首页 / 专利库 / 植物学 / 植物 / 使用谷氧还蛋白增进植物生长和产量

使用谷还蛋白增进植物生长和产量

阅读:211发布:2020-05-08

专利汇可以提供使用谷还蛋白增进植物生长和产量专利检索,专利查询,专利分析的服务。并且本文提供了用于改善 植物 生长的组合物和方法。还提供了用于表达感兴趣基因的表达构建体、包括谷 氧 还蛋白的多肽和编码谷氧还蛋 白蛋白 质的多核苷酸,包含该表达构建体、多核苷酸和多肽的植物,和产生转基因植物的方法,该感兴趣基因的表达可改善农业性质,包括但不限于作物产量、 生物 和 非生物胁迫 耐受性和早期活 力 。,下面是使用谷还蛋白增进植物生长和产量专利的具体信息内容。

1.一种增加作物产量的方法,包括用至少一种谷还蛋白蛋白质编码序列转化植物
2.如权利要求1所述的方法,其中,所述谷氧还蛋白蛋白质编码序列包含选自SEQ ID NO:1和2的序列,或编码选自SEQ ID NO:3和15-102的蛋白质。
3.一种植物,该植物的基因组中稳定地纳入有驱动植物中表达的启动子,该启动子与谷氧还蛋白蛋白质编码序列操作性连接,其中所述启动子相对于所述谷氧还蛋白蛋白质编码序列是异源的。
4.如权利要求3所述的植物,其中,所述谷氧还蛋白蛋白质编码序列包含选自SEQ ID NO:1和2的序列,或编码选自SEQ ID NO:3和15-102的蛋白质。
5.权利要求3-4中任一项所述植物的经转化的种子
6.如权利要求3或4所述的植物,其中所述植物是单子叶植物。
7.如权利要求3或4所述的植物,其中所述植物是双子叶植物。
8.如权利要求1或2所述的方法,其中,所述谷氧还蛋白蛋白质编码序列由维管束鞘细胞偏好启动子表达。
9.如权利要求8所述的方法,其中,所述维管束鞘细胞偏好启动子包含SEQ ID NO:10。
10.如权利要求3或4所述的植物,其中所述驱动植物中表达的启动子是维管束鞘细胞偏好启动子。
11.如权利要求10所述的植物,其中,所述维管束鞘细胞偏好启动子包含SEQ ID NO:
10。
12.一种DNA构建体,所述DNA构建体包含操作性连接的:
a.在植物细胞中有功能的启动子,和
b.编码谷氧还蛋白蛋白质的核酸序列。
13.如权利要求12所述的DNA构建体,其中,所述编码谷氧还蛋白蛋白质的核酸序列包含选自SEQ ID NO:1和2的序列,或编码选自SEQ ID NO:3和15-102的蛋白质。
14.如权利要求12或13所述的DNA构建体,其中,所述在植物细胞中有功能的启动子包含SEQ ID NO:10。
15.如权利要求12-14中任一项所述的DNA构建体,其中,所述启动子相对于所述编码谷氧还蛋白蛋白质的核酸序列是异源的。

说明书全文

使用谷还蛋白增进植物生长和产量

发明领域

[0001] 本发明涉及通过在植物中表达谷氧还蛋白基因来增进植物生长和产量的组合物和方法。
[0002] 发明背景
[0003] 持续增加的世界人口和日渐减少的农业可耕种土地供应推动开发具有增加的生物质和产量的植物。常规农作物园艺改进手段采用选择性育种技术来鉴定具有所需特性的植物。然而,这种选择性育种技术具有几个缺陷,即,这些技术一般是费的并且产生通常含有异源遗传成分的植物,这种异源遗传成分可能并不总是导致所需的性状从亲本植物传递下去。分子生物学的进展提供了精确改良植物种质的手段。植物遗传改造要求分离和操作遗传物质(一般是DNA或RNA的形式)并且随后在植物中导入该遗传物质。这种技术具有向作物或植物递送各种改善的经济、农业或园艺性状的能力。
[0004] 感兴趣的性状包括植物生物质和产量。产量通常定义为可测量的来自作物的有经济价值的产物。这可以量和/或质来定义。产量直接取决于几个因素,例如,器官的数量和尺寸、植物结构(例如,分枝数量)、种子产生、叶衰老等。根发育、营养摄入、胁迫耐受性、光合作用同化速率和早期活力也可能是决定产量的重要因素。因此,优化上述因素可有助于增加作物产量。
[0005] 种子产量的增加是特别重要的性状,因为许多植物的种子对于人和动物消耗而言是重要的。作物例如玉米、稻、小麦、油菜和大豆占人类总热量摄入的超过一半,无论是通过直接消耗它们的种子还是通过消耗在经加工的种子上产生的肉制品。它们也是工业过程中使用的糖、油和许多种代谢物的来源。种子含有胚(新芽和根的来源)和胚乳(在萌发期间和幼苗的早期生长期间供胚生长的营养源)。种子的发育涉及许多基因,并且需要将代谢物从根、叶和茎转移到生长的种子中。尤其是胚乳,其吸收了糖、油和蛋白质的代谢前体并将它们合成为储存大分子以填充种粒。植物生物质的增加对于饲料作物如苜蓿、青贮玉米和干草而言重要。许多基因参与有助于植物生长和发育的代谢途径。调节植物中一种或多种此类基因的表达可产生相对于对照植物具有改善的生长和发育的植物,但通常可产生相对于对照植物具有受损的生长和发育的植物。因此,需要改善植物生长和发育的方法。
[0006] 发明概述
[0007] 提供用于调节植物中基因表达的组合物和方法。所述方法促进植物生长,导致较高作物产量。此类方法包括增加感兴趣植物中至少一种谷氧还蛋白基因的表达。本发明还包括含有启动子的构建体,所述启动子驱动植物细胞中与谷氧还蛋白编码序列操作性连接的表达。组合物还包含具有增加的谷氧还蛋白序列表达的植物、植物种子、植物器官、植物细胞和其它植物部分。本发明包括可以用于增加植物中谷氧还蛋白基因表达的方法。这种谷氧还蛋白基因可以是天然序列,或者可以是相对于感兴趣植物异源的序列。
[0008] 本发明的实施方式包括:
[0009] 1.一种增加作物产量的方法,包括用至少一种谷氧还蛋白蛋白质编码序列(protein-encoding sequence)转化植物。
[0010] 2.如实施方式1所述的方法,其中,所述谷氧还蛋白蛋白质编码序列包含选自SEQ ID NO:1和2的序列,或编码选自SEQ ID NO:3和15-102的蛋白质。
[0011] 3.如实施方式1所述的方法,其中,所述谷氧还蛋白蛋白质编码序列编码了相对于选自SEQ ID NO:3和15-102的序列具有至少80%、90%、95%、96%、97%、98%或99%序列相同性并且具有谷氧还蛋白功能的蛋白质。
[0012] 4.如实施方式1所述的方法,其中,所述谷氧还蛋白蛋白质编码序列编码了相对于选自SEQ ID NO:3和15-102的序列具有至少80%、85%、90%、95%、96%、97%、98%或99%序列阳性(sequence positive)并且具有谷氧还蛋白功能的蛋白质。
[0013] 5.一种植物,该植物基因组中稳定地纳入有驱动植物中表达的启动子,该启动子与谷氧还蛋白蛋白质编码序列操作性连接,其中所述启动子相对于所述谷氧还蛋白蛋白质编码序列是异源的。
[0014] 6.如实施方式5所述的植物,其中,所述谷氧还蛋白蛋白质编码序列包含选自SEQ ID NO:1和2的序列,或编码选自SEQ ID NO:3和15-102的蛋白质。
[0015] 7.如实施方式5所述的植物,其中,所述谷氧还蛋白蛋白质编码序列编码了相对于选自SEQ ID NO:3和15-102的序列具有至少80%、85%、90%、95%、96%、97%、98%或99%序列相同性并且具有谷氧还蛋白功能的蛋白质。
[0016] 8.如实施方式5所述的植物,其中,所述谷氧还蛋白蛋白质编码序列编码了相对于选自SEQ ID NO:3和15-102的序列具有至少80%、85%、90%、95%、96%、97%、98%或99%序列阳性并且具有谷氧还蛋白功能的蛋白质。
[0017] 9.实施方式5-8中任一项所述植物的经转化的种子。
[0018] 10.如实施方式5-8中任一项所述的植物,其中,所述植物是单子叶植物。
[0019] 11.如实施方式10所述的植物,其中,所述植物来自玉米属(Zea)、稻属(Oryza)、小麦属(Triticum)、高粱属(Sorghum)、黑麦属(Secale)、椮属(Eleusine)、粟属(Setaria)、甘蔗属(Saccharum)、芒属(Miscanthus)、黍属(Panicum)、狼尾草属(Pennisetum)、大锥属(Megathyrsus)、椰子属(Cocos)、凤梨属(Ananas)、芭蕉属(Musa)、油棕属(Elaeis)、燕麦属(Avena)或大麦属(Hordeum)。
[0020] 12.如实施方式5-8中任一项所述的植物,其中,所述植物是双子叶植物。
[0021] 13.如实施方式12所述的植物,其中,所述植物来自大豆属(Glycine)、芸苔属(Brassica)、苜蓿属(Medicago)、向日葵属(Helianthus)、红花属(Carthamus)、烟草属(Nicotiana)、茄属(Solanum)、属(Gossypium)、番薯属(Ipomoea)、木薯属(Manihot)、咖啡属(Coffea)、柑橘属(Citrus)、可可属(Theobroma)、山茶属(Camellia)、鳄梨属(Persea)、榕属(Ficus)、番石榴属(Psidium)、芒果属(Mangifera)、油橄榄属(Olea)、番木瓜属(Carica)、腰果属(Anacardium)、澳洲坚果属(Macadamia)、李属(Prunus)、甜菜属(Beta)、杨属(Populus)或桉属(Eucalyptus)。
[0022] 14.如实施方式5-8中任一项所述的植物,其中,所述植物相对于对照植物表现出增加的生长。
[0023] 15.如实施方式5-8中任一项所述的植物,其中,所述植物相对于对照植物表现出增加的生物质产量。
[0024] 16.如实施方式5-8中任一项所述的植物,其中,所述植物相对于对照植物表现出增加的种子产量。
[0025] 17.如实施方式1-4中任一项所述的方法,其中,所述谷氧还蛋白蛋白质编码序列由维管束鞘细胞偏好启动子表达。
[0026] 18.如实施方式17所述的方法,其中,所述维管束鞘细胞偏好启动子包含SEQ ID NO:10。
[0027] 19.如实施方式5-8中任一项所述的植物,其中,所述驱动植物中表达的启动子是维管束鞘细胞偏好启动子。
[0028] 20.如实施方式19所述的植物,其中,所述维管束鞘细胞偏好启动子包含SEQ ID NO:10。
[0029] 21.如实施方式5所述的植物,在其基因组中稳定地纳入有驱动植物中表达的第二启动子,该启动子与第二蛋白质编码序列可操作地连接,其中所述第二启动子相对于所述第二蛋白质编码序列是异源的。
[0030] 22.一种DNA构建体,所述DNA构建体包含操作性连接的,
[0031] a.在植物细胞中有功能的启动子,和
[0032] b.编码谷氧还蛋白蛋白质的核酸序列。
[0033] 23.如实施方式22所述的DNA构建体,其中,所述编码谷氧还蛋白蛋白质的核酸序列包含选自SEQ ID NO:1和2的序列,或编码选自SEQ ID NO:3和15-102的蛋白质。
[0034] 24.如实施方式22或23所述的DNA构建体,其中,所述编码谷氧还蛋白蛋白质的核酸序列编码了相对于选自SEQ ID NO:3和15-102的序列具有至少80%、85%、90%、95%、96%、97%、98%或99%序列相同性并且具有谷氧还蛋白功能的蛋白质。
[0035] 25.如实施方式22或23所述的DNA构建体,其中,所述编码谷氧还蛋白蛋白质的核酸序列编码了相对于选自SEQ ID NO:3和15-102的序列具有至少80%、85%、90%、95%、96%、97%、98%或99%序列阳性并且具有谷氧还蛋白功能的蛋白质。
[0036] 26.如实施方式22或23所述的DNA构建体,其中,所述在植物细胞中有功能的启动子包含SEQ ID NO:10。
[0037] 27.如实施方式22-26中任一项所述的DNA构建体,其中,所述启动子相对于所述编码谷氧还蛋白蛋白质的核酸序列是异源的。
[0038] 28.一种提高作物产量的方法,包括调节植物中至少一种谷氧还蛋白蛋白质编码序列的表达。
[0039] 29.如实施方式28所述的方法,其中,所述调节表达包括增加植物中至少一种谷氧还蛋白蛋白质编码序列的表达。
[0040] 30.如实施方式29所述的方法,其中,所述增加表达包括增加所述植物中天然谷氧还蛋白序列的活性或增加所述植物中天然谷氧还蛋白蛋白质编码序列的活性。
[0041] 31.如实施方式5-8中任一项所述的植物,其中所述驱动植物中表达的启动子在叶组织中有活性。
[0042] 32.如实施方式22-27中任一项所述的DNA构建体,其中所述在植物细胞中有功能的启动子在叶组织中有活性。
[0043] 发明详述
[0044] 提供用于增加作物生物质和产量的组合物和方法。所述方法包括增加感兴趣植物中至少一种谷氧还蛋白基因的表达。作物产量是极其复杂的性状,其来自作物植物在其发育的所有阶段的生长以及植物资源向植物的可收获部分的分配。在包括但不限于玉米和大豆的一些作物中,主要可收获部分可包括种子,次要应用来自生物质的剩余物(例如,叶和茎)。在包括但不限于甘蔗和苜蓿的其它作物中,植物的主要可收获部分由植物的茎或整个地上部分组成。在包括但不限于铃薯和胡萝卜的其它作物中,植物的主要可收获部分位于地下。无论作物植物的收获部分如何,可收获的生物质的积累都是由植物生长和光合固定碳分配到植物的收获部分的结果。可以通过调节一种或多种植物基因的表达来操纵植物生长。该调节可以改变一种或多种代谢途径的功能,所述代谢途径有助于植物生长和可收获生物质的积累。
[0045] 本发明的方法包括通过调节编码谷氧还蛋白蛋白质的一种或多种基因的表达来操纵植物生长以提高产量。在一个优选的实施方式中,谷氧还蛋白蛋白质编码基因的表达相对于对照植物中的谷氧还蛋白表达水平上调,导致相对于对照植物具有增加的谷氧还蛋白表达的植物中可收获的生物质增加。用于增加植物中谷氧还蛋白蛋白质编码序列的活性或表达的任何方法都包括在本发明中。
[0046] 本发明的组合物包括构建体,其包含SEQ ID NO:1和2所示的编码序列或编码选自SEQ ID NO:3和15-102或其变体的蛋白质,所述构建体操作性地连接于植物细胞中有功能的启动子。“启动子”意指DNA的调节区,其能够驱动植物或植物细胞中序列的表达。已经认识到,鉴定了本文公开的谷氧还蛋白序列后,分离和鉴定其它谷氧还蛋白序列以及编码谷氧还蛋白蛋白质序列的核苷酸序列(例如通过BLAST搜索、PCR测定等)落在本领域的技术范围内。
[0047] 当在DNA构建体中组装本发明的编码序列从而启动子操作性地连接感兴趣的编码序列时,本发明的编码序列使得在用该DNA构建体稳定转化的植物细胞中表达并积累谷氧还蛋白蛋白质。“操作性地连接”是指2个或更多个元件之间的功能性连接。例如,本发明的启动子和感兴趣的异源性核苷酸之间的操作性连接是功能性连接,其允许表达该感兴趣的异源性核苷酸序列。操作性地连接的元件可以是邻近的或非邻近的。当用于两个蛋白质编码区域之间的接合时,述及操作性地连接意在表示这些编码区域处于同一阅读框中。盒还可含有待共转化到植物中的至少一种其它基因。或者,可在多个表达盒或DNA构建体上提供其它基因。表达盒还可含有可选择的标志物基因。
[0048] 由此,编码本发明的谷氧还蛋白蛋白质的核苷酸序列在表达盒或表达构建体中伴随感兴趣的启动子序列(通常是异源性启动子序列)一起提供,用于在感兴趣的植物中表达。"异源性启动子序列"意在表示与编码谷氧还蛋白蛋白质的核苷酸序列非天然地操作性连接的序列。虽然编码谷氧还蛋白蛋白质的核苷酸序列和启动子序列彼此是异源的,但编码谷氧还蛋白的核苷酸序列或异源启动子序列对植物宿主可以是同源的、或天然的、或异源的、或外源的。公认地,启动子还可驱动其同源的或天然的核苷酸序列的表达。在该情况中,转化的植物将具有表型变化。
[0049] 本发明的多核苷酸和基酸序列的片段和变体也可以由可在植物细胞中操作的启动子表达。“片段”是指多核苷酸的部分或氨基酸序列的部分。“变体”是指基本相似的序列。对于多核苷酸,变体包括具有以下的多核苷酸:在5'和/或3'端处的缺失(即,截短);在天然多核苷酸中一个或多个内部位点处一个或多个核苷酸的缺失和/或添加;和/或在天然多核苷酸中一个或多个位点处一个或多个核苷酸的取代。本文所用的“天然”多核苷酸或多肽分别包含天然产生的核苷酸序列或氨基酸序列。一般而言,本发明的特定多核苷酸的变体将与该特定多核苷酸有至少约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列相同性,如由本文他处所述的序列比对程序和参数所确定。本文公开的多核苷酸的片段和变体可以编码保留谷氧还蛋白功能的蛋白质。
[0050] “变体”氨基酸或蛋白是指通过下述过程衍生自天然氨基酸或蛋白质的氨基酸或蛋白质:在天然蛋白质的N-末端和/或C-末端处缺失(也称为截短)一个或多个氨基酸,在天然蛋白质的一个或多个内部位点处缺失和/或添加一个或多个氨基酸,或在天然蛋白质的一个或多个位点处取代一个或多个氨基酸。本发明包括的变体蛋白质有生物活性,即它们继续具有原始蛋白质的所需生物活性,例如通过基材进行氧化以及通过谷胱甘肽进行非酶还原。天然多肽的生物活性变体将与由本文所述的序列比对程序和参数确定的原始序列的氨基酸序列具有至少约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列相同性。在一些实施方式中,变体多肽序列将包含保守氨基酸取代。可以使用此类保守氨基酸取代的数目与氨基酸相同性数目的加和来计算序列阳性,用该加和除以感兴趣序列中的氨基酸总数。序列阳性计算在NCBI BLAST服务器上进行,该服务器可在万维网上以blast.ncbi.nlm.nih.gov/Blast.cgi访问。本发明的蛋白质的生物活性变体与该蛋白质可相差少至1-15个氨基酸残基,少至1-10个,如6-10个,少至5个,少至4、3、2或甚至1个氨基酸残基。
[0051] 氨基酸通常可以分类为脂族的,含羟基或硫/硒的,环形的,芳族的,性的或酸性的及其酰胺。不受理论限制,保守氨基酸取代在某些情况下可能比非保守氨基酸取代优选用于产生变体蛋白质序列,因为保守取代可能比非保守取代更可能允许变体蛋白质保留其生物活性。编码序列中具有一个或多个氨基酸取代的多肽的多核苷酸涵盖在本发明的范围内。下表1提供属于各类别的氨基酸的示例。
[0052] 表1:氨基酸类型
[0053]
[0054] 也可通过分析经测序的基因组的现有数据库来鉴定变体序列。在这种方式中,可鉴定相应序列并用于本发明的方法中。
[0055] 比对序列用于比较的方法是本领域熟知的。因此,可采用数学算法确定任意两个序列的序列相同性百分数。该数学算法的非限制性示例是Myers和Miller(1988)CABIOS 4:11-17的算法;Smith等.(1981)Adv.Appl.Math.2:482的局部比对算法;Needleman和Wunsch(1970)J.Mol.Biol.48:443-453的全局比对算法;Pearson和Lipman(1988)
Proc.Natl.Acad.Sci.85:2444-2448的搜索局部比对方法;Karlin和Altschul(1990)Proc.Natl.Acad.Sci.USA 87:2264-2268的算法,由Karlin和Altschul(1993)
Proc.Natl.Acad.Sci.USA 90:5873-5877改良。
[0056] 这些数学算法的计算机实施手段可用于比较序列来确定序列相同性。这类实施手段包括但不限于:PC/Gene程序中的CLUSTAL(购自美国加利福尼亚州芒廷维尤的智慧遗传公司(Intelligenetics,Mountain View,California);ALIGN程序(2.0版)和GCG Wisconsin遗传软件包中的GAP,BESTFIT、BLAST、FASTA和TFASTA,第10版(购自阿克赛勒里公司(Accelrys Inc.),美国加利福尼亚州圣地亚哥Scranton路9685号)。可用默认参数来进行使用这些程序的比对。CLUSTAL程序由以下详细描述:Higgins等,(1988)Gene 73:237-244(1988);Higgins等,(1989)CABIOS5:151-153;Corpet等,(1988)Nucleic Acids Res.16:10881-90;Huang等,(1992)CABIOS 8:155-65;和Pearson等,(1994)
Meth.Mol.Biol.24:307-331。ALIGN程序基于Myers和Miller(1988)(同上)的算法。比较氨基酸序列时,PAM120权重残基表、缺口长度罚分12和缺口罚分4可与ALIGN程序联用。
Altschul等,(1990)J.Mol.Biol.215:403的BLAST程序基于Karlin和Altschul(1990)(同上)的算法。可利用BLASTN程序进行BLAST核苷酸搜索(评分=100,字长=12),以获得与编码本发明蛋白质的核苷酸序列同源的核苷酸序列。可利用BLASTX程序进行BLAST蛋白质搜索(评分=50,字长=3),以获得与本发明蛋白质或多肽同源的氨基酸序列。为了获得缺口比对(出于比较目的),可如Altschul等,(1997)Nucleic Acids Res.,25:3389所述利用缺口BLAST(在BLAST 2.0中)。或者,可利用PSI-BLAST(在BLAST 2.0中)进行迭代搜索,其用来检测分子之间的远近关系。参见Altschul等,(1997)同上。利用BLAST、缺口BLAST和PSI-BLAST程序时,可使用各程序(例如针对蛋白质的BLASTX,针对核苷酸序列的BLASTN)的默认参数。参见www.ncbi.nlm.nih.gov。也可通过检查来人工进行比对。
[0057] 可以对这些基因和编码区进行密码子优化以在感兴趣的植物中表达。"密码子优化的基因"是这样的基因,其密码子使用频率经设计以模拟宿主细胞的偏好密码子使用频率。核酸分子可以是完全或部分优化的密码子。因为任一氨基酸(除了甲硫氨酸和色氨酸)均由多种密码子编码,所述核酸分子的序列可变化但不改变编码的氨基酸。密码子优化是在核酸水平上改变一种或多种密码子时,致使氨基酸不变,但在具体的宿主生物体中的表达增加。本领域普通技术人员将知晓密码子表格,并且,提供关于广泛生物体的偏好信息的其它参考文献是本领域中可得的(参见例如,Zhang等.(1991)Gene 105:61-72;Murray等.(1989)Nucl.Acids Res.17:477-508)。优化用于在植物中表达的核苷酸序列的方法学提供于,例如,美国专利号6,015,891和其中引用的参考文献,以及WO2012/142371和其中引用的参考文献。
[0058] 本发明的核苷酸序列可用于重组多核苷酸。“重组多核苷酸”包含两个或更多个化学连接的核酸区段的组合,这些区段未被发现在自然中直接接合。“直接接合”指2个核酸区段紧邻并且通过化学键互相接合。在具体实施方式中,重组多核苷酸包含感兴趣多核苷酸或其活性变体或片段,使得其它化学连接的核酸区段位于感兴趣多核苷酸的5’、3’或内部。或者,可通过删除序列来形成重组多核苷酸的化学连接的核酸区段。其它化学连接的核酸区段或被删除以接合所述连接的核酸区段的序列可以是任意长度,包括,例如,1、2、3、4、5、
6、7、8、9、10、15、20或更多核苷酸。本文公开了用于制备这种重组多核苷酸的各种方法,例如,通过化学合成来制备,或通过借助于遗传工程技术对多核苷酸的分离区段进行的操作来制备。在具体实施方式中,重组多核苷酸可包含重组DNA序列或重组RNA序列。“重组多核苷酸的片段”包含两个或更多个化学连接的氨基酸区段的组合中的至少一个,这些区段未被发现在自然中直接接合。
[0059] “改变”或“调节”基因的表达水平是指上调或下调所述基因的表达。公认地,在一些情况中,通过增加编码谷氧还蛋白蛋白质的一种或多种基因的表达水平(即,上调表达)来增加植物生长和产量。类似地,在一些情况中,可通过降低编码谷氧还蛋白蛋白质的一种或多种基因的表达水平(即,下调表达)来增加植物生长和产量。因此,本发明包括上调或下调编码谷氧还蛋白蛋白质的一种或多种基因。此外,所述方法包括在感兴趣的植物中上调编码谷氧还蛋白蛋白质的至少一种基因和下调编码第二谷氧还蛋白蛋白质的至少一种基因。调节转基因植物中编码谷氧还蛋白蛋白质的至少一种基因的浓度和/或活性表示所述浓度和/或活性相对于不导入本发明的序列的天然对照植物、植物部分或细胞来说增大或减小至少约1%、约5%、约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%,或约90%,或更多。
[0060] 一般认为,编码本发明谷氧还蛋白蛋白质的基因的表达水平可通过采用在植物细胞中有功能的一种或多种启动子来控制。感兴趣的编码谷氧还蛋白蛋白质的基因的表达水平可直接检测,例如,通过测定植物中的谷氧还蛋白基因转录本的水平或编码的蛋白质的水平。所述测定的方法是本领域熟知的。例如,RNA印迹法(Northern blotting)或定量逆转录酶-PCR(qRT-PCR)可用于评估转录本水平,而蛋白质印迹法(western blotting)、ELISA测定或酶测定可用于评估蛋白质水平。谷氧还蛋白功能可以通过例如商业荧光测定法(密歇根州安阿伯的开曼化学公司(Cayman Chemical,Ann Arbor,MI))来评估。
[0061] “对象植物或植物细胞”是已经实现感兴趣的编码谷氧还蛋白的基因的遗传改变(如转化)的植物或植物细胞,或者是源自如此改变并包含该改变的植物或细胞。“对照”或“对照植物”或“对照植物细胞”提供了测量对象植物或植物细胞的表型变化的参照点。因此,根据本发明的方法,感兴趣的编码谷氧还蛋白蛋白质的基因的表达水平高于或低于对照植物中的表达水平。
[0062] 一种对照植物或植物细胞可包含,例如:(a)野生型植物或细胞,即具有与用于产生对象植物或细胞的遗传改变的起始材料相同的基因型;(b)与起始材料有相同基因型但已经用无效构建体(即,用对感兴趣性状没有已知影响的构建体,如包含标记基因的构建体)转化的植物或植物细胞;(c)植物或植物细胞,其是对象植物或植物细胞的后代中的非转化分离体;(d)与对象植物或植物细胞在遗传上相同但没有接触会诱导感兴趣基因表达的条件或刺激的植物或植物细胞;或(e)在不表达感兴趣基因的条件下的对象植物或植物细胞本身。
[0063] 虽然本发明以转化的植物描述,应认识到本发明的转化的生物体可包括植物细胞、植物原生质体、可再生出植物的植物组织培养物、植物愈伤组织、植物和在植物或植物部分中完整的植物细胞如胚胎、花粉、胚珠、种子、叶、花、枝条、果实、仁、穗、穗轴、外壳、柄、根、根尖、花粉囊等。种粒是指由商业种植者出于生长或繁殖物种以外的目的产生的成熟种子。再生植物的后代、变体和突变体也包括在本发明的范围内,只要这些部分包含导入的多核苷酸。
[0064] 为了下调感兴趣的编码谷氧还蛋白的基因的表达,可构建与感兴趣基因(特别是编码感兴趣的谷氧还蛋白的基因)序列的信使RNA(mRNA)的至少一部分互补的反义构建体。设计反义核苷酸以与相应mRNA杂交。可进行反义序列的修饰,只要该序列杂交并干扰相应mRNA的表达。由此,可使用与待沉默的相应序列有70%,较佳80%,更佳85%、90%、95%或更大的序列相同性的反义构建形式。此外,可使用反义核苷酸的部分来破坏靶基因的表达。
[0065] 可使用本发明的多核苷酸来从其它植物中分离相应序列。由此,PCR、杂交等方法可用于根据此类序列与本文所示序列的序列同源性或相同性来鉴定该此类序列。根据该序列与本文所示完整序列的或与其变体和片段的序列相同性而分离的序列涵盖在本发明中。此类序列包括公开序列的直向同源物序列。“直向同源物”是指源自共同祖先基因且由于物种形成而在不同物种中发现的基因。在不同物种中发现的基因当它们的核苷酸序列和/或它们的编码蛋白质序列具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、
96%、97%、98%、99%或更大的序列相同性时被认为是直向同源物。直向同源物的功能通常在物种之间高度保守。因此,本发明涵盖分离的多核苷酸,该分离的多核苷酸具有转录活化或增强子活性,并且与本文公开的序列或与其变体或片段具有至少75%的序列相同性。
[0066] 可通过PCR分离变体序列。设计PCR引物和PCR克隆的方法是本领域熟知的并且公开于Sambrook等,(1989)《分子克隆:实验室手册》(Molecular Cloning:A Laboratory Manual)(第2版,纽约州普莱恩维尤的冷泉港出版社)。还参见Innis等编,(1990)《PCR方案:方法和应用指南》(PCR Protocols:A Guide to Methods and Applications)(纽约学术出版社);Innis和Gelfand编,(1995)《PCR策略》(PCR Strategies)(纽约学术出版社);以及Innis和Gelfand编,(1999)《PCR方法手册》(PCR Methods Manual)(纽约学术出版社)。
[0067] 也可通过分析经测序的基因组的现有数据库来鉴定变体序列。在这种方式中,可鉴定编码谷氧还蛋白蛋白质的相应序列并用于本发明的方法中。变体序列将保留谷氧还蛋白蛋白质的生物活性(即,通过基材进行氧化以及通过谷胱甘肽进行非酶还原)。出人意料地,本发明显示了谷氧还蛋白蛋白质过表达的某些新型表达策略可以导致生物质和种子产量的增加。
[0068] 表达盒将在5'-3'转录方向上包括转录和翻译起始区,编码本发明谷氧还蛋白蛋白质的多核苷酸,和在植物中有功能的转录和翻译终止区(即,终止区)。
[0069] 本发明的实践中可使用多种启动子。编码本发明谷氧还蛋白蛋白质的多核苷酸可以由具有组成型表达谱的启动子表达。组成型启动子包括CaMV 35S启动子(Odell等,(1985)Nature 313:810-812);水稻肌动蛋白(McElroy等,(1990)Plant Cell 2:163-171);泛素(Christensen等,(1989)Plant Mol.Biol.12:619-632和Christensen等,(1992)Plant Mol.Biol.18:675-689);pEMU(Last等,(1991)Theor.Appl.Genet.81:581-588);MAS(Velten等,(1984)EMBO J.3:2723-2730);ALS启动子(美国专利号5,659,026)等。
[0070] 编码本发明谷氧还蛋白的本发明多核苷酸可以由组织偏好启动子表达。组织偏好启动子包括Yamamoto等,(1997)Plant J.12(2):255-265;Kawamata等,(1997)Plant Cell Physiol.38(7):792-803;Hansen等,(1997)Mol.Gen Genet.254(3):337-343;Russell等,(1997)Transgenic Res.6(2):157-168;Rinehart等,(1996)Plant Physiol.112(3):1331-1341;Van Camp等,(1996)Plant Physiol.112(2):525-535;Canevascini等,(1996)Plant Physiol.112(2):513-524;Yamamoto等,(1994)Plant Cell Physiol.35(5):773-778;Lam(1994)Results Probl.Cell Differ.20:181-196;Orozco等,(1993)Plant Mol Biol.23(6):1129-1138;Matsuoka等,(1993)Proc Natl.Acad.Sci.USA 90(20):9586-9590;和Guevara-Garcia等,(1993)Plant J.4(3):495-505。叶偏好启动子也是本领域已知的。参见,例如,Yamamoto等,(1997)Plant J.12(2):255-265;Kwon等,(1994)Plant Physiol.105:357-67;Yamamoto等,(1994)Plant Cell Physiol.35(5):773-778;Gotor等,(1993)Plant J.3:509-18;Orozco等,(1993)Plant Mol.Biol.23(6):1129-1138;和Matsuoka等,(1993)Proc.Natl.Acad.Sci.USA 90(20):9586-9590。
[0071] 发育调节的启动子可能是表达编码谷氧还蛋白蛋白质的多核苷酸所需的。此类启动子可在特定发育阶段显示表达峰。此类启动子已在本领域中描述,例如US 62/029,068;Gan和Amasino(1995)Science 270:1986-1988;Rinehart等(1996)Plant Physiol 112:
1331-1341;Gray-Mitsumune等(1999)Plant Mol Biol 39:657-669;Beaudoin和Rothstein(1997)Plant Mol Biol 33:835-846;Genschik等(1994)Gene 148:195-202等。
[0072] 施用特定生物和/或非生物胁迫后诱导的启动子可能是表达编码谷氧还蛋白蛋白质的多核苷酸所需的。此类启动子已在本领域中描述,例如,Yi等(2010)Planta 232:743-754;Yamaguchi-Shinozaki和Shinozaki(1993)Mol Gen Genet 236:331-340;美国专利号
7,674,952;Rerksiri等(2013)Sci World J 2013:文章号397401;Khurana等(2013)PLoS One 8:e54418;Tao等(2015)Plant Mol Biol Rep 33:200-208等。
[0073] 细胞偏好启动子可能是表达编码谷氧还蛋白蛋白质的多核苷酸所需的。这些启动子可以优先驱动特定细胞类型(例如叶肉细胞或维管束鞘细胞)中的下游基因的表达。这种细胞偏好启动子已在本领域中描述,例如Viret等(1994)Proc Natl Acad USA 91:8577-8581;美国专利号8,455,718;美国专利号7,642,347;Sattarzadeh等(2010)Plant Biotechnol J 8:112-125;Engelmann等(2008)Plant Physiol 146:1773-1785;Matsuoka等(1994)Plant J 6:311-319等。
[0074] 认识到特异性非组成型表达谱可相对于一种或多种感兴趣基因的组成型表达提供改善的植物表型。例如,通过光条件、施加特定胁迫、昼夜循环或植物发育阶段来调节许多植物基因。这些表达谱对于植物中基因或基因产物的功能而言是非常重要的。可用于提供所需的表达谱的一个策略是使用含有在植物中所需的时间和位置处驱动所需的表达水平的顺式调节元件的合成启动子。已经在科学文献中描述了可用于在植物中改变基因表达的顺式调节元件(Vandepoele等,(2009)Plant Physiol 150:535-546;Rushton等,(2002)Plant Cell 14:749-762)。顺式调节元件也可用于改变启动子表达谱,如Venter(2007)Trends Plant Sci 12:118-124所述。
[0075] 本领域已知植物终止子并且包括来自根癌土壤杆菌(A.tumefaciens)的Ti-质粒的那些,如真蛸碱合酶和胆脂碱合酶终止区。还参见Guerineau等,(1991)Mol.Gen.Genet.262:141-144;Proudfoot(1991)Cell 64:671-674;Sanfacon等(1991)Genes Dev.5:141-149;Mogen等,(1990)Plant Cell 2:1261-1272;Munroe等,(1990)Gene 
91:151-158;Ballas等,(1989)Nucleic Acids Res.17:7891-7903;和Joshi等,(1987)Nucleic Acids Res.15:9627-9639。
[0076] 如上所述,本发明的编码谷氧还蛋白蛋白质的核苷酸可用于表达盒中,以转化感兴趣的植物。转化方案以及向植物中导入多肽或多核苷酸序列的方案可根据转化靶向的植物或植物细胞的类型(即,单子叶或双子叶)而变化。术语“转化”或“转化法”是指用于将多肽或多核苷酸引入植物细胞的任何方法。向植物细胞中导入多肽和多核苷酸的合适方法包括微注射(Crossway等,(1986)Biotechniques 4:320-334)、电穿孔(Riggs等,(1986)Proc.Natl.Acad.Sci.USA 83:5602-5606),农杆菌-介导的转化(美国专利号5,563,055和美国专利号5,981,840),直接基因转移(Paszkowski等,(1984)EMBO J.3:2717-2722),和弹道颗粒加速(ballistic particle acceleration)(参见例如,美国专利号4,945,050;美国专利号5,879,918;美国专利号5,886,244;和5,932,782;Tomes等,(1995)《植物细胞、组织和器官培养中的基础方法》(Plant Cell,Tissue,and Organ Culture:Fundamental Methods),Gamborg和Phillips编(施普林格(Springer-Verlag),柏林);McCabe等,(1988)Biotechnology 6:923-926);和Lec1转化(WO 00/28058)。还参见Weissinger等,(1988)Ann.Rev.Genet.22:421-477;Sanford等,(1987)Particulate Science and Technology 5:27-37(洋葱);Christou等,(1988)Plant Physiol.87:671-674(大豆);McCabe等,(1988)Bio/Technology 6:923-926(大豆);Finer和McMullen(1991)In  Vitro Cell 
Dev.Biol.27P:175-182(大豆);Singh等,(1998)Theor.Appl.Genet.96:319-324(大豆);
Datta等,(1990)Biotechnology 8:736(水稻);Klein等,(1988)Proc.Natl.Acad.Sci.USA 
85:4305-4309(玉米);Klein等,(1988)Biotechnology6:559-563(玉米);美国专利号5,
240,855;5,322,783;和5,324,646;Klein等,(1988)Plant Physiol.91:440-444(玉米);
Fromm等,(1990)Biotechnology 8:833-839(玉米);Hooykaas-Van Slogteren等,(1984)Nature(伦敦)311:763-764;美国专利号5,736,369(谷类);Bytebier等,(1987)Proc.Natl.Acad.Sci.USA 84:5345-5349(百合科(Liliaceae));De Wet等,(1985)《胚珠组织实验操作》(The Experimental Manipulation of Ovule Tissues),Chapman等编,(纽约朗文出版社(Longman,New York),第197-209页(花粉);Kaeppler等,(1990)Plant Cell Reports 9:415-418和Kaeppler等,(1992)Theor.Appl.Genet.84:560-566(须-介导的转化);D'Halluin等,(1992)Plant Cell 4:1495-1505(电穿孔);Li等,(1993)Plant Cell Reports 12:250-255以及Christou和Ford(1995)Annals of Botany 75:407-413(水稻);
Osjoda等,(1996)Nature Biotechnology 14:745-750(玉米,通过根癌农杆菌
(Agrobacterium tumefaciens));其全部通过引用纳入本文。“稳定转化”是指导入植物的核苷酸构建体整合到植物的基因组中并且能够被其后代遗传。
[0077] 按照常规方式,已经转化的细胞可长成植物。参见,例如,McCormick等,(1986)Plant Cell Reports 5:81-84。由此,本发明提供了转化的种子(也称为“转基因种子”,所述种子具有稳定纳入其基因组中的本发明的多核苷酸,例如,本发明的表达盒。
[0078] 本发明可用于任何植物物种(包括但不限于单子叶和双子叶)的转化。感兴趣植物物种的示例包括但不限于:玉米(Zea mays)、油菜种(例如甘蓝型油菜(B.napus)、白菜型油菜(B.rapa)、芥菜型油菜(B.juncea))、尤其是用作菜籽油来源的那些油菜物种、苜蓿(Medicago sativa)、水稻(Oryza sativa)、黑麦(Secale cereale)、高粱(Sorghum bicolor,Sorghum vulgare)、荠蓝(Camelina sativa)、粟(例如珍珠粟(Pennisetum glaucum)、黍(Panicum miliaceum)、小米(Setaria italica)、穇子(Eleusine coracana))、向日葵(Helianthus annuus)、藜(Chenopodium quinoa)、菊苣(Cichorium intybus)、莴苣(Lactuca sativa),红花(Carthamus tinctorius)、小麦(Triticum aestivum)、大豆(Glycine  max)、烟草(Nicotiana tabacum)、马铃薯(Solanum tuberosum)、花生(Arachis hypogaea)、棉花(Gossypium barbadense,Gossypium hirsutum)、甘薯(Ipomoea batatas)、木薯(Manihot esculenta)、咖啡(Coffea spp.)、椰子(Cocos nucifera)、菠萝(Ananas comosus)、柠檬树(Citrus spp.)、可可(Theobroma cacao)、茶(Camellia sinensis)、香蕉(Musa spp.)、鳄梨(Persea americana)、无花果(Ficus casica)、番石榴(Psidium guajava)、芒果(Mangifera indica)、橄榄(Olea europaea)、番木瓜(Carica papaya)、腰果(Anacardium occidentale)、澳洲坚果(Macadamia integrifolia)、杏(Prunus amygdalus)、甜菜(Beta vulgaris)、甘蔗(Saccharum spp.)、油棕榈(Elaeis guineensis)、白杨(杨树属(Populus spp.))、桉树(Eucalyptus spp.)、燕麦(Avena sativa)、大麦(Hordeum vulgare)、蔬菜、观赏植物和针叶树。
[0079] 在一个实施方式中,使用构建体转化一个或多个植物细胞,所述构建体含有在植物细胞中可操作的启动子,该启动子与编码本发明谷氧还蛋白蛋白质的编码序列操作性连接。将一个或多个转化的植物细胞再生以产生转化的植物。用包含驱动本发明谷氧还蛋白蛋白质编码多核苷酸表达的功能性启动子的构建体转化的这些植物表现出增加的植物产量,即,增加的地上生物质和/或增加的可收获生物质和/或增加的种子产量。
[0080] 目前,已证明上调谷氧还蛋白能增加植物产量,可采用用于增加感兴趣的植物中的内源性谷氧还蛋白序列的表达的其它方法。植物的基因组中存在的谷氧还蛋白基因的表达可通过在所述植物的基因组中存在的谷氧还蛋白基因的上游插入转录增强子来改变。该策略将允许谷氧还蛋白因子基因的表达维持其正常发育状况,同时显示升高的转录本水平。该策略将采用针对感兴趣的基因组序列设计的大范围核酸酶,通过在感兴趣的谷氧还蛋白基因上游插入增强子元件来实现。或者,与针对感兴趣基因组序列设计的引导RNA(gRNA)偶联的Cas9核酸内切酶,或与针对感兴趣基因组序列设计的gRNA偶联的Cpf1核酸内切酶,或与针对感兴趣基因组序列设计的gRNA偶联的Csm1核酸内切酶,用于实现在感兴趣的谷氧还蛋白基因的上游插入增强子元件。或者,将与转录增强子元件融合的失活的核酸内切酶(例如,失活的Cas9、Cpf1或Csm1核酸内切酶)靶向感兴趣的谷氧还蛋白基因的转录起始位点附近的基因组位置,从而调节所述感兴趣的谷氧还蛋白基因的表达(Piatek等(2015)Plant Biotechnol J 13:578-589)。
[0081] 编码谷氧还蛋白的基因的表达的调节可通过采用精确基因组编辑技术以调节内源性序列的表达来实现。由此,通过使用本领域已知的方法将核酸插入编码谷氧还蛋白的天然植物序列附近。这类方法包括但不限于针对感兴趣植物基因组序列设计的大范围核酸酶(D’Halluin等,(2013)Plant Biotechnol J 11:933-941);CRISPR-Cas9,CRISPR-Cpf1,TALEN,和其它精确编辑基因组的技术(Feng等,(2013)Cell Research 23:1229-1232,Podevin等,(2013)Trends Biotechnology 31:375-383,Wei等,(2013)J Gen Genomics 40:281-289,Zhang等,(2013)WO 2013/026740,Zetsche等(2015)Cell 163:759-771,美国专利申请号9,896,696、美国专利申请15/806,890);格里嗜盐碱杆菌属(N.gregoryi)亚尔古(Argonaute)-介导的DNA插入(Gao等(2016)Nat Biotechnol doi:10.1038/nbt.3547);
Cre-lox位点-特异性重组(Dale等,(1995)Plant J 7:649-659;Lyznik等,(2007)Transgenic Plant J 1:1-9;FLP-FRT重组(Li等,(2009)Plant Physiol 151:1087-1095);
Bxb1-介导的整合(Yau等,Plant J(2011)701:147-166);锌指介导的整合(Wright等,(2005)Plant J 44:693-705);Cai等,(2009)Plant Mol Biol 69:699-709);和同源重组(Lieberman-Lazarovich和Levy(2011)Methods Mol Biol 701:51-65);Puchta,H.(2002)Plant Mol Biol 48:173-182)。将利用所述核酸序列的插入来实现谷氧还蛋白基因的过表达、表达降低和/或表达谱改变的所需结果。
[0082] 增强子包括能够在插入植物的基因组时增强基因表达的任何分子。因此,可将增强子插入位于感兴趣的谷氧还蛋白序列的上游或下游的基因组区中以增强表达。相对于表达将被增强的基因,增强子可以起顺式作用,并且可位于基因组内的任何位置。例如,增强子可位于其所增强表达的编码序列的约1Mbp以内,约100kbp以内,约50kbp、约30kbp、约20kbp、约10kbp、约5kbp、约3kbp、或约1kbp以内。增强子也可位于其所增强表达的基因的约
1500bp以内,或者可紧邻其所增强表达的基因的内含子或位于该内含子以内。本发明的用于调节编码谷氧还蛋白或同源物的内源性基因表达的增强子包括经典增强子元件,如CaMV 
35S增强子元件、巨细胞病毒(CMV)早期启动子增强子元件和SV40增强子元件,还包括增强基因表达的内含子-介导的增强子元件如玉米shrunken-1增强子元件(Clancy和Hannah(2002)Plant Physiol.130(2):918-29)。可导入植物基因组以调节表达的增强子的其它示例包括PetE增强子(Chua等,(2003)Plant Cell 15:11468-1479),或水稻α-淀粉酶增强子(Chen等,(2002)J.Biol.Chem.277:13641-13649),或本领域已知的任何增强子(Chudalayandi(2011)Methods Mol.Biol.701:285-300)。在一些实施方式中,本发明包括亚结构域、片段或重复增强子元件(Benfrey等,(1990)EMBO J 9:1677-1684)。
[0083] 谷氧还蛋白基因表达的改变还可通过以不改变DNA序列的方式来修饰该DNA而实现。此类改变可包括修饰感兴趣的谷氧还蛋白基因的染色质含量或结构和/或该谷氧还蛋白基因周围的DNA的染色质含量或结构。众所周知,染色质含量或结构中的此类变化能够影响基因转录(Hirschhorn等(1992)Genes and Dev 6:2288-2298;Narlikar等(2002)Cell 108:475-487)。此类改变可包括改变感兴趣的谷氧还蛋白基因和/或该谷氧还蛋白基因周围的DNA的甲基化状态。众所周知的是,DNA甲基化中的此类变化能够改变转录(Hsieh(1994)Mol Cell Biol 14:5487-5494)。经靶向的表观基因组编辑已被证明以可预测的方式影响基因的转录(Hilton等(2015)33:510-517)。本领域技术人员显见的是,可对DNA施用调节感兴趣的谷氧还蛋白基因的转录的其它类似改变(统称为“表观遗传学改变”),以获得经改变的谷氧还蛋白基因表达谱的所需结果。
[0084] 谷氧还蛋白基因表达的改变还可通过采用转座元件技术来改变基因表达来实现。众所周知,转座元件能够改变附近DNA的表达(McGinnis等(1983)Cell 34:75-84)。编码谷氧还蛋白的基因的表达的改变可通过在感兴趣的谷氧还蛋白基因上游插入转座元件,造成所述基因的表达改变来实现。
[0085] 谷氧还蛋白基因表达的改变还可通过一种或多种转录因子的表达来实现,所述转录因子调节感兴趣的谷氧还蛋白基因的表达。应理解,转录因子表达的改变能够进而改变所述转录因子的靶基因的表达(Hiratsu等(2003)Plant J 34:733-739)。谷氧还蛋白基因表达的改变可以通过改变已知将与感兴趣的谷氧还蛋白基因相互作用的一种或多种转录因子的表达来实现。
[0086] 谷氧还蛋白基因表达的改变还可通过在该感兴趣的植物物种中编码天然谷氧还蛋白的开放阅读框的上游插入启动子来实现。这将通过采用针对感兴趣的基因组序列设计的大范围核酸酶,在编码谷氧还蛋白蛋白质的开放阅读框的上游插入感兴趣的启动子来实现。该策略已知并且已经在先证实在预定位置处将转基因插入棉花基因组(D’Halluin等,(2013)Plant Biotechnol J 11:933-941)。对于本领域技术人员显而易见的是,通过在预定基因组基因座处引起双链断裂并提供适当的DNA模板用于插入,可以使用其它技术来实现在所述预定基因组基因座处插入遗传元件的类似结果(例如,CRISPR-Cas9,CRISPR-cpf1,CRISPR-Csm1,TALEN和用于精确编辑基因组的其它技术)。
[0087] 通过说明的方式,而非限制性方式提供以下实施例。本说明书中涉及的所有专利申请和出版物指示本发明涉及领域技术人员的水平。所有发表物和专利申请通过引用纳入本文,就好像将各篇单独的发表物或专利申请具体和单独地通过引用纳入本文那样。
[0088] 虽然出于方便理解的目的,通过阐述和举例的方式详细描述了上述发明,但可明显看出,某些改变和修改应属于所附权利要求书的范围。
[0089] 实验部分
[0090] 实施例1–谷氧还蛋白植物转录因子转化载体的构建
[0091] 合成了编码玉米谷氧还蛋白蛋白质的开放阅读框。该开放阅读框包含SEQ ID NO:1,编码SEQ ID NO:3的蛋白质序列。还用不同于SEQ ID NO:1中密码子的密码子来构建包括SEQ ID NO:2(也编码SEQ ID NO:3的蛋白质序列)的第二开放阅读框。在编码序列的5'和3'末端包括适当的限制性位点,以允许将该DNA克隆到含有适于控制基因表达的遗传元件的植物转化载体中。在各植物转化构建体中,谷氧还蛋白开放阅读框位于植物启动子和5'非翻译区域(5'UTR)的下游和3'UTR的上游。表2总结了构建的含有谷氧还蛋白开放阅读框的植物转化构建体。
[0092] 表2:谷氧还蛋白植物转化构建体
[0093]
[0094] 除了表2中描述的基因盒外,表2中列出的各植物转化构建体还含有适于在引入植物转化载体后选择转化的植物细胞和植物再生的可选标记盒,如下所述。各转化载体构建在质粒中,该质粒含有适于在大肠杆菌(E.coli)和根癌农杆菌(Agrobacterium tumefaciens)中维持质粒的序列。在证实表2中列出的植物转化构建体含有所需序列后,将它们转化到根癌农杆菌(A.tumefaciens)细胞中用于植物转化。或者,将表2中列出的构建体用于通过生物弹射粒子轰击进行植物转化。
[0095] 实施例2-狗尾草(Setaria viridis)的转化
[0096] 根据先前描述的方法(PCT/US2015/43989,通过引用并入本文),使用携带谷氧还蛋白植物转化载体的根癌农杆菌(A.tumefaciens)细胞转化狗尾草(S.viridis)细胞。在用相关的植物转化载体转化狗尾草细胞并再生狗尾草植物后,进行PCR分析以证实狗尾草基因组中存在一个或多个感兴趣的基因。表3总结了用于转化狗尾草的转化构建体,以及用每种构建体转化产生的经PCR验证的转基因植物的数量。
[0097] 表3:用谷氧还蛋白植物转化载体进行的狗尾草转化的总结
[0098] 构建体 事件数量130617 45
131000 19
131102 9
131178 32
[0099] 实施例3-玉米(Zea mays)的转化
[0100] 携带132450载体的根癌农杆菌(A.tumefaciens)细胞用于转化适于在组织培养基上再生的玉米(Zea mays cv.B104)细胞。使用其它谷氧还蛋白植物转化载体,采用根癌农杆菌(A.tumefaciens)或生物弹射粒子轰击方法,来转化适合在组织培养基上再生的玉米(Zea mays cv.B104)细胞。在用相关植物转化载体转化玉米细胞并再生玉米植物后,进行PCR分析以确认玉米基因组中存在感兴趣的基因。
[0101] 实施例4–水稻(Oryza sativa)的转化
[0102] 携带谷氧还蛋白植物转化载体的根癌农杆菌(A.tumefaciens)细胞用于转化适于在组织培养基上再生的水稻(Oryza sativa cv.Kitaake)细胞。在用相关植物转化载体转化水稻细胞并再生水稻植物后,进行PCR分析以确认水稻基因组中存在一个或多个感兴趣的基因。
[0103] 实施例5-转基因狗尾草(S.viridis)的表征
[0104] 在用谷氧还蛋白植物转化载体转化的狗尾草植物的转化和再生之后,将T0-代植物培养至成熟以产生T1-代种子。携带感兴趣的谷氧还蛋白基因盒的T1代狗尾草植物在温室环境中生长,以评估谷氧还蛋白基因表达对植物生长和最终地上生物质和种子产量的影响。随机化区组设计与野生型狗尾草边界行一起使用以消除分析中的边缘效应。空分离植物(Null segregant plant)在相同环境条件下在转基因狗尾草旁生长。表4总结了从由于转化而携带谷氧还蛋白基因盒的T1代狗尾草植物的实验所做的生物质和种子产量测定的结果。下表表示如表2中所述的用于转化的构建体,接着是从中收获T1种子的T0事件编号。
[0105] 表4:用T1代植物进行的狗尾草温室观察的总结
[0106]
[0107]
[0108] 在表4中,地上生物质的干重在DW列中以克表示。类似地,收获的种子的干重在种子产量列中以克表示。DW变化和种子变化列分别表示相对于来自适当构建体的空分离植物的地上生物质和种子产量的变化百分比。由于可获得的来自130617构建体的空分离对照的数量不足,因此使用野生型狗尾草(S.viridis)对照来评估来自该构建体的事件的生物质积累和种子产量的变化。如该表格所示,相对于空或野生型对照,构建体130617和131102导致生物质和种子产量降低。然而,相对于空分离对照,131178构建体导致所测试的六个事件中三个的生物质增加,并且导致所测试的六个事件中五个的种子产量增加。
[0109] 使用上述相同方法,在生物质测定中测试了表4中列出的131178T1事件的自花授粉导致的T2事件。表5总结了这些T2代生物质和种子产量测定的结果。
[0110] 表5:用T2代植物进行的狗尾草温室观察的总结
[0111]
[0112]
[0113] 实施例6-转基因玉米的表征
[0114] 用感兴趣的谷氧还蛋白植物转化载体转化的并经确认含有感兴趣基因的T0代玉米植物在温室中生长至成熟。当T0植物达到生殖阶段时,它们由适当的近交玉米品系授粉以产生杂交玉米种子。代替给T0转基因玉米植物授粉,或除了给T0转基因玉米植物授粉之外,用来自T0的花粉对一个或多个近交玉米品系授粉,以产生杂交玉米种子。将由这些授粉产生的F1代杂交种子种植在两行或四行的田间环境中,并使用标准农艺实践进行培养。对植物进行基因分型以确定哪些植物含有以及哪些植物不含有谷氧还蛋白基因盒和谷氧还蛋白植物转化载体中包含的任何其它相关基因盒(例如,可选标记基因盒)。在玉米植物成熟后,收获种子。合并来自含有谷氧还蛋白基因盒的植物的种子,并且合并来自缺乏谷氧还蛋白基因盒的空分离植物的种子。称重种子,计算含有谷氧还蛋白基因盒的植物以及缺乏谷氧还蛋白基因盒的空分离植物的种子产量。进行适当的统计分析以确定含有谷氧还蛋白还原酶基因盒的植物是否比缺乏谷氧还蛋白基因盒的植物产生更高的产量。
[0115] 或者,用感兴趣的谷氧还蛋白植物转化载体转化的并经确认含有感兴趣基因的T0代玉米植物在温室中生长至成熟,然后自花授粉。将得到的T1种子种植在温室中,并培养T1植物。对T1植物进行基因分型以鉴定纯合的、杂合的和空的分离植物。来自纯合T1植物的花粉用于授粉一个或多个近交玉米品系以产生杂交玉米种子。来自空分离植物的花粉也用于授粉一个或多个近交玉米品系以产生杂交玉米种子。将得到的杂交种子种植在两行或四行的田间环境,并使用标准农艺实践进行栽培。在玉米植物成熟后,收获种子。合并来自含有谷氧还蛋白基因盒的植物的种子,并且合并来自缺乏谷氧还蛋白基因盒的空分离植物的种子。称重种子,计算含有谷氧还蛋白基因盒的植物以及缺乏谷氧还蛋白基因盒的空分离植物的种子产量。进行适当的统计分析以确定含有谷氧还蛋白基因盒的植物是否比缺乏谷氧还蛋白基因盒的植物产生更高的产量。
[0116] 实施例7-转基因水稻的表征
[0117] 用感兴趣的谷氧还蛋白植物转化载体转化的并经确认含有感兴趣基因的T0代水稻植物在温室中生长至成熟,然后自花授粉。将得到的T1种子种植在温室中,并培养T1植物。对T1植物进行基因分型以鉴定纯合的、杂合的和空的分离植物。来自每组的植物生长至成熟并允许自花授粉以产生T2种子。收获由这种自花授粉产生的T2种子并称重,并计算纯合、杂合和空分离植物的种子产量。进行适当的统计分析以确定含有谷氧还蛋白基因盒的植物是否比缺乏谷氧还蛋白基因盒的植物产生更高的产量。
[0118] 将T0代植物的自花授粉产生的种子所生长的T1代植物,或纯合T1代植物的自花授粉产生的种子所生长的T2代植物,在田间环境中生长。在T2代植物的情况下,空分离T1代植物也经自花授粉以产生T2代空植物作为阴性对照。使用标准农艺实践培育植物并使其成熟。成熟后,允许植物自花授粉。收获由这种自花授粉产生的种子并称重,计算纯合、杂合和空分离植物的种子产量。进行适当的统计分析以确定含有谷氧还蛋白基因盒的植物是否比缺乏谷氧还蛋白基因盒的植物产生更高的产量。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈