 11%、10.75%、10.50%、10.25% 10%、9.75%、9.50%、9.25% 9%、8.75%、8.50%、8.25% 8%、7.75%、7.50%、7.25% 7%、6.75%、6.50%、6.25% 6%、5.75%、5.50%、5.25% 5%、4.75%、4.50%、4.25%、4%、3.75%、3.50%、3.25%、3%、2.75%、2.50%、2.25%、2%、1.75%、1.50%、125%、1%、0.5%、0.4%、0.3%、0.2%、0.1%、0.09%、0.08%、0.07%、0.06%、0.05%、0.04%、0.03%、0.02%、0.01%、0.009%、0.008%、0.007%、0.006%、0.005%、0.004%、0.003%、0.002%、0.001%、0.0009%、0.0008%、0.0007%、0.0006%、0.0005%、0.0004%、0.0003%、0.0002%又は0.0001%w/w、w/v、又はv/v超である。


[00384] 一部の実施形態において、本発明の医薬組成物中に提供されるTILの濃度は、医薬組成物の約0.0001%〜約50%、約0.001%〜約40%、約0.01%〜約30%、約0.02%〜約29%、約0.03%〜約28%、約0.04%〜約27%、約0.05%〜約26%、約0.06%〜約25%、約0.07%〜約24%、約0.08%〜約23%、約0.09%〜約22%、約0.1%〜約21%、約0.2%〜約20%、約0.3%〜約19%、約0.4%〜約18%、約0.5%〜約17%、約0.6%〜約16%、約0.7%〜約15%、約0.8%〜約14%、約0.9%〜約12%又は約1%〜約10%w/w、w/v又はv/vの範囲である。


[00385] 一部の実施形態において、本発明の医薬組成物中に提供されるTILの濃度は、医薬組成物の約0.001%〜約10%、約0.01%〜約5%、約0.02%〜約4.5%、約0.03%〜約4%、約0.04%〜約3.5%、約0.05%〜約3%、約0.06%〜約2.5%、約0.07%〜約2%、約0.08%〜約1.5%、約0.09%〜約1%、約0.1%〜約0.9%w/w、w/v又はv/vの範囲である。


[00386] 一部の実施形態において、本発明の医薬組成物中に提供されるTILの量は、10g、9.5g、9.0g、8.5g、8.0g、7.5g、7.0g、6.5g、6.0g、5.5g、5.0g、4.5g、4.0g、3.5g、3.0g、2.5g、2.0g、1.5g、1.0g、0.95g、0.9g、0.85g、0.8g、0.75g、0.7g、0.65g、0.6g、0.55g、0.5g、0.45g、0.4g、0.35g、0.3g、0.25g、0.2g、0.15g、0.1g、0.09g、0.08g、0.07g、0.06g、0.05g、0.04g、0.03g、0.02g、0.01g、0.009g、0.008g、0.007g、0.006g、0.005g、0.004g、0.003g、0.002g、0.001g、0.0009g、0.0008g、0.0007g、0.0006g、0.0005g、0.0004g、0.0003g、0.0002g、又は0.0001g以下である。


[00387] 一部の実施形態において、本発明の医薬組成物中に提供されるTILの量は、0.0001g、0.0002g、0.0003g、0.0004g、0.0005g、0.0006g、0.0007g、0.0008g、0.0009g、0.001g、0.0015g、0.002g、0.0025g、0.003g、0.0035g、0.004g、0.0045g、0.005g、0.0055g、0.006g、0.0065g、0.007g、0.0075g、0.008g、0.0085g、0.009g、0.0095g、0.01g、0.015g、0.02g、0.025g、0.03g、0.035g、0.04g、0.045g、0.05g、0.055g、0.06g、0.065g、0.07g、0.075g、0.08g、0.085g、0.09g、0.095g、0.1g、0.15g、0.2g、0.25g、0.3g、0.35g、0.4g、0.45g、0.5g、0.55g、0.6g、0.65g、0.7g、0.75g、0.8g、0.85g、0.9g、0.95g、1g、1.5g、2g、2.5、3g、3.5、4g、4.5g、5g、5.5g、6g、6.5g、7g、7.5g、8g、8.5g、9g、9.5g、又は10g超である。


[00388] 本発明の実施形態の医薬組成物中に提供されるTILは、広い投薬量範囲にわたって有効である。正確な投薬量は、投与経路、化合物の投与形態、治療対象の性別及び年齢、治療対象の体重、並びに主治医の優先的選択及び経験に依存することになる。臨床的に確立されたTILの投薬量もまた、適宜用いられ得る。TILの投薬量など、本明細書の方法を用いて投与される医薬組成物の量は、治療下のヒト又は哺乳類、障害又は病態の重症度、投与速度、医薬品有効成分の性質及び処方医師の裁量に依存することになる。


[00389] 一部の実施形態において、TILは単回用量で投与されてもよい。かかる投与は、注射、例えば静脈内注射によってもよい。一部の実施形態において、TILは複数回用量で投与されてもよい。投与は、年1回、2回、3回、4回、5回、6回、又は6回超であってもよい。投与は、月1回、2週間に1回、週1回、又は隔日1回であってもよい。TILの投与は必要な限り継続されてもよい。


[00390] 一部の実施形態において、TILの有効投薬量は、約1×106、2×106、3×106、4×106、5×106、6×106、7×106、8×106、9×106、1×107、2×107、3×107、4×107、5×107、6×107、7×107、8×107、9×107、1×108、2×108、3×108、4×108、5×108、6×108、7×108、8×108、9×108、1×109、2×109、3×109、4×109、5×109、6×109、7×109、8×109、9×109、1×1010、2×1010、3×1010、4×1010、5×1010、6×1010、7×1010、8×1010、9×1010、1×1011、2×1011、3×1011、4×1011、5×1011、6×1011、7×1011、8×1011、9×1011、1×1012、2×1012、3×1012、4×1012、5×1012、6×1012、7×1012、8×1012、9×1012、1×1013、2×1013、3×1013、4×1013、5×1013、6×1013、7×1013、8×1013、及び9×1013である。一部の実施形態において、TILの有効投薬量は、1×106〜5×106、5×106〜1×107、1×107〜5×107、5×107〜1×108、1×108〜5×108、5×108〜1×109、1×109〜5×109、5×109〜1×1010、1×1010〜5×1010、5×1010〜1×1011、5×1011〜1×1012、1×1012〜5×1012、及び5×1012〜1×1013の範囲である。


[00391] 一部の実施形態において、TILの有効投薬量は、約0.01mg/kg〜約4.3mg/kg、約0.15mg/kg〜約3.6mg/kg、約0.3mg/kg〜約3.2mg/kg、約0.35mg/kg〜約2.85mg/kg、約0.15mg/kg〜約2.85mg/kg、約0.3mg〜約2.15mg/kg、約0.45mg/kg〜約1.7mg/kg、約0.15mg/kg〜約1.3mg/kg、約0.3mg/kg〜約1.15mg/kg、約0.45mg/kg〜約1mg/kg、約0.55mg/kg〜約0.85mg/kg、約0.65mg/kg〜約0.8mg/kg、約0.7mg/kg〜約0.75mg/kg、約0.7mg/kg〜約2.15mg/kg、約0.85mg/kg〜約2mg/kg、約1mg/kg〜約1.85mg/kg、約1.15mg/kg〜約1.7mg/kg、約1.3mg/kg mg〜約1.6mg/kg、約1.35mg/kg〜約1.5mg/kg、約2.15mg/kg〜約3.6mg/kg、約2.3mg/kg〜約3.4mg/kg、約2.4mg/kg〜約3.3mg/kg、約2.6mg/kg〜約3.15mg/kg、約2.7mg/kg〜約3mg/kg、約2.8mg/kg〜約3mg/kg、又は約2.85mg/kg〜約2.95mg/kgの範囲である。


[00392] 一部の実施形態において、TILの有効投薬量は、約1mg〜約500mg、約10mg〜約300mg、約20mg〜約250mg、約25mg〜約200mg、約1mg〜約50mg、約5mg〜約45mg、約10mg〜約40mg、約15mg〜約35mg、約20mg〜約30mg、約23mg〜約28mg、約50mg〜約150mg、約60mg〜約140mg、約70mg〜約130mg、約80mg〜約120mg、約90mg〜約110mg、又は約95mg〜約105mg、約98mg〜約102mg、約150mg〜約250mg、約160mg〜約240mg、約170mg〜約230mg、約180mg〜約220mg、約190mg〜約210mg、約195mg〜約205mg、又は約198〜約207mgの範囲である。


[00393] 有効量のTILは、鼻腔内及び経皮経路、動脈内注射によること、静脈内、腹腔内、非経口的、筋肉内、皮下、局所、移植によること、又は吸入によることを含め、同様の有用性を有する薬剤について一般に認められている任意の投与方式により、単回用量又は複数回用量のいずれで投与されてもよい。



実施例 [00394] ここで、以下の実施例を参照して、本明細書に包含される実施形態を説明する。これらの実施例はあくまでも例示を目的として提供されるものであり、本明細書に包含される開示がこれらの実施例に限定されると解釈されることがあっては決してならず、むしろ、本明細書に提供される教示の結果として明らかになるあらゆる変形例を包含すると解釈されなければならない。


実施例1 − PBMCフィーダー細胞を使用した腫瘍浸潤リンパ球の拡大培養の変動性 [00395] PBMCフィーダー細胞を使用して達成されるTIL拡大培養の変動性は、患者から得られた同じTIL株に関する複数のTIL拡大培養の結果を比較することにより実証し得る。図1は、照射した同種異系PBMCフィーダー細胞(PBMCフィーダー)を使用したTILの迅速拡大培養の典型的な結果を示す。M1015T及びM1016Tとの名称の2つのTIL株(1.3×105細胞)を46個の異なる照射フィーダー細胞ロット(1.3×107)、IL−2(3000IU/mL、組換えヒトIL−2(例えば、アルデスロイキン又は等価物)、CellGenix, Inc.、Portsmouth, NH, USA)及びOKT−3(30ng/mL、MACS GMP CD3 pure、Miltenyi Biotec GmbH、Bergisch Gladbach, Germany)とT25フラスコ内で7日間共培養した。7日目にTILの拡大倍数値を計算した。この図は、別個の刺激実験における2つのTIL株の拡大倍数の数字を示す。各TIL株につき、46個の異なるPBMCフィーダーロットを試験した。結果は各TIL株について100倍超に及び、PBMCフィーダー細胞を使用した拡大培養結果の変動性が強調される。本発明のaAPCは、以下の実施例に示すとおり、PBMCフィーダーと比較して拡大培養性能の変動性の低下、並びに他の利点をもたらす。


実施例2 − aAPC開発用の骨髄系細胞の選択 [00396] 様々な骨髄系列細胞株に関して表現型の特徴付けを行い、TIL拡大培養用のaAPCへの更なる修飾に可能性のある候補を同定した。結果を表5に要約する。MOLM−14細胞株はCD64の内因性発現を呈し、更なる開発に選択した。EM−3細胞株は、ICOS−Lの内因性発現の観察に基づき選択した(これはEM−2細胞株については、同じ患者から採取したにも関わらず観察されなかった)。






実施例3 − MOLM−14人工抗原提示細胞(aMOLM14 aAPC)の調製 [00397] Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHからMOLM−14細胞を入手した。MOLM−14ベースのaAPCを開発するため、MOLM−14細胞を共刺激分子CD86及び4−1BBL(CD137L)で改変した。ヒトCD86(hCD86)及びヒト4−1BBL(h4−1BBL)遺伝子を市販のPLV430Gにクローニングし、レンチウイルス形質導入方法を用いてPDONR221ベクター(Invitrogen/Thermo Fisher Scientific、Carlsbad, CA, USA)とコトランスフェクトした。Katzen, Expert Opin. Drug Disc. 2007, 4, 571-589に記載されるとおりゲートウェイクローニング法を用いてhCD86及びhCD137L遺伝子をPLV430G及びPDONR221ベクターにクローニングした。293T細胞株(ラージT抗原で形質転換したヒト胎児腎細胞)をレンチウイルス作製に使用し、MOLM−14細胞に形質導入した。APCコンジュゲートCD86及びPEコンジュゲートCD137Lを使用してトランスフェクト細胞を選別することにより(S3eセルソーター、Bio-Rad、Hercules, CA, USA)、細胞を単離し、エンリッチした。エンリッチ細胞の純度をフローサイトメトリーによって調べた。


[00398] クローニングに使用したベクター及びその一部分を図2〜図11に図示し、各ベクターのヌクレオチド配列を表6に提供する。pLV430Gヒト4−1BBLベクターを図2に示し、そのポリメラーゼ連鎖反応産物(PCRP)部分を図3に示す。pLV430GヒトCD86ベクターを図4に示し、そのPCRP部分を図5に示す。pDONR221ヒトCD86ドナー及びヒト4−1BBLドナーベクターを、それぞれ図6及び図7に示す。Gatewayクローニング法用のエンプティーpLV430Gデスティネーションベクター及びエンプティーpDONR221ドナーベクターの図を、それぞれ図8及び図9に示す。図10及び図11は、レンチウイルス作製に使用されるpsPAX2及びpCIGO−VSV.Gヘルパープラスミドのベクター図を示す。






























































[00399] フローサイトメトリー(Canto IIフローサイトメーター、Becton, Dickinson, and Co.、Franklin Lakes, NJ, USA)を用いて改変MOLM−14 aAPC(本明細書ではaMOLM14 aAPCとも称される)のCD86及び4−1BBL発現を確認した。結果は図12に示す。aMOLM−14 aAPCを100Gyでγ線照射し、凍結した。


実施例4 − MOLM−14人工抗原提示細胞を使用した腫瘍浸潤リンパ球の拡大培養 [00400] 改変MOLM−14細胞を100Gyでγ線照射した後、TILと共培養した。REPは、OKT−3(30ng/mL)及びIL−2(3000IU/mL)を含有するCM2培地においてTILを照射済み改変MOLM−14細胞と1:100の比で14日間培養することによって開始した。REP回収時に、TIL拡大培養速度、活性化及び分化段階マーカーの表現型、代謝速度、細胞傷害性及び再迅速拡大培養プロトコル(re−REP)アッセイを測定した。


[00401] 結果は図13、図14、図15、及び図16に示し、ここで、は2組の患者TILについての2つの拡大培養を比較している。CD86/4−1BBL修飾MOLM−14細胞(「TIL+改変MOLM14+OKT3」と表示される)の結果はPBMCフィーダー(「TIL+フィーダー+OKT3」と表示される)と同等である。


[00402] 図17において14日目の結果を比較し、ここで、は2つの更なる患者TILの結果が示される。この結果から、CD86及び4−1BBLで改変したMOLM−14細胞が、同種異系フィーダー細胞と比較したとき、迅速拡大培養プロトコルにおいて同様のTIL拡大培養を示したことが指摘される。しかしながら、親MOLM−14と培養したTILは拡大しなかった。


[00403] 加えて、MOLM−14に対して拡大培養したTILはTIL表現型を維持し、BRLAを用いて測定したときP815細胞の殺傷効力を示した(これについては実施例9に詳細に記載する)。簡潔に言えば、ルシフェリン形質導入P815標的細胞及び目的のTILを抗CD3有り及び無しで共培養して、TILの腫瘍応答性がTCR活性化を通じたものか(特異的殺傷)、それとも非特異的殺傷かを決定した。4時間のインキュベーション後、ウェルにルシフェリンを加えて5分間インキュベートした。インキュベーション後、ルミノメーターを使用して生物発光強度を読み取った。パーセンテージ細胞傷害率及びパーセンテージ生存率は以下の式を用いて計算した:%生存率=(実験的生存率−最小値)/(最大シグナル−最小シグナル)×100又は%細胞傷害率=100−(%生存率)。


[00404] 図18には、低いTIL対MOLM−14 aAPC比で実施した拡大培養の結果をPBMCフィーダーによる拡大培養の結果と比較して示す。24ウェルG-RexプレートにおいてTIL(2×104)を異なるTIL対aAPC又はPBMC比(1:10、1:30、及び1:100、それぞれ「10」、「30」、及び「100」と表示する)で親MOLM−14(「MOLM14」)細胞、CD86と4−1BBLとを発現するように形質導入されたMOLM−14細胞(「aMOLM14」)、又はPBMCフィーダー(「PBMC+」)と共に、各々OKT−3(30ng/mL)及びIL−2(3000IU/mL)を添加して培養した。対照はOKT−3(30ng/mL)及びIL−2(3000IU/mL)のみを使用して実施した(「PBMC−」)。各条件につきトリプリケートで培養した。4及び7日目に培養物に新鮮培地及びIL−2を供給した。7日目に生細胞をカウントした。図18は、11日目にカウントされた生細胞数の平均値+標準偏差(SD)を示し、p値はスチューデントt検定によって計算している。TIL単独、PBMC単独、及びaMOLM−14細胞単独を使用して更なる対照実験を実施し、これらは全て、細胞数が検出不能の結果となった(データは示さず)。これらの結果は、OKT−3及びIL−2添加のPBMCフィーダーと比較したとき(p=0.0598)、OKT−3及びIL−2添加の1:100の比(TIL:aMOLM14)が同様の拡大培養をもたらすことを示している。


[00405] 図19には、より高いTIL対MOLM−14 aAPC比で実施し、他の点では図18について上記に記載したとおり実施した拡大培養の結果をPBMCフィーダーによる拡大培養の結果と比較して示す。1:300の比では、OKT−3及びIL−2添加のCD86/4−1BBL修飾MOLM−14 aAPCはOKT−3及びIL−2添加のPBMCフィーダーよりも有意に優れている。これらの結果は、図20及び図21に示す反復実験で異なるTILバッチを使用して確認された。詳細には、図21に見られるとおり、1:200のTIL対aMOLM14比が、同じ条件下でのPBMCフィーダーと比較してTIL拡大培養の増強を示す。これらの結果から、aMOLM14 aAPCが、特に1:200〜1:300のTIL:aMOLM14比を使用したとき、TIL数の拡大の点でPBMCよりも予想外に優れていることが確認される。


[00406] 図22及び図23において、aMOLM14又はPBMCで拡大培養したTILをフローサイトメトリー分析によって比較して、TILが同様の表現型を呈したことが確認され、これは患者への再注入時に同様の性能を示すものと予想し得る。簡潔に言えば、初めにTILをL/D Aquaで染色して生存能力を決定した。次に、細胞をTCR α/β PE−Cy7、CD4 FITC、CD8 PB、CD56 APC、CD28PE、CD27 APC−C7、及びCD57−PerCP−Cy5.5で表面染色した。Canto IIフローサイトメーター(Becton, Dickinson, and Co.、Franklin Lakes, NJ, USA)を使用して前方光散乱(FSC)/側方光散乱(SSC)に基づき10,000〜100,000細胞をゲーティングすることにより、表現型分析を行った。データをCytobankソフトウェアによって分析して、サンバースト図及びSPADE(Spanning Tree Progression of Density Normalized Event(密度正規化事象のスパニングツリープログレッション))解析を作成した。ゲートは蛍光マイナス1(FMO)コントロールに基づき設定した。aMOLM14に対して拡大培養したTILは、PBMCフィーダーと比較したときCD8+ TILが増加する。理論によって拘束されないが、このCD8+ TIL割合の増強は、MOLM14に改変された4−1BBLの存在に起因し得る。CD28、CD57、及びCD27分化マーカーの発現に差はない。更なるフローサイトメトリーデータが図24に示され、これは、生細胞、TCRα/β+、CD4+又はCD8+ TILにゲートをかけたメモリーサブセット(CD45RA+/−、CCR7+/−)を示すフローサイトメトリー等高線プロットを図示し、PBMCフィーダーで得られたメモリーサブセットがaMOLM14 aAPCによって再現されることを示している。


[00407] CD3+細胞を使用してaMOLM14 aAPC又はPBMCフィーダーで拡大培養したTILのCD4及びCD8 SPADEツリーを図25及び図26に示す。色のグラデーションは、LAG3、TIL3、PD1及びCD137又はCD69、CD154、KLRG1及びTIGITの平均蛍光強度(MFI)に比例する。理論によって拘束されないが、これらの結果は、aMOLM14に対して拡大培養したTILの2つのバッチが活性化を受けていたが、aMOLM14 aAPCとPBMCフィーダーとの間にMFIの差はなかったことを示しており、aMOLM14 aAPCが、PBMCフィーダーで得られるTIL表現型結果を有効に再現することが指摘される。


[00408] aMOLM14又はPBMCに対して拡大培養したTILの代謝プロファイルについてもまた分析した。デュアルミトコンドリア−解糖ストレステストを用いて、照射PBMCフィーダー又はaMOLM14 aAPCで拡大培養した後のTILの酸素消費速度(OCR)及び細胞外酸性化速度(ECAR)を測定した。簡潔に言えば、10mMグルコース、1mMピルビン酸ナトリウム、及び2mM L−グルタミンを補足したアッセイ培地、pH7.4で細胞を洗浄し(XF Assay Medium、Agilent Technologies、Santa Clara, CA, USA)、次に、接着剤でコーティングした(Cell-Tak(商標)、Corning)XFp細胞培養マイクロプレートに1×105生細胞をプレーティングした。プレートをスピンして細胞をプレートに接着させ、次に加湿された非CO2インキュベーターにおいて37℃で平衡化した後、細胞代謝を分析した。ミトコンドリア及び解糖ストレステスト実験は、Seahorse XFpアナライザー(Agilent Technologies、Santa Clara, CA, USA)を使用して、細胞のミトコンドリア呼吸及び解糖呼吸を同時に分析するため以下の化合物:1μMオリゴマイシン;0.5μM FCCP;50mM 2−デオキシグルコース;及び各0.5μMのロテノン及びアンチマイシンAを特定の間隔で連続的に注入して実施した。結果はWAVE v2.3.0ソフトウェア(Agilent Technologies、Santa Clara, CA, USA)及びGraphPad Prism v6.07グラフィックソフトウェアを使用して分析したもので、図27及び図28に示し、ここで、点は、トリプリケートで測定した平均値±SEMを表す。aMOLM14 aAPC及びPBMCフィーダーで成長させた両方のTILが、同様の酸化的リン酸化及び解糖挙動を示す。このデータは、aMOLM14がPBMCフィーダーと比較したときTILの代謝プログラミングを変化させないことを示唆している。


実施例5 − EM−3人工抗原提示細胞(aEM3 aAPC)の調製 [00409] Creative Bioarray, Inc.(Shirley, NY, USA)からEM−3細胞を入手した。EM−3ベースの人工APCを開発するため、EM−3細胞株をCD86、4−1BBL、及びIgG Fc領域に対する抗体(クローン7C12又はクローン8B3)で改変した。ヒトCD86及びヒト4−1BBL/CD137遺伝子を市販のPLV430Gにクローニングし、レンチウイルス形質導入方法を用いてPDONR221ベクター(Invitrogen)とコトランスフェクトした。Katzen, Expert Opin. Drug Disc. 2007, 4, 571-589に記載されるとおりゲートウェイクローニング法を用いてhCD86及びhCD137L遺伝子をPLV430G及びPDONR221ベクターにクローニングした。293T細胞株をレンチウイルス作製に使用し、EM−3細胞株に形質導入した。APCコンジュゲートCD86及びPEコンジュゲートCD137Lを使用してトランスフェクト細胞を選別することにより(S3eセルソーター、BioRad、Hercules, CA, USA)、細胞を単離し、エンリッチした。エンリッチ細胞の純度をフローサイトメトリーによって調べた。マウスIgG1、IgG2a及びIgG2b(Viva Biotech Ltd.、Chicago, IL, USA)のFcに対する7C12及び8B3と称される単鎖Fv(scFv)抗体クローンを作成した。これらのscFvクローンのアミノ酸配列は表7に提供する(配列番号27及び配列番号28)。作成したscFvクローンをOKT−3に対するFc結合効率に関してスクリーニングし、コレポーターとしてeGFPを含有するpLV4301Gに向けて改変してレンチウイルスを作製した。パッケージング及びレンチウイルス作製には293T細胞株を使用した。レンチウイルス系を使用して改変EM−3(CD86/CD137L)細胞を形質導入し、eGFPを用いて選別した。 EM37C12CD86CD137L及びEM38B3CD86CD137Lは、各形質導入分子の一貫した発現に関してフローサイトメトリーによって定期的に評価した。






[00410] aEM3 aAPCの非限定的調製プロトコル(これはまた、aMOLM14 aAPCでの使用にも適合させることができる)について、以下の段落に記載する。


[00411] 目的のプラスミドの分子クローニングは以下のとおり実施し得る。DONRベクターの作成には、以下のカクテルを使用し得る:B部位フランキングPCR産物又はデスティネーションベクター(例えば、Gateway適合レンチベクター)50〜100μg;DONRベクター(例えば、pDONR222)50〜100μg;BR Clonase II(Life Technologies)1μL;及びTE緩衝液((1mMトリス、0.1mM EDTA、pH8.0、容積を5μLにするのに十分な量)。室温で少なくとも1時間インキュベートする。インキュベーション後、熱ショック法又は電気穿孔のいずれかによって細菌形質転換を実施する。デスティネーションベクターの作成には、以下のカクテルを使用し得る:組換えpDONRベクター(例えば、pDON222−geneX)50〜100μg、デスティネーションベクター(例えば、Gateway適合レンチベクター)50〜100μg、LR Clonase II(Life Technologies)1μL、及びTE緩衝液((1mMトリス、0.1mM EDTA、pH8.0、5μLにするのに十分な量)。室温で少なくとも1時間インキュベートする。インキュベーション後、化学的にコンピテントな形質転換/熱ショック法のいずれかによって細菌形質転換を実施する。


[00412] クローニングしたプラスミドの形質転換及び選択は、以下のとおり実施し得る。化学的にコンピテントな形質転換方法は以下のとおり実施し得る。選択用の抗生物質を含有する栄養寒天プレート(LB-Lennox又はYT)を調製する。回復培地(Lucigen、Middleton, WI, USAを補足)を室温ですぐに利用できるように確実にする。任意選択で、滅菌培養管を氷上で冷却してもよい(例えば、17mm×100mm管(14mL管))、各形質転換反応につき1本の管)。−80℃のフリーザーからE. cloni細胞(Lucigen)を取り出し、濡れた氷上で完全に解凍する(5〜15分)。任意選択で、冷却した培養管に40μLのE. cloni細胞を加える。40μLの細胞に1〜4μLのDNA試料を加える。指で軽く打つ(上下にピペッティングすることにより混合しないこと、これにより気泡が取り込まれて細胞が温まり得る)。細胞/DNA混合物を氷上で30分間インキュベートする。培養管を42℃の水浴中に45秒間置くことにより、細胞に熱ショックを与える。1.7mL管又は培養管を氷に2分間戻す。細胞に350μLの室温の回復培地を加えるか、又は培養管中の細胞に960μLの室温の回復培地を加える。管を振盪インキュベーターに37℃において250rpmで1時間置く。適切な抗生物質を含有するLB-Lennox又はYT寒天プレートに最大100%の形質転換混合物をプレーティングする。プレーティング容積はDNAに応じて最適化する必要があり得る。プレートを37℃で一晩インキュベートする。形質転換クローンは任意のリッチ培養培地(例えばLB又はTB)において更に成長させることができる。


[00413] Miniprep(Qiagen, Inc.、Valencia, CA, USA)用のコロニーは、以下のとおり成長させてもよい。DNA操作のプレーティング回復形質転換反応(例えばLR反応)からコロニーが形成された後、所望の本数の穴開きキャップ付き2mL Eppendorfマイクロチューブの中に1mLの所望のTB/抗生物質を加える。ART LTS 20μLソフトピペットティップ(VWR 89031-352)又は10μL Denvilleティップを使用して所望の数のコロニーをピックする。穴開きキャップ付き2mL Eppendorfマイクロチューブにティップを置く。管に適合するようにティップを切断し、キャップを閉め、それらの管を振盪機に置く(VWRブランド15mL管を伴う紫色の15mL管保持具)。225rpm/37℃で一晩(16時間以下)振盪する。一晩インキュベートした後、各ティップを滅菌水が中に入ったDenvilleからのClavePak 96プレート内の1mL管に置く(プラスミドのスクリーニング及び選択後の細菌ストック産物の作製用にティップを確保しておく)。Qiagen Miniプレップキットプロトコル(Qiagen, Inc.、Valencia, CA, USA)に従いMiniprepを実施する。プラスミドが溶出したところで、制限消化を実施して正しいクローンを選択する。プラスミドの選択後、同じプラスミドクローンから確保しておいたティップを使用することにより、プラスミドを含む大腸菌(E.coli)を成長させて細菌ストックを作製する。


[00414] レンチウイルス作製は以下のとおり実施されてもよい。以下の培地組成物を調製する:500mL DMEM/F12(Sigma);25mL FBS熱失活(HI)(Hyclone);10mM HEPES(Life Technologies);1×Primocin(Invivogen);1×Plasmocin(Invivogen);及び1×2−メルマクトエタノール(mermactoethanol)(Life Technologies)。90%コンフルエントの293T細胞が入ったT75フラスコ(Thermo Fisher Scientific)を回収する。培地を吸引する。10ml PBSを加え、穏やかにリンスし、吸引して取り除く。2mLのTrypLE Express(Life Technologies)を加え、それを細胞層全面に均等に分布させて、37℃(細胞培養インキュベーター)で3〜5分間静置する。10mL培地を加え、上下にピペッティングすることにより細胞を分散させる。複数のフラスコがある場合には合わせる。細胞をカウントする。血球計を使用して濃度を決定する場合、細胞/mL=(カウントされた細胞数×希釈係数×104)。再び分割してT75フラスコに戻すため、細胞が完全にコンフルエントになるまでに必要な時間を決定し、それに従い希釈する。(細胞は16〜18時間毎に倍加するため、3日=1/27希釈)。概して、コンフルエンスが2×105細胞/cm2である場合、1日2.5の増殖係数が用いられてもよい。容積が25mLの培地となるようにする。ストックのタイトレーション用にプレーティングするには、アッセイの各ウェルは0.4mLの培地中5×104細胞が必要である。293T細胞を培地中2×104/mLに調整する。24ウェルプレートにおいてウェル当たり1mLをプレーティングする。例えば、月曜日にプレーティングした細胞は火曜日に感染させて、金曜日にフローサイトメーターにかけてもよく、木曜日にプレーティングした細胞は金曜日に感染させて、月曜日にフローサイトメーターにかける。パッケージングトランスフェクション用にプレーティングするため、T75フラスコに、トランスフェクションの前日には6.8×106細胞又はトランスフェクションのモニタリング時には1.7×106細胞をプレーティングする。(トランスフェクション当日に播種すると、トランスフェクション効率の変動が減少し得る)。培地でフラスコ内の容積を25mLにする。例えば、月曜日にセットアップしたフラスコは火曜日にトランスフェクトし、木曜日及び金曜日にウイルスを収集する。ある場合には(例えば、高いタイトレーションコンストラクト)、2回目の収集は省略されてもよい。レンチウイルスベクターをパッケージングするには、各T75フラスコトランスフェクションにつき2μg Baculo p35プラスミド(任意選択;死滅遺伝子をパッケージングする場合に限り必要である)、2μg VSV.G envプラスミド(例えば、pMD2.G又はPCIGO VSV−G);4.7μg Gag/ポリメラーゼプラスミド(例えば、psPAX2又はpCMV−ΔR8.91)、及び2.3μgの上記に記載されるレンチウイルスベクターが必要である。全ての試料について必要なVSV及びR8.2/9.1(+/−Baculo)プラスミドの量を決定する(多数の試料を調製する場合、これらのDNAの混合物を作る)。各T75トランスフェクションにつき2mLのOpti-MEM培地(Thermo Fisher Scientific)中90μLのLipofectAmine 2000(Thermo Fisher Scientific)が必要である。全ての試料について、十分なOpti-Mem及びLipofectAmine 2000を含有する混合物を作る。穏やかに混合し、室温で5分間静置し、管Aのラベルを付す。各トランスフェクションについて、マイクロチューブに対して500μL室温Opti-MEM培地にパッケージングDNA及び特異的レンチウイルスベクターDNAを加え、管Bのラベルを付す。管A内の2mLのLipofectAmine 2000混合物に管Bからの500μLのDNAを加え、穏やかに混合し、室温で20〜30分間インキュベートする。パッケージングフラスコから培地を吸引する。5mLのOpti-MEM培地に2.5mLのDNA/Lipofectamine複合体を加え、細胞に加える(293T細胞は半接着しているに過ぎないため、細胞上で直接ピペッティングしないこと)。乾燥を防ぐため、プレートは少数の一群で処理する。一晩インキュベートし、翌日朝に培地を交換する。培地交換後24時間で上清を収集する。上清はトランスフェクション後48時間で単一の収集物で回収してもよく、又はトランスフェクション後48及び72時間で2つの収集物として回収してもよい(その場合、回収物はプールする)。二重の収集が望ましい場合、上清は初日にピペッティングにより収集し、20mLの新鮮培地を補充する。フラスコの乾燥を防ぐため、一度に5つのフラスコのみで作業する。収集した上清は、翌日にプールするまで4℃に保つ。翌日、上清を再び冷却し、適宜プールする。上清を2000rpmで5分間スピンして任意の夾雑293T細胞を沈降させる。回収した上清は、プレフィルターディスクを含む0.45μm又は0.8μmフィルタユニットでろ過する。ろ過速度が比較的速くなるように、十分に大きいろ過ユニットを使用する。濃縮の準備が整うまで4℃で保管する。


[00415] ウイルスは、−80℃での長期貯蔵のためPEG-it法(System Biosciences, Inc.、Palo Alto, CA 94303)を用いて濃縮し得る。トランスフェクションプレートから上清を収集する。上清中の細胞デブリをスピンダウンする。上清はまた、いかなるパッケージング細胞も完全に除去するため、ろ過してもよい。上清の容積の4分の1に等しい量のPEG-it溶液を上清に加える。懸濁液を4℃で一晩インキュベートする。4℃において3500rpm(1500g)で30分間遠心する。上清を取り出し、4℃において3500rpmで5分間遠心する。残りの上清を除去する。ウイルスを所望量のリン酸緩衝生理食塩水(PBS)中に再懸濁し、アリコートを−80℃で凍結する。


[00416] レンチウイルスを使用した細胞株の形質導入は、以下のとおり実施されてもよい。形質導入しようとする細胞を、24ウェルプレートのウェル当たり1×106個の浮遊細胞(1回の形質導入につき1ウェル)又は24ウェルプレート内の接着細胞について50%コンフルエンス(1回の形質導入につき1ウェル)のいずれかとなるように調整する。浮遊細胞については、細胞の濃度を1×107/mLに調整し、24ウェルプレートのウェル当たり100μLをプレーティングする(1回の形質導入につき1ウェル)。接着細胞については、形質導入日に細胞/cm2に基づき50%コンフルエンスが実現するようにプレーティングする(例えば、293T細胞について、コンフルエンス=2×105/cm2)。ウェル当たりの総形質導入容積は、3〜10μg/mLポリブレン(臭化ヘキサジメトリン、Sigma-Aldrich Co.、St. Louis, MO, USA)を含む約500μLでなければならない。濃縮ウイルスの添加量は、所望のMOI(感染多重度)に依存することになる。典型的なMOIは10:1であるが、これは細胞型に応じて変わり得る。トランスフェクションウェルは、1×106個の浮遊細胞又は50%コンフルエントの細胞のいずれかを含有する100μLの標準培地を含まなければならない。10:1のMOIについては(例えば、ウイルス活性が1×108IU/mLであり、目標が1×106細胞を感染させることであり、このとき1×107個のビリオン又は100μLのウイルスが必要になる)。500μLとなるように標準培地を加える。3μg/mL(初代細胞)〜10μg/mL(腫瘍細胞株)となるようにポリブレンを加える。1つ又は複数のプレートを30℃において1800rpmで1.5〜2時間スピンする。組織培養インキュベーターを使用して1つ又は複数のプレートを37℃/5%CO2で5時間〜一晩インキュベートする。培地を交換する。72時間の形質導入後、十分な細胞が利用可能な場合、フローサイトメトリー分析を実施して形質導入効率を試験する。


[00417] aAPCの選別は以下のとおり実施されてもよい。上記に記載される培地において、細胞数が最低でも1000〜2000万個に達するまで細胞を培養する。各条件につき1×106細胞を取り、形質導入するタンパク質に対する抗体で染色する。細胞を洗浄し、フローサイトメトリーによって分析して形質導入の安定性を試験する。目的のタンパク質の発現を分析して確認した後、残りの細胞を選別用に調製する。S3ソーターにおいて目的のマーカーにゲートをかけることにより細胞を選別する。上述の培地を使用して、選別された細胞を培養する。バイアルを凍結する前に、目的のタンパク質発現の安定性を試験する。Recovery細胞培養フリージング培地(Invitrogen)を使用して同じ細胞のセルバンクを作製する。細胞は、形質導入及び選別手順を終える毎にバンク化し得る。


[00418] 7C12及び8B3 scFvクローンのヌクレオチド配列情報(配列番号29及び配列番号30)及びそのレンチウイルスベクターを表8に提供する。pLV4301G 7C12 scFv mIgG hCD8 flagベクターの作成に使用した配列は配列番号31〜配列番号34として提供され、図29〜図32に図示される。pLV4301G 8B3 scFv mIgG hCD8 flagベクターの作成に使用した配列は配列番号35〜配列番号38として提供され、図33〜図36に図示される。


































































[00419] 本明細書に記載される実験に使用した改変EM−3 aAPC(本明細書ではaEM3 aAPCとも称される)の調製においては、CD86及び4−1BBLの発現はフローサイトメトリー(Canto IIフローサイトメーター、Becton, Dickinson, and Co.、Franklin Lakes, NJ, USA)を用いて確認した。結果は図37に示す。aEM3 aAPCを100Gyでγ線照射し、凍結した。


[00420] 上記に記載したとおり、CD86、IgG Fc領域に対する抗体、及び4−1BBL(又は任意選択で4−1BBLなし)を発現するように予め形質導入したaEM−3細胞を、同様のレンチウイルス形質導入手法を用いて共刺激ヒトOX−40Lで遺伝子操作した。ヒトOX−40Lを含有するレンチウイルスを作成するため、pLenti−C−Myc−DDK OX40L(PS100064、Origene、配列番号39、図90)ベクターをVSV−Gエンベローププラスミド(pCIGO−VSV.G)と共に、PolyJet(Signagen Laboratories、Rockville, MD, USA)を使用してPhoenix-GP(ATCC CRL−3215)細胞株にコトランスフェクトした。60時間後に上清を回収し、Ultracel-100メンブレンを備えたAmicon Ultra-15遠心フィルタユニットを使用して濃縮した。次にaEM−3細胞を濃縮レンチウイルスに感染させて、更に5日間拡大培養した。細胞をPEコンジュゲート抗ヒトOX40L、ブリリアントバイオレット421コンジュゲート抗ヒトCD137L(先行するaEM−3細胞に4−1BBLが含まれる場合)、及びPE/Cy7コンジュゲート抗ヒトCD86で染色し、S3eセルソーター(Bio-Rad, Inc.、Hercules, CA, USA)を使用してGFP、OX40L、CD137L(含まれる場合)、CD86の発現に基づき選別した。選別した細胞の純度をフローサイトメトリーを用いて更に検証した。エンリッチ細胞の純度をフローサイトメトリーによって調べた。


実施例6 − EM−3人工抗原提示細胞を使用した腫瘍浸潤リンパ球の拡大培養 [00421] EM−3 aAPC(aEM3)がTILを拡大させる能力を試験する実験を実施した。TILをaEM3(7C12又は8B3)と1:100比の比で、OKT−3(30mg/mL)及びIL−2(3000IU/mL)を加えて共培養した。11及び14日目に細胞をカウントした。結果はTILの2つのバッチについて図38及び図39にプロットする。加えて、TILをaEM3又はPBMCフィーダーと1:100比で、IL−2(3000IU/mL)を添加して、OKT−3(30mg/mL)を添加して又は添加せずに共培養した。結果は図40にプロットし、ここで、棒グラフは、11日目に決定された細胞数を示す。


[00422] 図41は、異なるTIL:aAPC比でのEM−3 aAPC(aEM3)によるTIL拡大培養の結果を示す。これらの結果は、aEM3 aAPCが、特に1:200の比で培養時間が長いとき(14日)、PBMCと同等の、場合によってはより良好な性能であることを示している。


[00423] 図42は、EM−3 aAPC(aEM3)によるTIL拡大培養からの細胞数の変動性がPBMCフィーダーと比較して低いことを示している。G-Rex 24ウェルプレートにおいてTIL(2×104)を5つの異なるPBMCフィーダーロット又はaEM3(トリプリケート)と1:100比で、IL−2(3000IU/mL)を添加して共培養した。グラフは、14日目にカウントした生細胞数(平均値)を95%信頼区間と共に示す。図43は、EM−3 aAPC及びMOLM−14 aAPCによるTIL拡大培養結果を比較することにより、G-Rex 24ウェルプレートにおいて5つの異なるPBMCフィーダーロット又はaMOLM14(トリプリケート)又はaEM3(同様にトリプリケート)と1:100比で、IL−2(3000IU/mL)を添加して共培養したTIL(2×104)と比較したaEM3及びaMOLM14の両方についての細胞数の変動性を示す。14日目に生細胞をカウントした。グラフは生細胞数(平均値)を95%信頼区間と共に示す。aEM3及びaMOLM14の結果は、先行技術において好ましいPBMCフィーダー手法と比較して、両方のaAPCでより高い一貫性を達成し得ることを示している。


[00424] aEM3又はPBMCフィーダーに対して拡大培養したTILを使用して、4つの異なるパネル(分化パネル1及び2、T細胞活性化パネル1及び2)を使用したフローサイトメトリー分析を行った。簡潔に言えば、初めにTILをL/D Aquaで染色して生存能力を決定した。次に、分化パネル1についてTCRα/β PE−Cy7、CD4 FITC、CD8 PB、CD56 APC、CD28 PE、CD27 APC−Cy7、及びCD57−PerCP−Cy5.5;分化パネル2についてCD45RA PE−Cy7、CD8a PerCP/Cy5、CCR7 PE、CD4 FITC、CD3 APC−Cy7、CD38 APC、及びHLA−DR PB;T細胞活性化パネル1についてCD137 PE−Cy7、CD8a PerCP−Cy5.5、Lag3 PE、CD4 FITC、CD3 APC−Cy7、PD1 APC、及びTim−3 BV421;又はT細胞活性化パネル2についてCD69 PE−Cy7、CD8a PerCP/Cy5.5、TIGIT PE、CD4 FITC、CD3 APC−Cy7、KLRG1 ALEXA 647、及びCD154 BV421で細胞を表面染色した。Canto IIフローサイトメーターを使用してFSC/SSCに基づき10,000〜100,000細胞をゲーティングすることにより表現型分析を行った。Cytobankソフトウェア(Cytobank, Inc.、Santa Clara. CA. USA)を使用してデータを分析し、サンバースト図及びSPADE(Scanning-tree Progression Analvsis of Density-normalized Events(密度正規化事象のスパニングツリープログレッション))プロットを作成した。ゲートは蛍光マイナス1(FMO)コントロールに基づき設定した。SPADEプロットは、表面マーカーの発現レベルに基づき関連ノードの形態で特徴付けられる細胞群で作成した。CD3+ゲーティングに基づきCD4+及びCD8+ TILサブセットを決定し、ツリーを作成した。サンバースト図による視覚化は図44及び図45に示される。図44は、aEM3 aAPCに対して拡大培養したTILが、PBMCフィーダーに対して拡大培養した同じTILと比較したとき、CD8+表現型を維持していたことを示す。図45は、aEM3 aAPCに対して拡大培養した異なる患者からの第2のTILバッチの結果を示し、ここで、はPBMCフィーダーを使用した拡大培養の結果(25%)と比較してCD8+細胞の明らかな増加(65.6%)が見られる。


[00425] CD3+細胞を使用してaEM3 aAPC又はPBMCフィーダーで拡大培養したTILのCD4及びCD8 SPADEツリーを図46及び図47に示す。色のグラデーションは、LAG3、TIL3、PD1及びCD137又はCD69、CD154、KLRG1及びTIGITの平均蛍光強度(MFI)に比例する。理論によって拘束されないが、これらの結果は、aEM3 aAPCで拡大培養したTILが活性化を起こしていたことを示しており、しかしaEM3 aAPCとPBMCフィーダーとの間でMFIに差はなかったことから、aEM3 aAPCがPBMCフィーダーで達成される表現型結果を有効に再現することが指摘される。


[00426] PBMCフィーダーと比較したaEM3 aAPCで拡大培養したTILについて、予備呼吸容量(SRC)及び解糖予備能もまた評価した。結果は図48及び図49に示す。Seahorse XF細胞ミトストレステストは、ミトコンドリアにおける電子伝達鎖の成分を標的にする呼吸調節因子を用いて細胞の酸素消費速度(OCR)を直接測定することによりミトコンドリア機能を測定する。試験化合物(オリゴマイシン、FCCP、及びロテノンとアンチマイシンAとの混合物、以下に記載する)を連続的に注入して、それぞれ、ATP産生、最大呼吸、及び非ミトコンドリア呼吸を測定する。次にこれらのパラメータ及び基礎呼吸を使用してプロトンリーク及び予備呼吸容量を計算する。各調節因子が電子伝達鎖の特異的成分を標的にする。オリゴマイシンはATPシンターゼ(複合体V)を阻害し、オリゴマイシン注射後のOCRの低下は、細胞性ATP産生に関連するミトコンドリア呼吸と相関する。カルボニルシアニド−4(トリフルオロメトキシ)フェニルヒドラゾン(FCCP)は、プロトン勾配を破綻させてミトコンドリア膜電位を破壊する脱共役剤である。結果として、電子伝達鎖を通じた電子流が抑制されず、複合体IVによって酸素が最大限に消費される。ひいてはFCCPの刺激を受けたOCRを使用して、最大呼吸と基礎呼吸との差として定義される予備呼吸容量を計算することができる。予備呼吸容量(SRC)は、細胞がエネルギー要求の増加に応答する能力の尺度である。第3の注射は、複合体I阻害薬であるロテノンと、複合体III阻害薬であるアンチマイシンAとの混合物である。この組み合わせはミトコンドリア呼吸を遮断し、ミトコンドリア外部の過程によってドライブされる非ミトコンドリア呼吸の計算を可能にする。


[00427] 図50は、PBMCフィーダー又はaEM3 aAPCに対して拡大培養した生細胞TILのミトコンドリア染色を示す。MitoTracker色素が生細胞のミトコンドリアを染色し、その蓄積は膜電位に依存する。PBMCフィーダー又はaEM3に対して拡大培養したTILをL/D Aquaと、続いてMitoTracker赤色色素で染色した。データは、生細胞集団にゲートをかけたMitoTracker陽性(MFI)細胞を示す。


実施例7 − 改変MOLM−14(aMOLM14)及びEM−3(aEM3) aAPCの比較 [00428] 前出の例に記載されるとおり、PBMCフィーダー並びにaMOLM14及びaEM3 aAPCで拡大培養したTILについて、細胞傷害効力に関してBRLAを用いて機能活性を評価した。P815 BRLAについては実施例9に詳細に記載される。結果は図51及び図52に示し、aAPCで拡大培養したTILがPBMCフィーダーで拡大培養したものと同様の機能特性(及び予想された臨床的有効性)を有することが示される。


[00429] 上記に記載したとおりPBMCフィーダー並びにaMOLM14及びaEM3 aAPCで拡大培養したTILからのIFN−γ遊離及びグランザイムB遊離もまた、抗CD3/CD28/4−1BBでコートしたマイクロビーズで一晩刺激した後に評価した。IFN−γ遊離結果は図53及び図54に示し、グランザイムB遊離結果は図55及び図56に示す。aEM3 aAPCで拡大培養したTILについて、PBMCフィーダーで拡大培養したものと比べてIFN−γ遊離及びグランザイムB遊離の有意且つ意外な増加が観察されたが、aMOLM14 aAPCによって拡大培養したTILについては観察されなかった。理論によって拘束されないが、これは、aEM3 aAPCと培養したTILがインビボで癌療法としての活性がより高いものであり得ることを示唆している。観察された他の差の多くは統計的に有意でなかった。


[00430] aEM3及びaMOLM14 aAPCによるTIL拡大培養の結果は表9に要約される。






実施例8 − aEM3及びaMOLM14 aAPCマスターセルバンクの調製 [00431] aEM3及びaMOLM14 aAPCを以下の培地組成物で成長させてマスターセルバンクを作製してもよく、これはaAPC供給のためこの培地で更に成長させてもよい:500mLのダルベッコ変法イーグル培地DMEM/F12(Sigma-Aldrich、St. Louis, MO, USA)、50mLウシ胎仔血清(FBS)熱失活(HI)(Hyclone);10mM 4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルホン酸(HEPES緩衝液)(Life Technologies);1×Primocin(Invivogen);1×Plasmocin(Invivogen)、及び1×2−メルカプトエタノール(Life Technologies)。


[00432] 本明細書に記載されるaAPCはまた、aEM3及びaMOLM14 aAPCを含め、細胞の成長のための当該技術分野において公知の任意の好適な方法を用いてマスターセルバンクから成長させてもよい。ある実施形態では、aAPCを解凍し、次に80〜90%RPMI 1640+10〜20%熱失活FBS(ウシ胎仔血清)の培地において、2〜3日毎に飽和培養物を1:2〜1:3分割し、24ウェルプレートに約0.5〜1×106細胞/mLで播種し、37℃及び5%CO2でのインキュベーションで約0.5〜1.5×106細胞/mLに維持することにより拡大培養する。


[00433] ヒト治療薬の作製における本発明の特定の実施形態のaAPCの使用に利用し得る更なるステップは当該技術分野において公知であり、細胞株の特徴付け(HLA高分解能タイピング);サイトカイン遊離試験;aAPCを成長させるのにFBSに代えるヒト血清の試験;aAPCを凍結するための凍結培地の試験;マスターセルバンク化(原材料試験及び安定性試験を含む);照射の標準化(照射線量(1000、3000、5000、10000、15000rad)、新鮮aAPCと凍結aAPCの比較、及びTIL有り/無しを含む);aAPCの安定性;aAPCの汚染を判定するためのパネルの開発;分子生物学的アッセイの開発(qPCR、DNAシーケンシング);黒色腫、子宮頸癌、及び頭頸部癌を含めた異なる腫瘍型からのTIL拡大培養の試験(G-Rex 5Mを使用);効力、純度、及び同一性試験;マイコプラズマ及び無菌性アッセイ;微生物学的試験(USP/EP無菌性、バイオバーデン及びエンドトキシンアッセイ);及び外来ウイルス因子試験が含まれる。


実施例9 − TILの拡大培養方法及び拡大培養したTILによる癌の治療方法 [00434] TILは、本明細書に記載される任意の拡大培養方法を用いて、aEM3及びaMOLM14 aAPCなどの本発明の特定の実施形態のaAPCを使用して拡大培養し得る。例えば、TILの拡大培養方法を図57に図示する。aAPCを使用したTILの拡大培養は、更に、本明細書に記載される患者の癌を治療する任意の方法と組み合わせてもよい。TILを拡大培養し、及び拡大培養したTILで患者を治療する方法を図58に示し、ここで、拡大培養はaAPC(aEM3及びaMOLM14 aAPCを含む)を利用する。


実施例10 − P815生物発光リダイレクト溶解アッセイ [00435] この例では、生物発光リダイレクト溶解アッセイ(Bioluminescent Redirected Lysis Assay:BRLA)においてTILの溶解能を判定するための代理標的細胞株の開発について記載する。BRLAは、自己腫瘍細胞の非存在下におけるT細胞媒介性死滅の評価を可能にする。細胞溶解活性は1〜4時間でT細胞受容体の関与有り及び無しで評価することができ、T細胞受容体が関与するT細胞死滅及び関与のない、いわゆるリンホカイン活性化キラー活性(LAK)が評価される。


[00436] 内因性CD16 Fc受容体を発現するマウス肥満細胞腫P815細胞は抗CD3ε(OKT−3)に結合することができ、標的細胞株として効力のあるTCR活性化シグナルをもたらす。P815クローンG6をeGFP及びホタルルシフェラーゼをベースとするレンチウイルスベクターで形質導入し、選別し、BD FACSAria IIを用いてクローニングした。Intellicyt iQue Screenerを使用して分析したeGFP強度に基づきクローンG6を選択した。標的細胞と目的のTILとを+/−OKT−3で共培養して、それぞれ、TCR活性化(特異的殺傷)又は非特異的(リンホカイン活性化キラー性、LAK)を評価した。4時間のインキュベーション後、ウェルにホタルルシフェリン((4S)−2−(6−ヒドロキシ−1,3−ベンゾチアゾール−2−イル)−4,5−ジヒドロチアゾール−4−カルボン酸、複数の供給元から市販されている)を加え、5分間インキュベートした。ルミノメーターを使用して生物発光強度を読み取った。パーセント細胞傷害率及び生存率は以下の式を用いて計算した:%生存率=(実験的生存率−最小値)/(最大シグナル−最小シグナル)×100;%細胞傷害率=100−(%生存率)。共培養したTILの培地上清中におけるインターフェロンγ遊離をELISAによって分析し、TIL上でのLAMP1(CD107a、クローンeBioH4A3)発現をフローサイトメーターで分析してTILの細胞傷害効力を判定した。


[00437] 結果は図59〜図75に示す。図59は、個々のエフェクター:標的比でP815クローンG6と(抗CD3を添加して及び無しで)共培養したTILバッチM1033T−1のBRLAによるパーセント毒性を示す。図60は、異なるエフェクター対標的細胞比に対するIFN−γ遊離量を示す酵素結合免疫吸着アッセイ(ELISA)データを示す。図61は、P815クローンG6と抗CD3の存在下において1:1のエフェクター対標的細胞比で共培養したときのTILバッチM1033T−1が発現するLAMP1(%)を4時間及び24時間共培養について示す。


[00438] これらの結果は、図62(TILバッチM1030のBRLAを示す)に記載の第2のTILバッチを使用して確認された。BRLAによる細胞傷害性(LU50/1×106 TILとして測定した)は26±16である。図63はTILバッチM1030の標準クロム遊離アッセイの結果を示す。クロム遊離アッセイによる細胞傷害性(LU50/I×106 TILとして測定した)は22である。


[00439] 第3のTILバッチを使用して結果を更に確認した。図64は、TILバッチM1053についてのBRLA結果を示し、BRLAによるTILの溶解単位は70±17と示される。図65は、TILバッチM1053の標準クロム遊離アッセイの結果を示し、クロムアッセイによるTILの溶解単位は14±5と示される。2つのアッセイ結果の比較から、BRLA結果がクロム遊離アッセイ結果と同等の性能であることが示される。


[00440] 図66は、IFN−γ遊離とTILの細胞傷害能との間の直線関係を示す。図67は、IFN−γについてのELISpot結果を示す。図68は、TILバッチM1053についての酵素IFN−γ遊離を示す。図69は、TILバッチM1030についての酵素IFN−γ遊離を示す。図70は、M1053T及びM1030TによるグランザイムB遊離を明らかにするELISpotデータを示す。図71は、TILバッチMl053についての酵素グランザイムB遊離を示す。図72は、TILバッチM1030についての酵素グランザイムB遊離を示す。図73は、M1053T及びM1030TによるTNF−α遊離を示すELISpotデータを示す。図74は、TILバッチM1053についての酵素TNF−α遊離を示す。図75は、TILバッチM1030についての酵素TNF−α遊離を示す。図66〜図76のデータから、BRLAによってもまた示すとおりのこれらのTILバッチの効力が確認される。


[00441] 結論として、BRLAは放射性核種が不要であり、従来の細胞傷害性アッセイと同程度に高効率且つ高感受性である。個々の時点におけるTIL上のLamp1発現のフローサイトメトリーによる評価は、BRLAによって示される効力と比べて細胞傷害性T細胞の脱顆粒を実証する。BRLAは標準クロム遊離アッセイと同程度乃至それより良好な効力を実証する。BRLAはまた、TIL溶解活性の効力の判定も可能にする。BRLAをクロム遊離アッセイと比較すると、BRLAの効率性及び信頼性が明らかになる。BRLAはTILによるIFNγ遊離と直線関係を有する。ELISpotによるIFN−γ、TNFα及びグランザイムBの遊離アッセイは、BRLAによって判定したTILの細胞傷害効率と整合している。


実施例11 − M3細胞をFBSからhAB血清へとウィーニングする方法 [00442] 反応性を回避するため、一部の細胞株をある培地から別の培地へとウィーニングする必要があり得る。ここで、は、反応性を回避するためEM3細胞がFBSからhAB血清へとウィーニングされる。図76に示すとおり、aEM3細胞をFBSからhAB血清へとウィーニングすることに成功した。


実施例12 − 凍結培地配合の最適化 [00443] 本明細書に記載されるとおり培養したEM3細胞をクライオバンク化するため、方法は凍結培地配合であり、最適化した。図77に示すとおり、3つの凍結培地を使用して、それが細胞数に及ぼす効果をカウントした。利用した細胞培地には、CryStor 10(Biolife Solutions(CS10))(A)、hAB[90%]及びDMSO[10%](B)、並びにDMSO[10%]及びcDMEM2[70%]含有hAB[20%](C)が含まれた。図77は、ヒトAB血清(90%)及びDMSO(10%)の配合が予想外にも3日間の回復後にM3細胞数の増加をもたらしたことを実証している。


実施例13 − GREXフラスコ内でのaEM3細胞の成長 [00444] aEM3細胞をガス透過性細胞培養フラスコ(即ち、GREXフラスコ(Wilson Wolf Manufacturing))において培養し、8日間の時間経過にわたって細胞倍加時間への効果を観察した。図78に示すとおり、GREXフラスコはaEM3細胞の急速な成長をもたらした。


実施例14 − フローパネル分析によるaEM3細胞純度の決定 [00445] 本明細書に記載される方法により培養した細胞の純度を決定するため、フローパネル分析を用いてaEM3 aAPCの純度を決定した。かかる分析の結果を図79及び図80に示す。図80に示すとおり、選別前、aEM3細胞集団はaEM3 7C12及びaEM3 8B5細胞についてそれぞれ53.5%及び43.2%eGFP+であった。選別後、細胞集団はaEM3 7C12及びaEM3 8B5細胞についてそれぞれ96.8%及び96.3%eGFP+に改善された(図80)。


実施例15 − PBMCフィーダーの代替としてのaEM3フィーダー細胞 [00446] 本明細書に記載されるとおり、aEM3細胞はPBMCフィーダーの代替として使用されてもよく、TIL拡大培養過程及び得られるTILの両方について予想外に異なる特徴をもたらし得る。サイトカイン発現の差を比較するため、OKT−3による処理によってPBMC及びaEM3細胞を刺激した。図81に示すとおり、aEM3細胞はPBMCと比較すると比較的異なるサイトカイン発現プロファイルを呈した。意外にも、本発明のaEM3細胞は、従来のPBMCで拡大培養したTILの同じサイトカイン分泌特性を再現することなく有効なTIL(本明細書に示すとおり)を提供する。


実施例16 − 完全培地と無血清培地とのTIL拡大培養比較 [00447] TIL拡大培養プロトコルを最適化するため、幾つかのTIL拡大培養実験(expirement)を本明細書に記載されるとおり、但し完全培地(CM1)でなく、むしろ無血清培地で実施した。


[00448] 一つの実験では、300IU/mLのIL−2を添加したCM1又は様々な無血清培地が入った単一のウェルにおいて組織断片を培養した。次に11日目のREPの開始前に細胞をカウントした。使用した様々な無血清培地には、Prime CDM(Irvine)、CTS Optimizer(ThermoFisher)、及びXvivo-20(Lonza)が含まれた。図82に示すとおり、CTSによるTIL拡大培養(プレREP)が、CM1と比較したとき細胞数の増加をもたらした。


[00449] 加えて、6000IU/mLのIL−2を添加したCM1又は様々な無血清培地で組織断片を11日目まで培養した。次に11日目にPBMCフィーダー、OKT−3、及びIL−2を使用してREPを開始し、16日目に培養を分割した。次に22日目の終わりに培養を終了した。使用した様々な無血清培地には、Prime CDM(Irvine)、CTS Optimizer(ThermoFisher)、及びXvivo-20(Lonza)が含まれた。図83及び図84に示すとおり、それぞれ11日目及び22日目に細胞をカウントすると、Prime CDMによるTIL拡大培養(プレREP)が、CM1と比較したとき細胞数の増加をもたらした。


実施例17 − 血清ベースの培地と比較したときの無血清培地におけるaAPCの成長 [00450] 血清の非存在下でのaAPC成長及び維持プロトコルを最適化するため、様々な無血清培地を使用してaEM3細胞を培養した。


[00451] ある群の細胞には血清ベースの培地(cDMEM(10%hSerum)を提供し、他の群の細胞には無血清培地を提供したことを除けば、本明細書に記載されるとおりの一般的な細胞培養プロトコルを用いて、aEM3細胞を24ウェルプレートにおいてウェル当たり1×106細胞で3日間培養した。本試験に利用した無血清培地には、CTS OpTmizer(ThermoFisher)、Xvivo 20(Lonza)、Prime-TCDM(Irvine)、及びXFSM(MesenCult)培地が含まれた。次に3日目に細胞をカウントした。


[00452] 図85に示すとおり、CTS OpTmizer及びPrime-TCDM無血清培地は、血清ベースの培地(即ちcDMEM(10%hSerum)と同等の細胞成長をもたらした。従って、無血清培地は、血清ベースの培地と比較したとき、aAPCの成長及び維持に有効な代替的選択肢である。


実施例18 − aAPCの増殖、維持、及び凍結保存 [00453] この例では、aAPCの調製及び保存手順を提供する。具体的には、TIL−Rs3と称される細胞株からのaEM3細胞を増殖させて凍結保存した。


[00454] aEM3細胞の解凍及び回復は、以下の非限定的な手順を用いて達成し得る。CTS OpTmizer基本培地(Thermo Fisher)、CTS OpTmizer細胞添加剤(Thermo Fisher)、ゲンタマイシン(Lonza)、及びGlutamax(Life Technologies)から調製される予め温めた培地中で(37℃)、凍結保存された(cyropreserved)aEM3細胞を徐々に温める。次に浮遊細胞を4℃において1500rpmで5分間遠心する。得られた上清を破棄し、残りのaEM3細胞を前述の培地に再懸濁し、プレーティングする(6ウェルプレートのウェル当たり5×106細胞/10mL)。


[00455] aEM3細胞の増殖は、以下の非限定的な手順を用いて達成し得る。ガス透過性細胞培養フラスコ(即ち、GREX 10フラスコ(Wilson Wolf Manufacturing))に前述の培地のアリコートを調製する。プレーティングしたaEM3細胞を遠心(即ち、4℃において1500rpmで5分間)によって洗浄し、培地に再懸濁し、1〜2×106細胞/mLの細胞密度でGREXフラスコに加える。aEM3細胞懸濁液を30mLの培地で希釈し、次にGREXフラスコをCO2下37℃で3〜4日間インキュベートした。3〜4日後、インキュベーターからGREXフラスコを取り出し、生物学的安全キャビネット(BSC)内に置いた。培養したaEM3細胞をGREXフラスコからピペットで慎重に抜き取り、抜き取りにより得られたものを遠心すると、増加した数のaEM3細胞がもたらされ、これをGREX 10フラスコ当たり10〜20×106細胞の細胞密度で再懸濁し得る。


[00456] aEM3細胞の代替的な凍結保存は、以下の非限定的な手順を用いて達成し得る。aEM3細胞が入った前述のGREX 10フラスコをインキュベーターから取り出し、BSC内に置く。培養したaEM3細胞をGREXフラスコからピペットで慎重に抜き取り、抜き取りにより得られたものを遠心すると、増加した数のaEM3細胞がもたらされ、これをある容積のCryStor 10(Biolife Solutions)に再懸濁すると、クリオバイアル内において10〜100×106細胞/バイアルの濃度がもたらされる。aEM3細胞懸濁液は、凍結容器に入れて−80℃フリーザーに移してもよい。


実施例19 − 凍結保存後のaEM3細胞の急速回復の実証 [00457] CS-10凍結保存培地を使用してTIL−R3細胞株からのaEM3細胞(1〜2×106細胞)を実施例18に記載する手順に従い凍結保存した。次にかかる細胞のバイアルを解凍し、細胞をカウントした。細胞数は、凍結前、解凍後、及び解凍3日後(即ち、解凍回復後)に取った。図86及び図87に示すとおり、2つの別個の実験において総生細胞数は解凍後急速に回復した。


[00458] TIL−R3細胞(1×106細胞)を解凍し(解凍後3日目)、24ウェルプレートの各ウェルに0.5×106/cm2の密度でプレーティングした。0及び3日目、生細胞をカウントして記録した。初回継代時(6日目)、細胞を2×106細胞/cm2又は0.5×106細胞/cm2の密度で分割した。初回継代の終了時に細胞カウントを実施した。得られた細胞数を図88に示し、これは解凍後回復段階及び成長段階の両方を実証している。


[00459] 更に、TIL−R3細胞(20×106細胞)をGREX 10フラスコにおいて2×106/cm2の密度で実施例18に記載する手順に従い培養した。4日目及び8日目、生細胞をカウントして記録した。得られた細胞数を図89に示し、これは4日目〜8日目に細胞が13.9×106細胞/cm2の密度に達したときプラトーに達する凍結保存後の細胞の成長段階を実証する。


実施例20 − aEM3 aAPCと培養したTILのCD8の偏り、拡大培養性能、及びCD3汚染 [00460] 15個の異なるプレREP TIL株(0.4×105細胞)をaEM3 aAPC(本明細書に記載されるとおり)又はPBMCフィーダー(10×106)のいずれか、OKT3(30ng/mL)及びIL−2(3000IU/mL)と共培養し、5日目に6ウェルGrexプレートを使用して培養物を分割した。11日目の時点で培養物をサンプリングし、フローサイトメトリーによって分析した。式(CD8% aEM3)/(CD8% PBMC)によってCD8+細胞の相対比を計算した。図91に示す結果は、aEM3細胞と培養したTILが意外にもCD8+の偏り及びTIL産物の改善を促進することを示している。これらの実験の更なる結果を図92、図93、及び図94に示し、これらの結果は、PBMCフィーダーと共に培養したTILと比較して、aEM3 aAPCと共に培養したTILが同等の拡大培養を呈し、非CD3+細胞汚染が低かったことを示している。


実施例21 − テロメア長測定 [00461] テロメア長を測定するqPCR(定量的ポリメラーゼ連鎖反応)アッセイのため、プレREP又はポストREP(CD3+に関して磁気ビーズ選別した)TILからゲノムDNAを単離した。リアルタイムqPCR方法については、Cawthon, Nucleic Acids Res. 2002, 30(10), e47;及びYang, et al., Leukemia, 2013, 27, 897-906に記載される。簡潔に言えば、96ウェルフォーマットでPCRサーマルサイクラー(Bio-Rad Laboratories, Inc.)を使用してテロメア反復コピー数と単一遺伝子コピー数(T/S)との比を決定した。テロメア又はヘモグロビン(hgb)のいずれかのPCR反応に10ngのゲノムDNAを使用し、及び使用したプライマーは以下のとおりであった: Tel−1bプライマー(CGG TTT GTT TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT)(配列番号40); Tel−2bプライマー(GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC CCT TAC CCT)(配列番号41); hgb1プライマー(GCT TCT GAC ACA ACT GTG TTC ACT AGC)(配列番号42);及び hgb2プライマー(CAC CAA CTT CAT CCA CGT TCA CC)(配列番号43)。


[00462] 試料は全てテロメア及びヘモグロビンの両方の反応によって分析し、分析は同じプレート上でトリプリケートで実施した。試験試料に加えて、各96ウェルプレートには、1301ヒトT細胞白血病細胞株(Sigma及びATCCから入手可能)から単離したゲノムDNAを用いた0.08ng〜250ngの5ポイント標準曲線が含まれた。各試料のT/S比(−dCt)はテロメア閾値サイクル(Ct)中央値からヘモグロビンCt中央値を差し引くことにより計算した。相対的T/S比(−ddCt)は、各未知の試料のT/S比から10.0ng標準曲線ポイントのT/S比を差し引くことにより決定した。


[00463] 結果は図95に示す。示される各データ点が、相対T/S比の測定中央値である。これらの結果は、aEM3と培養したTILがそのテロメア長を維持することを示している。




高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈