首页 / 国际专利分类库 / 作业;运输 / 微观结构技术 / 用于制造并组装可印刷半导体元件的方法和设备

用于制造并组装可印刷半导体元件的方法和设备

申请号 CN201410647568.2 申请日 2005-06-02 公开(公告)号 CN104716170B 公开(公告)日 2019-07-26
申请人 伊利诺伊大学评议会; 发明人 R·G·纳佐; J·A·罗杰斯; E·梅纳德; 李建宰; 姜达荣; 孙玉刚; M·梅尔特; 朱正涛;
摘要 本 发明 提供用于制造可印刷 半导体 元件并将可印刷半导体元件组装至基片表面上的方法。本发明的方法和设备组件能在含有 聚合物 材料的基片上产生多种柔性 电子 和 光电子 器件 以及器件阵列。本发明还提供能在拉伸状态下具有良好性能的可拉伸半导体元件及可拉伸电子器件。
权利要求

1.一种可拉伸半导体元件,包括:
具有支承面的柔性基片;以及
具有弯曲内表面的半导体整体结构,所述半导体整体结构为单晶半导体材料,其中所述弯曲内表面的至少一部分与所述柔性基片的所述支承面联结。
2.权利要求1的可拉伸半导体元件,其中所述半导体整体结构处于屈曲构造。
3.权利要求1的可拉伸半导体元件,其中所述半导体整体结构具有与所述弯曲内表面相对的弯曲外表面。
4.权利要求1的可拉伸半导体元件,其中具有所述弯曲内表面的所述半导体整体结构处于应变状态。
5.权利要求1的可拉伸半导体元件,其中所述弯曲内表面具有至少一个凸区域。
6.权利要求1的可拉伸半导体元件,其中所述弯曲内表面具有至少一个凹区域。
7.权利要求1的可拉伸半导体元件,其中所述弯曲内表面具有呈周期波特征的轮廓面。
8.权利要求1的可拉伸半导体元件,其中所述弯曲内表面具有呈非周期波特征的轮廓面。
9.权利要求1的可拉伸半导体元件,其中所述半导体整体结构包括呈弯曲构造的带状物,该带状物具有遍及所述带状物长度的、呈周期波特征的轮廓面。
10.权利要求9的可拉伸半导体元件,其中所述带状物具有选自5微米至50微米范围的宽度以及选自50纳米至500纳米范围的厚度。
11.权利要求1的可拉伸半导体元件,其中所述弯曲内表面在沿着所述弯曲内表面的全部点上与所述支承面联结。
12.权利要求1的可拉伸半导体元件,其中所述弯曲内表面在沿着所述弯曲内表面的选定的点上与所述支承面联结。
13.权利要求1的可拉伸半导体元件,其中所述柔性基片含有聚二甲基烷。
14.权利要求1的可拉伸半导体元件,其中所述柔性基片具有等于1毫米的厚度。
15.权利要求1的可拉伸半导体元件,其中所述半导体整体结构为无机半导体材料。
16.权利要求1的可拉伸半导体元件,其中所述半导体整体结构含有单晶硅
17.权利要求1的可拉伸半导体元件,其中所述柔性基片为弹性基片。
18.一种可拉伸电子器件,包括:
第一电极
第二电极;以及
具有弯曲表面的可拉伸半导体整体结构,所述弯曲表面具有至少一个凹区域和至少一个凸区域,其中所述弯曲表面的所述凹区域或所述凸区域的至少一部分联结至塑料基片;
其中所述可拉伸半导体整体结构处于与所述第一和第二电极电接触;并且其中所述可拉伸半导体整体结构是单晶半导体材料。
19.权利要求18的可拉伸电子器件,其中所述可拉伸半导体整体结构处于屈曲构造。
20.权利要求18的可拉伸电子器件,其中所述可拉伸半导体整体结构具有与所述弯曲表面相对的弯曲外表面。
21.权利要求18的可拉伸电子器件,其中具有所述弯曲表面的所述可拉伸半导体整体结构处于应变状态。
22.权利要求18的可拉伸电子器件,其中所述弯曲表面具有呈周期波特征的轮廓面。
23.权利要求18的可拉伸电子器件,其中所述弯曲表面具有呈非周期波特征的轮廓面。
24.权利要求18的可拉伸电子器件,其中所述可拉伸半导体整体结构包括呈弯曲构造的带状物,该带状物具有遍及所述带状物长度的、呈周期波特征的轮廓面。
25.权利要求24的可拉伸电子器件,其中所述带状物具有选自5微米至50微米范围的宽度以及选自50纳米至500纳米范围的厚度。
26.权利要求18的可拉伸电子器件,其中所述可拉伸半导体整体结构为无机半导体材料。
27.权利要求18的可拉伸电子器件,其中所述可拉伸半导体整体结构含有单晶硅。
28.一种电子器件,包括:
第一电极;
第二电极;以及
与所述第一和第二电极处于电接触的可印刷半导体元件,所述可印刷半导体元件含有无机半导体整体结构以及一个或多个排列保持元件,并且其中所述可印刷半导体元件在所述第一与第二电极之间提供大于或等于20%的填充系数。
29.一种电子器件,包括:
第一电极;
第二电极;以及
与所述第一和第二电极处于电接触的可印刷半导体元件,所述可印刷半导体元件含有具有至少一个大于或等于500纳米的横截面尺寸的无机半导体整体结构,且含有一个或多个排列保持元件。
30.一种电子器件,包括:
第一电极;
第二电极;以及
与所述第一和第二电极处于电接触的可印刷半导体元件,所述可印刷半导体元件包括无机半导体整体结构以及一个或多个排列保持元件,其中所述无机半导体结构中的重金属杂质的浓度小于或等于1ppm原子
31.一种电子器件,包括:
第一电极;
第二电极;以及
与所述第一和第二电极处于电接触的可印刷半导体元件,所述可印刷半导体元件具有一个或多个排列保持元件,其中将所述可印刷半导体元件相对于所述第一电极、所述第二电极或相对于这两个电极的位置选择为在50微米以内。
32.一种电子器件阵列,包括:
第一电极;
第二电极;以及
多个可印刷半导体元件,其中各个所述可印刷半导体元件与所述第一和第二电极处于电接触,其中各个所述可印刷半导体元件包括无机半导体整体结构以及一个或多个排列保持元件,并且其中所述可印刷半导体元件在所述第一和第二电极之间提供大于或等于20%的填充系数。
33.一种电子器件阵列,包括:
第一电极;
第二电极;以及
多个可印刷半导体元件,其中各个所述可印刷半导体元件与所述第一和第二电极处于电接触,其中各个所述可印刷半导体元件包括一个或多个排列保持元件,且包括具有至少一个大于或等于500纳米的横截面尺寸的无机半导体整体结构。
34.一种电子器件阵列,包括:
第一电极;
第二电极;以及
多个可印刷半导体元件,其中各个所述可印刷半导体元件与所述第一和第二电极处于电接触,其中各个所述可印刷半导体元件包括无机半导体整体结构以及一个或多个排列保持元件,并且其中各个所述无机半导体结构中的重金属杂质的浓度小于或等于1ppm原子。
35.一种电子器件阵列,包括:
第一电极;
第二电极;以及
多个可印刷半导体元件,其中各个所述可印刷半导体元件包括一个或多个排列保持元件,且各个所述可印刷半导体元件与所述第一和第二电极处于电接触,并且其中各个所述可印刷半导体元件相对于所述第一电极、所述第二电极或相对于这两个电极的位置选择为在50微米以内。
36.一种将可印刷半导体元件组装至基片的接受面上的方法,所述方法包括如下步骤:
提供含有无机半导体整体结构的所述可印刷半导体元件,其中所述可印刷半导体元件具有至少一个大于或等于500纳米的横截面尺寸;
将所述半导体元件分散在溶剂中,从而形成在所述溶剂中含有所述半导体元件的悬浮液;并且
通过将所述悬浮液溶液印刷到所述接受面上以将所述半导体元件传送至所述基片上,从而将所述半导体元件组装到所述接受面上。
37.一种制造可印刷半导体元件的方法,所述方法包括如下步骤:
提供具有外表面的晶片,所述晶片含有无机半导体材料;
通过施加掩模遮蔽所述外表面的选定区域;
对所述晶片的所述外表面进行蚀刻,从而使所述晶片形成凸起结构和至少一个裸露的表面,其中所述凸起结构具有遮蔽的侧面和一个或多个未遮蔽的侧面;
将掩模施加于所述凸起结构的所述未遮蔽侧面的至少一部分;并且
至少部分蚀刻所述晶片的所述裸露表面,从而制造所述可印刷半导体元件。
38.一种制造通过一个或多个排列保持元件连接至母晶片的可印刷半导体元件的方法,所述方法包括如下步骤:
提供具有外表面的所述母晶片,所述母晶片含有无机半导体材料;
通过施加掩模遮蔽所述外表面的选定区域;
对所述母晶片的所述外表面进行蚀刻,从而使所述母晶片形成凸起结构和至少一个裸露的表面,其中所述凸起结构具有遮蔽的侧面和一个或多个未遮蔽的侧面;
对所述母晶片的所述裸露的表面进行蚀刻;并且
停止蚀刻所述裸露的表面以防止所述凸起结构完全脱离,从而制造通过一个或多个排列保持元件连接至母晶片的所述可印刷半导体元件。
39.一种制造可印刷半导体元件的方法,所述方法包括如下步骤:
提供具有外表面的晶片,所述晶片含有无机半导体;
通过施加第一掩模遮蔽所述外表面的选定区域;
对所述晶片的所述外表面进行蚀刻,从而形成多个凸起结构;
对所述晶片进行退火,从而形成退火外表面;
通过施加第二掩模遮蔽所述退火外表面的选定区域;并且
对所述退火外表面进行蚀刻,从而形成所述可印刷半导体元件。
40.一种在基片的接受面上组装可印刷半导体元件的方法,所述方法包括如下步骤:
提供含有晶体无机半导体整体结构和操纵元件的所述可印刷半导体元件;
将所述可印刷半导体元件分散在溶剂中,从而形成在所述溶剂中含有所述可印刷半导体元件的悬浮液;
通过将所述悬浮液分散到所述接受面上以将所述可印刷半导体元件传送至所述基片上;
通过提供磁场电场或上述两者将所述可印刷半导体元件排列在所述接受面上,其中所述磁场、电场或上述两者与所述操纵元件相互作用,从而形成将所述可印刷半导体元件移动至所选定位置和取向的,从而将所述可印刷半导体元件组装至所述接受面上。
41.一种由塑料基片支承的晶体管,包括:
与可印刷半导体元件电接触的源电极,所述可印刷半导体元件含有晶体无机半导体整体结构;
与所述可印刷半导体元件电接触的漏电极;以及
与所述源电极和漏电极隔开的栅电极,其中向所述栅电极施加电势影响源电极和漏电极之间通过所述可印刷半导体元件的电子流;
其中所述晶体管具有等于或大于100cm2V-1s-1的器件场效应迁移率。
42.一种制造可拉伸半导体元件的方法,所述方法包括如下步骤:
提供具有内表面的可印刷半导体结构;
提供处于扩展状态的预应变弹性基片,其中所述弹性基片具有外表面;并且将所述可印刷半导体结构的所述内表面的至少一部分连接到处于扩展状态的所述预应变弹性基片的所述外表面上;并且
使所述弹性基片至少部分松弛到松弛状态,其中弹性基片的松弛使得所述可印刷半导体结构的内表面屈曲,从而形成具有弯曲内表面的所述可拉伸半导体元件。
43.一种可拉伸电路,包括:
具有支承面的柔性基片;以及
具有弯曲内表面的电路,其中所述弯曲内表面的至少一部分联结至所述柔性基片的所述支承面。
44.一种制造可拉伸电路的方法,所述方法包括如下步骤:
提供具有内表面的可印刷电路;
提供处于扩展状态的预应变弹性基片,其中所述弹性基片具有外表面;并且将所述可印刷电路的所述内表面的至少一部分联结到处于扩展状态的所述预应变弹性基片的所述外表面上;并且
使所述弹性基片至少部分松弛到松弛状态,其中弹性基片的松弛使得所述可印刷电路的内表面屈曲,形成至少一个所述内表面的曲面,从而制造所述可拉伸电路。
45.一种电子器件阵列,包括:
第一电极;
第二电极;以及
多个可印刷半导体元件,各个可印刷半导体元件包括一个或多个排列保持元件,其中各个所述可印刷半导体元件与所述第一和第二电极处于电接触,其中所述可印刷半导体元件有至少一个物理尺寸的变化小于10%。

说明书全文

用于制造并组装可印刷半导体元件的方法和设备

[0001] 本申请是2005年6月2日提交的题为“用于制造并组装可印刷半导体元件的方法和设备”、申请号为201210157162.7的发明专利申请的分案申请,该分案申请的原申请是2005年6月2日提交的题为“用于制造并组装可印刷半导体元件的方法”、申请号为200580018159.5的发明专利申请。
[0002] 相关申请的交叉引用
[0003] 本申请要求分别于2004年6月4日、2004年8月11日、2005年2月4日、2005年3月18日以及2005年5月4日提交的美国临时专利申请No.60/577,077、No.60/601,061、No.60/650,305、No.60/663,391和No.60/677,617的优先权,其全部内容特此通过引用的方式以不与本申请所公开内容矛盾的程度完整纳入本说明书中。

背景技术

[0004] 自1994年第一次出现了印刷的全聚合物晶体管以来,一类潜在的、在塑料基片上含有柔性集成电子器件的、新的电子系统引起广泛关注[Garnier,F.,Hajlaoui,R.,Yassar,A.和Srivastava,P.,Science,第265卷,第1684~1686页]。近来,对开发用于柔性塑料电子器件的导体、绝缘体和半导体的新的溶液可处理材料进行了大量研究。然而,柔性电子器件领域的进步不仅依靠新的溶液可处理材料的开发来推动,还有赖于器件组件新的几何结构、有效的器件以及适用于塑料基片的器件组件处理方法和高分辨率构图技术。这样的材料、器件配置和制造方法有望在快速涌现的新类型的柔性集成电子器件、系统和电路中发挥重要作用。
[0005] 对柔性电子器件领域的关注主要是由于该技术具有几个重要的优点。第一,塑料基片材料的机械强度使得电子器件不易由于机械应而引起损坏和/或电子性能下降。第二,这些基片材料固有的柔性使得它们可整合为大量有用的器件配置所需的、而脆性的常规基电子器件无法实现的多种形状。例如,可弯曲的柔性电子器件有望实现已有的硅基技术所不易于实现的新器件的制造,所述新器件包括例如电子纸可穿戴计算机(wearable computer)和大屏幕高分辨率显示器。最后,溶液可处理组件材料与塑料基片的结合使通过连续、高速的印刷技术进行的制造得以实现,所述印刷技术能以低成本在大的基片面积上产生电子器件。
[0006] 然而,表现出良好的电子性能的柔性电子器件的设计和制造面临许多重大挑战。首先,已开发完善的制造常规硅基电子器件的方法与大多数塑料基片均不兼容。例如,传统的高质量无机半导体组件,如单晶硅或锗半导体,通常通过在远远超过大多数塑料基片的熔化或分解温度的温度(>1000℃)下生长薄膜进行处理。此外,大多数无机半导体本身不溶于便于进行基于溶液的处理和传送的方便溶剂中。其次,虽然很多无定形硅、有机或混合有机-无机半导体(hybrid organic-inorganic semiconductor)可兼容纳入塑料基片中并可在较低温度下进行处理,但这些材料并不具有能使集成电子器件表现出良好的电子性能的电子特性。例如,具有由这些材料制成的半导体元件的薄膜晶体管表现出比单晶硅基互补器件小约三个数量级的场效应迁移率。这些限制导致柔性电子器件目前仅限于不需要高性能的特定应用中,例如用于具有非发射像素(non-emissive pixel)的有源矩阵平板显示器的开关元件中以及发光二极管中。
[0007] 近来在扩展塑料基片上集成电子器件的电子性能能力以拓宽其对电子器件应用的适用范围方面已经取得了进步。例如,已经涌现了数种新的薄膜晶体管(TFT),它们与在塑料基片材料上进行的处理方法兼容,并且表现出明显高于具有无定形硅、有机或混合有机-无机半导体元件的薄膜晶体管的器件性能特性。一类运行较好的柔性电子器件基于由脉冲激光对无定形硅薄膜进行退火制得的多晶硅薄膜半导体元件。虽然这类柔性电子器件提供了提高的器件电子性能特性,但脉冲激光退火处理的使用限制了这类器件制造的简易程度和灵活性,从而显著增大成本。另一类有前景的、运行较好的、新型柔性电子器件是在许多大型电子(macroelectronic)器件和微电子器件中采用溶液可处理纳米级材料,例如纳米线(nanowire)、纳米带(nanoribbon)、纳米颗粒和纳米管作为有源功能组件的器件。
[0008] 分立单晶纳米线或纳米带的使用已被评价为在塑料基片上提供表现出提高的器件性能特性的可印刷电子器件的可能途径。Duan等描述了具有多个选择性取向的单晶硅纳米线或CdS纳米带作为半导体通道的薄膜晶体管设计[Duan,X.;Niu,C.,Sahl,V.,Chen,J.,Parce,J.,Empedocles,S.和Goldman,J.,Nature,第425卷,第274~278页]。这些作者报道了一种据称与塑料基片上的溶液处理方法兼容的制造方法,该方法将厚度小于或等于150纳米的单晶硅纳米线或CdS纳米带分散到溶液中,并采用导流排列法(flow-directed alignment method)将其组装至基片表面,以生产薄膜晶体管半导体元件。作者提供的光学显微照片表明所公开的制造方法以基本平行的取向制备间隔约500纳米至约1000纳米的纳米线或纳米带的单层。虽然作者报道单独的纳米线或纳米带具有较高的本征场效应迁移率(≈119cm2V-1s-1),但近来已测得整个器件的场效应迁移率比Duan等报道的本征场效应迁移率的值“低约两个数量级”[Mitzi,D.B,Kosbar,L.L.,Murray,C.E.,Copel,M.Afzali,A.,Nature,第428卷,第299~303页]。该器件的场效应迁移率比常规的单晶无机薄膜晶体管的器件场效应迁移率低几个数量级,并且很可能是因为采用Duan等所公开的方法和器件配置在分立的纳米线或纳米管的排列、紧密堆积和电接触方面面临实际挑战。
[0009] 使用纳米晶体溶液作为多晶无机半导体薄膜的前体已被挖掘为在塑料基片上提供表现出较高的器件性能特性的可印刷电子器件的可能途径。Ridley等公开了一种溶液处理制造方法,该方法在与塑料相适应的温度下处理尺寸为约2纳米的硒化镉纳米晶体的溶液,以提供用于场效应晶体管的半导体元件。作者报道了一种如下所述的方法,在该方法中,硒化镉纳米晶体溶液中低温晶粒的生长提供含有数百个纳米晶体的单晶区。虽然Ridley等报道了比具有有机半导体元件的类似器件改善的电特性,但通过这些技术达到的器件迁移率(≈1cm2V-1s-1)比常规的单晶无机薄膜晶体管的器件场效应迁移率低几个数量级。对Ridley等的器件配置和制造方法所达到的场效应迁移率的限制很可能是因为单个纳米颗粒之间建立的电接触。用于稳定纳米晶体溶液并防止聚集作用(agglomeration)的有机端基的使用可能妨碍在相邻的纳米颗粒之间建立良好的电接触,而这是提供高的器件场效应迁移率所必须的。
[0010] 虽然Duan等和Ridley等提供了在塑料基片上制造薄膜晶体管的方法,但所述的器件配置采用了含有机械刚性器件组件——例如电极、半导体和/或绝缘体——的晶体管。选择具有良好的机械性能的塑料基片可使电子器件能在挠曲或变形的取向上运行。然而,这种动作预计会对单个刚性晶体管器件组件产生机械应变。这种机械应变可能通过例如使其破裂而导致单个组件损坏,并且也可能降低或破坏器件组件之间的电接触。
[0011] 由前述内容将领会目前本领域需要用于制造在塑料基片上含有集成电子半导体的器件的方法和器件配置。需要具有良好电特性的可印刷半导体元件,以实现在与塑料聚合物基片上的组件相适应的温度下进行有效的器件制造。另外,需要将半导体材料印刷至大面积的塑料基片上的方法,以实现在大的基片面积上连续、高速地印刷复杂的集成电路。最后,需要在挠曲或变形的器件取向上具有良好的电子性能的全柔性电子器件,以获得多种新的柔性电子器件。

发明内容

[0012] 本发明提供用于在基片表面——例如塑料基片——上制造结构和/或器件——例如含有半导体的电子器件——的方法、设备和设备组件。具体而言,本发明提供用于通过灵活的低成本印刷方法制造电子器件、光电子器件和其他功能电子组件的可印刷半导体元件。本发明的一个目的在于提供用于制造能通过一系列印刷技术在基片表面上实现高精度组装的半导体元件的方法和设备,所述半导体元件例如具有约10纳米至约10厘米范围内的选定的物理尺寸的整体(unitary)单晶无机半导体。本发明的另一个目的在于提供采用干式接触转印(dry transfer contact printing)和/或溶液印刷(solution printing)技术组装可印刷半导体元件和/或对可印刷半导体元件进行构图的方法,所述方法在大的基片面积上提供良好的放置准确度和图案保真度。本发明的再一个目的在于提供含有由塑料基片支承的一个或多个可印刷半导体元件的、电子性能良好的集成电子和/或光电子器件,特别是具有可印刷半导体元件的、表现出良好的电子性能特性的全柔性薄膜晶体管,所述电子性能特性例如场效应迁移率、阈电压和开关比。
[0013] 一方面,本发明提供具有一个或多个可印刷组件——例如可印刷半导体元件——的高性能电子和/或光电子器件或器件组件的制造方法。可由本发明方法制造的电子和光电子器件包括但不限于晶体管、二极管、发光二极管(LED)、激光器有机发光二极管(OLED)、微米机电系统(MEMS)以及纳米机电系统(NEMS)。特别地,本发明提供通过印刷技术将半导体元件和/或其他器件组件组装至电子和/或光电子器件或器件组件中的方法,所述器件或器件组件表现出可与常规高温处理方法制造的、基于单晶半导体的器件相比的性能特性。
[0014] 在本发明一个可用于在具有低熔化温度或分解温度的基片上,例如塑料基片和半导体基片上进行器件制造的实施方案中,本发明方法包括如下可独立执行的制造步骤:(1)形成一个或多个分立的高质量半导体元件;以及(2)在基片表面上对这些半导体元件和其他器件组件进行组装和/或构图。例如,本发明包括如下方法,该方法通过对常规高温处理方法制成的大单晶无机半导体材料进行掩模和蚀刻来生产独立的、高质量的可印刷无机半导体,所述高温处理方法例如高温(>1000℃)薄膜生长、掺杂和其他处理技术。这样的可印刷无机半导体在制成后,通过可在较低温度(<约400℃)下实施的印刷技术组装至一个或多个基片表面上。具有可独立执行的制备和构图/组装步骤的一个优点在于各步骤可在环境条件下如室温下,以及环境污染平(即如果需要洁净的室内条件)下执行,这优化了各个可独立执行的制造步骤的效率、灵活性以及效用。例如,本发明方法能在生产高质量单晶半导体所需的高温下制造半导体材料。然而,半导体元件的构图和/或组装可随后在有利于在具有低熔化温度或分解温度的基片上、例如塑料基片上制造器件的、显著降低的温度下进行。通过上述方式可在宽范围的基片表面上制造高性能器件,而不显著熔化、分解或损坏基片表面。将半导体的制造与半导体/器件的组装分离的另一个优点在于可通过各种灵活的、低成本组装方法,例如干式转印以及溶液印刷技术,将半导体元件集成至高性能器件和器件组件中,这些组装方法不需要洁净的室内条件并且可与大面积基片上的连续、高速的器件制造方法兼容。就本发明这一方面而言,本发明方法实际上可与含有任何材料的基片上所进行的印刷相兼容,所述基片包括塑料基片和非塑料基片,后者例如半导体晶片——如硅晶片或GaAs晶片。
[0015] 另一方面,本发明提供用于集成至高性能电子和光电子器件以及器件组件中的可印刷半导体元件。就本发明而言,术语“可印刷”指可转印、组装、构图、组织(organize)和/或集成至基片上或基片中而未使基片暴露于高温(即在低于或等于约400℃下)的材料、结构、器件组件和/或集成功能器件。本发明的可印刷半导体可包括能通过干式接触转印和/或溶液印刷法组装和/或集成至基片表面的半导体结构。本发明示例性的半导体元件可通过“自顶向下(top down)”地处理一系列无机半导体材料制得,所述无机半导体材料包括但不限于单晶硅晶片、绝缘体晶片上的硅、多晶硅晶片和GaAs晶片。由高质量的半导体晶片——例如使用常规的高温气相沉积处理技术生产的半导体晶片——制得的可印刷半导体元件对于需要良好的电子性能的应用场合而言是有益的,因为与采用“自底向上(bottomup)”的处理技术——例如用于生产纳米晶体和纳米线的常规技术——所制备的材料相比,这些材料具有更好的纯度和结晶程度。本发明的“自顶向下”处理法所提供的另一个优点在于可印刷半导体元件和可印刷半导体元件的阵列可以明确限定的取向和图案制造,这与常用于制造纳米线和纳米颗粒的“自底向上”的处理法不同。例如,可将半导体元件制成具有与这些元件在功能器件或功能器件阵列中的最终位置和空间取向直接对应的位置和空间取向的阵列,例如晶体管阵列或二极管阵列。
[0016] 可印刷半导体元件可包括具有各种形状——例如带状(或条状)、盘状、小板状、块状、柱状、筒状或这些形状的任意组合——的单晶无机半导体整体结构。本发明的可印刷半导体元件可具有多种物理尺寸,例如,约10纳米至约100微米范围内的厚度、约50纳米至约1毫米范围内的宽度以及约1微米至约1毫米范围内的长度。对于某些应用,优选使用厚度大于约10纳米并且宽度大于约500纳米的半导体元件,因为这些尺寸可使电子器件表现出良好的电子性能,例如使薄膜晶体管的器件场效应迁移率大于或等于约100cm2V-1s-1,优选大于或等于约300cm2V-1s-1,更优选大于或等于约800cm2V-1s-1。此外,具有大于约10纳米宽度的半导体元件可通过一系列印刷技术,以良好的放置准确度和图案保真度组装至基片上。
[0017] 本发明的可印刷半导体元件还可具有将可印刷半导体元件与母片(mother substrate)——例如半导体晶片——连接起来的排列保持元件。排列保持元件可用于在转印、组装和/或集成操作步骤中保持可印刷半导体元件选定的取向和/或位置。排列保持元件还可用于在转印、组装和/或集成操作步骤中保持形成半导体元件选定图案的多个半导体元件的相对位置和取向。在本发明方法中,排列保持元件在可印刷半导体元件与可适应转印设备的接触面接触(以及联结)的过程中维持选定的位置和取向。在本发明这一方面中所使用的排列保持元件能在移动可适应转印设备后从可印刷半导体元件上卸除(disengage)而不显著改变可印刷半导体元件选定的位置和取向。通常通过在移动转印设备的过程中使排列保持元件断裂或脱离来实现卸除。
[0018] 在本发明的一个实施方案中,可印刷半导体元件具有特征为端部较宽而中心区域窄的花生状。在该实施方案中,通过对较宽端部的下方进行不完全的各向同性蚀刻(isotropic etching)并对中心区域的下方进行完全的各向同性蚀刻来得到排列保持元件。该处理方法形成在与半导体元件各端相对应的两点上与母片相连的半导体元件。在另一个实施方案中,可印刷半导体元件具有沿着中心纵向轴线延伸的带状。在该实施方案中,排列保持元件将带状物沿着轴线方向上的两端连接至母片。在各实施方案中,带状或花生状半导体元件与转印设备接触面的结合以及转印设备的移动导致两个排列保持元件均断裂,并使可印刷半导体元件从母片上脱离。
[0019] 本发明的可印刷半导体元件具有可独立选择的物理尺寸,例如宽度、高度、厚度、表面粗糙度和平整度,这些物理尺寸可以高度准确地进行选择。在一个示例性的实施方案中,可印刷半导体元件的物理尺寸可以小于约5%的误差进行选择。使用本发明方法可制造大量具有高度一致的所选定物理尺寸的可印刷半导体元件。在一个示例性实施方案中,可制造大量的物理尺寸变化小于约1%的可印刷半导体元件。因此,与常规的生产纳米线的方法不同,本发明提供无显著尺寸和形状分布的可印刷半导体元件。该方法的一个重要优点在于不需要使集成本发明可印刷半导体元件的结构和器件容许半导体元件尺寸和形状的分散性。在某些实施方案中,本发明的可印刷半导体元件具有非常低的表面粗糙度,例如表面粗糙度的均方根值小于约0.5纳米。本发明的可印刷半导体元件可具有一个或多个平面。这种配置在某些器件制造应用场合中是有益的,因为平面可用于建立与其他器件组件——例如导体、半导体和/或电介体器件组件——的界面。
[0020] 此外,本发明方法和物质组成(composition)提供含有高质量半导体材料的可印刷半导体元件。在某些用于制造高性能电子器件的实施方案中,可印刷半导体元件的纯度为通过高温处理技术所制得的常规半导体晶片材料的约1000倍或以下。例如,本发明提供如下高纯度半导体元件,在所述高纯度半导体元件中,杂质少于约5~25ppm原子,碳杂质少于约1~5ppm原子,并且重金属杂质少于或等于约1ppm原子(ppma)、对于某些应用优选少于或等于约100ppba(parts per billion atoms)、并且对于某些应用更优选少于或等于约1ppba。对于需要良好的电子性能的应用和器件而言,具有低水平重金属杂质(例如少于约
1ppma)的可印刷半导体元件是有益的,因为半导体材料中重金属的存在可严重降低其电性能。
[0021] 另外,本发明某些方面的可印刷半导体元件具有非常低的电阻率梯度,例如在其面积上的变化小于约5%至10%。本发明这一方面提供相对于由“自底向上”的处理技术制得的常规半导体材料——例如纳米线和纳米晶体材料——而言提高的掺杂均匀度。此外,本发明的可印刷半导体元件可含有表现出极少位错——例如小于500位错/平方厘米——的半导体材料。对于需要良好的电子性能的器件制造应用而言,使用含有高质量半导体材料的半导体元件是有益的。
[0022] 此外,本发明方法和物质组成提供组成高度一致的可印刷半导体元件。在本说明书中,组成一致指件与件(piece-to-piece)之间在纯度、掺杂浓度、掺杂剂空间分布以及结晶程度方面的一致性。本发明可印刷半导体元件的高纯度以及组成的良好一致性提供相对于由下述常规半导体材料制成的器件而言可靠性提高的功能器件,所述常规半导体材料由“自底向上”的处理技术制得,例如纳米线和纳米晶体材料。
[0023] 本发明的可印刷半导体元件优选具有至少一个光滑表面,例如微米带(microribbon)的顶面或底面,优选表现出的与平均表面位置的偏差小于10纳米,对于某些应用而言,更优选表现出的与平均表面位置的偏差小于1埃。本发明可印刷半导体元件的光滑表面使得可与集成电子器件或光电子器件中的其他器件组件之间建立有效的电接触和/或物理集成。
[0024] 或者,本发明的可印刷半导体元件可包括组合半导体元件,所述组合半导体元件具有与一个或多个附加结构操作性地连接的半导体结构,所述附加结构包括例如介电结构、导电结构(例如电极)、附加半导体结构或这些结构的任意组合。可印刷组合半导体元件提供可容易地、有效地集成至复杂的电子或光电子器件中的材料和器件组件。此外,本发明组装方法可以使可印刷半导体元件形成阵列几何结构,所述阵列几何结构中相邻元件彼此接近,例如彼此在100纳米至1微米以内。例如,本发明的可印刷半导体元件包括一个整体结构,该整体结构具有操作性地连接至无机介电结构——例如二氧化硅层——的高质量半导体结构,例如单晶无机半导体。本发明的这一实施方案对于制造高性能的薄膜晶体管特别有用,因为半导体和介电组件可在单个印刷步骤中组装,并且因为使用含有半导体和介电组件的整体结构得到的绝缘体配置表现出极低的从栅电极至半导体元件或源漏电极的漏电流。在另一个实施方案中,本发明的可印刷半导体元件可含有易于纳入至基片表面上的、集成的功能器件,例如二极管、LED、晶体管和OLED。
[0025] 本发明方法和组成提供能够制造下述功能器件的处理平台,所述功能器件与基于由“自底向上”的处理技术所生产的半导体材料——例如纳米线和纳米晶体——的器件相比,表现出提高的可靠性。在本说明书中,可靠性指功能器件在长的运行期内表现出良好的电性能的能力,并且指件与件之间在使用本发明方法和组成所制成的器件总体的电性能方面的一致性。例如,本发明器件表现出非常一致的阈电压(例如标准偏差小于0.08V)以及非常一致的器件迁移率(例如标准偏差小于约13%)。这代表阈电压和器件迁移率的一致性相对于基于纳米线的器件分别改进约40倍和约8倍。本发明功能器件出色的可靠性至少部分来自于使用本发明可印刷半导体元件可获得的组成和物理尺寸的高度一致性。
[0026] 另一方面,本发明提供如下电子器件,所述电子器件包括第一电极、第二电极以及与所述第一和第二电极处于电接触的可印刷半导体元件。在一个可用于需要良好的电子器件性能的应用场合下的实施方案中,可印刷半导体元件包括具有物理尺寸和形状的无机半导体整体结构,所述可印刷半导体元件的物理尺寸和形状在所述第一与第二电极之间提供大于或等于约20%的填充系数,对于某些应用优选大于或等于约50%,并且对于某些应用更优选大于或等于约80%。任选地,该实施方案的电子器件还可包括附加的可印刷半导体元件,例如基本呈纵向取向的可印刷元件,并且可任选彼此无物理接触。重要的是,本发明的多个可印刷半导体元件能够以具有大的填充系数(例如大于或等于20%、50%或80%)以及良好的电子性能的方式配置在器件或器件阵列中,这与包括紧密堆积的纳米线阵列的系统不同。在一个实施方案中,可印刷半导体元件具有至少一个大于或等于约500纳米的横截面尺寸。在一个实施方案中,可印刷半导体元件的长宽比等于或小于约10,对于某些应用优选等于或小于约1.5。在一个实施方案中,可印刷半导体元件的厚宽比等于或小于约0.1,对于某些应用优选等于或小于约0.01。
[0027] 本发明的这一方面还包括电子器件——例如晶体管、二极管、光电器件、发光器件——的阵列,所述电子器件阵列包括第一电极、第二电极以及与第一和第二电极处于电接触的多个可印刷半导体元件。在一个实施方案中,电子器件阵列包括多于20个可印刷半导体元件,对于某些应用优选多于50个可印刷半导体元件,并且对于某些应用更优选多于100个可印刷半导体元件。在一个可用于需要良好的电子器件性能的应用场合下的实施方案中,可印刷半导体元件在所述第一和第二电极之间提供大于或等于约20%的填充系数,对于某些应用优选大于或等于约50%,并且对于某些应用更优选大于或等于约80%。可印刷半导体元件相对于选定的排列轴线——例如沿着连接所述第一和第二电触点的最邻近的点的轴线延伸的选定的排列轴线——可基本纵向取向。在一个实施方案中,将可印刷半导体元件的相对位置和取向选择成在小于或等于约5微米以内。在一个使半导体元件具有良好的端到端定位(end to end registration)的实施方案中,各个所述可印刷半导体元件延伸一段长度并终止于第一端和第二端。在该实施方案中,所述可印刷半导体元件的第一端位于第一电极的5微米以内,并且所述可印刷半导体元件的第二端位于所述第二电极的5微米以内。在一个实施方案中,本发明的电子器件阵列包括按如下配置的多个可印刷半导体,所述配置为,多个可印刷半导体呈基本纵向取向,并且相互之间无物理接触(即无重叠),且与第一和第二电极处于电接触。在一个实施方案中,电子器件阵列中的可印刷半导体元件有至少一个物理尺寸——例如平均长度、平均宽度和/或平均厚度——的变化小于约10%,对于某些应用优选小于约5%。在该实施方案中,阵列中的可印刷半导体元件具有彼此无显著(即小于约10%)变化的、选定的物理尺寸,例如平均长度、平均宽度和/或平均厚度。
[0028] 另一方面,本发明提供具有可印刷半导体元件的晶体管。在一个实施方案中,本发明的晶体管包括源电极、可印刷半导体元件、增益电极(gain electrode)和栅电极。在该配置中,源电极和增益电极均与可印刷半导体元件处于电接触,并被可印刷半导体元件隔开,而栅电极通过介电体与可印刷半导体隔开。可印刷半导体元件可包括厚度大于或等于约50纳米的晶体无机半导体整体结构,对于某些应用优选大于或等于100纳米,并且对于某些应用更优选大于或等于200纳米。本发明还包括具有多个与源电极和漏电极接触的可印刷半导体元件的晶体管。在某些应用中,多个可印刷半导体元件在单个晶体管中的使用可能是有益的,因为这样可降低场效应晶体管中各种器件组件——例如源电极、漏电极和栅电极以及介电体——总的位置准确度容差(tolerance)。本发明还包括其中可印刷半导体元件为可拉伸半导体元件的实施方案。在本发明晶体管中使用一个或多个可拉伸半导体元件是有益的,因为这样可以使处在挠曲、拉伸或变形的器件具有良好的器件性能和机械强度。
[0029] 在另一个实施方案中,本发明提供由塑料基片支承并且/或者与塑料基片接触的高性能晶体管,所述塑料基片例如聚酰亚胺、聚碳酸酯或聚酯薄膜(Mylar)基片。本发明该实施方案的晶体管可具有包括单晶无机半导体结构——例如硅或锗——的可印刷半导体元件。该器件配置表现出良好的器件性能特性,例如场效应迁移率、阈电压、转换频率(switching frequency)和开关比。在一个示例性实施方案中,塑料基片上的薄膜晶体管具有与下述晶体管的器件场效应迁移率可比的器件场效应迁移率,所述晶体管具有包括由常规的高温处理法制得的晶体半导体的半导体元件,例如器件场效应迁移率大于或等于300cm2V-1s-1,更优选大于或等于800cm2V-1s-1。在另一个实施方案中,本发明提供具有单晶硅可印刷半导体元件的、能高频运行的Si-MOS晶体管,例如以最高达约280MHz的频率运行。
[0030] 在另一个实施方案中,本发明提供含有可印刷半导体元件的互补金属氧化物半导体电路。例如,使用在两个P(或N)型高掺杂区之间具有N(或P)型轻掺杂区的可印刷半导体元件形成CMOS电路。该能力对于需要低功耗的应用而言特别有意义,因为CMOS技术具有远远小于NMOS技术的功耗。并且,CMOS技术无静态功耗,因此该技术特别适用于电池驱动的电子系统。最后,使用CMOS技术的电路设计通常比使用任何其它半导体技术的电路设计更紧凑,因此在单位表面积上可集成更多的器件。
[0031] 在一个实施方案中,本发明这一方面的晶体管的介电体和半导体组件可含有整体组合可印刷半导体元件。或者,本发明这一方面的晶体管的介电体、栅电极和半导体元件可含有整体组合可印刷半导体元件。对于某些应用,优选使用具有半导体和绝缘体集成结构的组合可印刷半导体元件,因为这样可以在薄膜晶体管中得到漏电极低的非常高质量的介电体-半导体界面。另外,具有半导体和绝缘体集成结构的组合可印刷半导体元件的使用,还可实现器件组件的有效组装,而不需要将介电层集成至薄膜晶体管中的旋转涂布步骤。
[0032] 在另一个实施方案中,本发明提供能经受显著应变而不断裂的可拉伸半导体元件。本发明的可拉伸半导体导体元件即使在经受显著应变时也可表现出良好的电子性能,所述应变例如大于或等于约0.5%,优选1%,并且更优选2%。对于某些应用,本发明的可拉伸半导体元件还优选为柔性的,并从而能沿着一条或多条轴线明显伸长、挠曲、弯曲或变形。柔性的可拉伸半导体在挠曲、拉伸、收缩、屈曲和/或变形状态下也可表现出良好的电子性能。本发明柔性的可拉伸半导体元件可以是可印刷的,并且可包括具有与其他器件组件——例如介电体、电极和其他半导体——操作性地连接的半导体结构的组合半导体元件。本发明包括具有可拉伸和/或柔性半导体元件的多种电子和/或光电子器件,例如晶体管、二极管、LED、OLED、激光器、微米机电设备和纳米机电设备。
[0033] 本发明的可拉伸半导体元件包括具有支承面的柔性基片和具有弯曲内表面的可印刷半导体结构。在该实施方案中,半导体结构弯曲内表面的至少一部分与柔性基片的支承面联结(bond)。具有弯曲内表面的、可用于本发明的示例性半导体结构包括屈曲半导体结构。就本说明书而言,“屈曲半导体结构”指的是具有由施加力引起的弯曲形态的半导体结构。屈曲半导体结构可具有一个或多个褶皱区。屈曲半导体结构可以盘绕形态或折皱形态存在。具有弯曲内表面的半导体结构,例如屈曲半导体结构,可以以处于应变的形态联结至柔性基片,所述应变例如小于约30%,小于约10%或小于1%。
[0034] 本发明可拉伸半导体的弯曲内表面可具有任何提供可拉伸性或柔性的轮廓,包括但不限于特征为至少一个凸区域、至少一个凹区域或者至少一个凸区域与至少一个凹区域相结合的轮廓。在一个实施方案中,可拉伸和/或柔性半导体元件的弯曲内表面具有特征为基本呈周期波或基本呈非周期波的轮廓。就本说明书而言,周期波和非周期波可为任何二维或三维波形,包括但不限于,正弦波、方波、Aries函数、高斯波、洛仑兹波、或其任意组合。例如,本发明的可拉伸半导体元件和柔性元件包括具有弯曲内表面的屈曲半导体带,所述弯曲内表面具有特征为沿着带的长度延伸的的、基本呈周期波的轮廓。该实施方案的可拉伸半导体元件和柔性元件可沿着带的长度方向的轴线扩展或收缩,并且可沿着一条或多条其他轴线弯曲或变形。
[0035] 当经受机械应力或者有力施加至半导体元件时,本发明这一实施方案中的半导体结构的轮廓可发生改变。因此,示例性的半导体结构改变轮廓的能力使其具有扩展、收缩、挠曲、变形和/或弯曲的能力,而不会发生明显的机械损坏、断裂、或者电性能大大降低。半导体结构的弯曲内表面可以连续的方式与支承面联结(即在沿着弯曲内表面的几乎全部点上连接)。或者,半导体结构的弯曲内表面可以不连续的方式联结至支承面,其中弯曲内表面在沿着弯曲内表面的所选定点上与所述支承面联结。
[0036] 本发明还包括含有可印刷半导体结构与下述附加集成器件组件相结合的可拉伸电子器件和/或器件组件,所述附加集成器件组件例如,电触点、电极、导电层、介电层以及附加半导体层(例如掺杂层、P-N节等),它们均具有由柔性基片的支承面所支承的弯曲内表面。附加集成器件组件的弯曲内表面配置使其即使在经受显著应变时也可表现出良好的电子性能,例如在拉伸或屈曲构造中保持电导率或保持与半导体元件绝缘。本发明这一方面的附加集成器件组件可具有屈曲构造,例如上述盘绕或折皱的构造,并且可使用与用于制造可拉伸半导体元件相类似的技术制造。在一个实施方案中,例如,包括可拉伸半导体元件在内的多个可拉伸器件组件是独立制造并随后相互连接起来的。或者,含有半导体的器件可制成平面构型,并且随后对得到的平面器件进行处理以使全部或部分器件组件具有弯曲内表面。
[0037] 本发明的可印刷半导体元件可含有表现出改善的性能,例如改善的机械、电、磁和/或光学性能的可用于多种器件环境和配置中的异质半导体(heterogeneous semiconductor)元件。异质半导体为含有与一种或多种添加剂相结合的半导体的多组分结构。就本说明书而言,添加剂包括与其所结合的半导体不同的元素、分子和络合物、聚集体及其颗粒,例如具有不同化学组成和/或物理状态(例如晶态、半晶态或无定形态)的添加剂。可用于本发明这一方面的添加剂包括其他半导体材料、N型和P型掺杂剂(例如砷、和锑)、结构增强剂、介电材料和导电材料。本发明的异质半导体元件包括具有空间均匀组成的结构,例如均匀掺杂的半导体结构;也包括具有空间不均匀组成的结构,例如含有其浓度在一维、二维或三维上随空间位置发生改变的掺杂剂(即在半导体元件中具有空间不均匀的掺杂剂分布)的半导体结构。
[0038] 另一方面,异质半导体元件包括具有附加的集成功能器件组件的半导体结构,所述附加的集成功能器件组件例如,介电层、电极、电触点、掺杂接触层、P-N节、附加半导体层以及用于电荷束缚(charge confinement)的集成多层堆叠。本发明这一方面的附加的集成功能器件组件包括含有半导体的结构以及不含半导体的结构。在一个实施方案中,异质半导体元件包括功能器件——例如晶体管、二极管或太阳能电池,或能有效地构图、组装和/或相互连接于基片材料上的多元件功能器件组件。
[0039] 可印刷异质半导体元件的使用为本发明的制造方法提供了某些优点。首先,本发明“自顶向下”的处理方法实际上使得任何类型的半导体处理方法,例如空间可控的掺杂,均可在与随后的下述制造步骤相分离的步骤中进行,所述制造步骤为(i)确定半导体元件的空间尺寸以及(ii)将半导体元件组装至基片上或功能器件中。本发明方法中将半导体处理步骤与器件和器件组件的组装及相互连接步骤分离,这使得半导体材料的处理可在对生产含有非常高质量的半导体的材料——包括其掺杂区具有严格确定的浓度和掺杂剂空间分布的单晶半导体以及具有高纯度的集成半导体多层堆叠——有益的多种条件下进行。例如,半导体处理与器件组件组装的分离使得半导体处理能在高温及杂质水平高度受控的条件下进行。其次,使用含有多个集成器件组件和/或功能器件的异质半导体元件便于以利于商业化的方式有效进行功能器件及其阵列的高处理量印刷。例如,使用含有多个相互连接的器件组件的异质半导体元件的本发明器件制造方法减少净制造步骤数并且/或者降低生产某些器件所涉及的成本。
[0040] 另一方面,本发明提供通过多种印刷方法,包括干式接触转印或溶液印刷技术,将可印刷半导体元件组装、放置、组织、转印、构图和/或集成至基片上或基片中的方法。本发明的印刷方法能以基本不影响其电性能和/或机械特性的方式将一个或多个半导体元件集成至基片上或基片中。并且,本发明的印刷方法能将半导体元件以选定的空间取向组装至基片的选定区域上或区域内。此外,本发明的印刷方法能将半导体元件和其他器件组件以如下方式集成至基片上和/或基片中,所述方式为,通过在选定的器件组件之间建立良好的导电性、在选定的器件组件之间建立良好的绝缘性,并且/或者在器件组件之间形成良好的空间排列和相对位置关系而得到高性能的电子和光电子器件。
[0041] 在本发明的一个实施方案中,通过干式接触转印法,例如光刻微米转印或纳米转印法,将半导体元件组装至基片表面。在一种方法中,将一个或多个可印刷半导体元件与具有一个或多个接触面的可适应转印设备接触。接触面与可印刷半导体元件之间建立的接触使得半导体元件结合或连接到接触面上。任选地,在接触面与可印刷半导体元件之间建立共形接触以促进这些元件的结合或连接。置于接触面上的半导体元件的至少一部分随后与基片的接受面接触。任选地,可适应转印设备还在其上置有半导体元件的接触面与接受面的至少一部分之间建立共形接触。可适应转印设备的接触面与半导体元件的分离将半导体元件转印至接受面上,从而将半导体元件组装至基片的接受面上。在优选用于器件制造应用场合的一个实施方案中,将可印刷半导体元件以选定的空间取向置于并且/或者集成至基片的选定区域内。任选地,将转印过程重复多次以在大面积的基片接受面上进行构图。在该实施方案中,对于各个相继的构图步骤,将具有可印刷半导体元件的转印模与接受基片的不同区域接触。通过这种方式,使得可由单个母晶片(mother wafer)制成的半导体元件对很大面积的接受面进行构图。
[0042] 本发明中使用干式接触转印法的一个优点在于可印刷半导体元件的图案可以在转印并组装至基片表面上时保持半导体元件选定的空间取向不变——该空间取向确定图案。本发明的这一方面对于如下应用场合特别有利,在所述应用场合中,多个可印刷半导体元件在严格确定的位置中和相对空间取向上进行制造,所述严格确定的位置和相对空间取向直接对应于选定的器件配置或器件阵列配置。本发明的转印方法能转印、放置并组装可印刷半导体元件和/或含有可印刷半导体元件的功能器件,包括但不限于,晶体管、光波导管、微米机电系统、纳米机电系统、激光二极管或全成形电路(fully formed circuit)。
[0043] 在另一个实施方案中,本发明提供选择性转印和组装方法,在该方法中,将所提供的可印刷半导体的一部分而非全部转印并组装至基片上或基片中。在该实施方案中,可适应转印设备能与所提供的特定的可印刷半导体元件选择性结合。例如,可适应转印设备可在其具有凹入区域和凸起部件的外表面上具有选定的三维凸起图案。在该实施方案中,凹入区域和凸起部件的位置可设成仅使选定的可印刷半导体元件与凸起图案的一个或多个接触面接触,并随后转印及组装至基片表面上。或者,可适应转印设备可具有一个或多个具有选定图案的结合区的接触面,所述结合区例如,具有从接触面伸展出来的羟基的化学改性区和/或具有一层或多层粘合剂表面涂层的区域。在该实施方案中,只有那些与接触面上的结合区接触的半导体元件结合至转印设备,并随后被转印及组装至基片表面上。本发明选择性转印及组装方法的优点在于具有第一组位置和空间取向特征的可印刷半导体元件的第一图案可用于生产不同于第一图案、并具有下述第二组位置和空间取向特征的可印刷半导体元件的第二图案,所述第二组位置和空间取向对应于选定的器件配置或器件阵列配置。
[0044] 本发明示例性的可适应转印设备包括干式转印模,例如弹性体转印模或组合多层构图设备。可用于本发明的可适应转印设备包括含有多个聚合物层的构图设备,如申请系列号为No.11/115,954的、于2005年4月27日提交至美国专利和商标局的、题为“用于软光刻法的复合构图设备(Composite Patterning Devices for Soft Lithography)”的美国专利申请中所述,该专利申请通过引用的方式完整纳入本说明书中。一种可用于本发明方法的示例性构图设备包括具有低杨氏模量的聚合物层,例如聚(二甲基硅氧烷)(PDMS)层,对于某些应用优选具有选自约1微米至约100微米范围内的厚度。使用低模量的聚合物层是有益的,因为它提供能与一个或多个可印刷半导体元件——特别是具有弯曲、粗糙、平整和/或轮廓裸露(contoured exposed)表面的可印刷半导体元件——建立良好的共形接触,并能与具有多种表面形态的基片表面——例如弯曲、粗糙、平整、光滑和/或轮廓基片表面——建立良好的共形接触的转印设备。
[0045] 任选地,本发明的转印设备还可包括具有与内表面相对的外表面并具有高的杨氏模量第二层,例如高模量聚合物层、陶瓷层、玻璃层或金属层。在该实施方案中,第一聚合物层的内表面以及高模量第二层的内表面的排列方式使得施加于高模量第二层外表面上的力传递给第一聚合物层。在本发明转印设备中使用高模量的第二聚合物层(或背衬层)是有益的,因为它可使转印设备具有足够大的、能提供良好的结合、转印及组装特性的净抗挠刚度。例如,使用净抗挠刚度选自约1×10-7Nm至约1×10-5Nm范围的转印设备,在其与基片表面建立共形接触后,将结合至接触面的半导体元件和/或其他结构的位置偏差降至最低。使用高模量的刚性背衬层对于在转印过程中防止可印刷半导体元件劣化也是有利的,例如通过防止可印刷半导体层破裂。该特征得到了以高放置准确度和良好的图案保真度组装可印刷半导体元件的方法和设备。本发明的转印设备可含有附加的层,包括聚合物层,以使操纵和维护简便并得到良好的热性能,并使施加于转印设备的力均匀分布至整个接触面,如申请系列号为No.11/115,954的、于2005年4月27日提交至美国专利和商标局的、题为“用于软光刻法的复合构图设备(Composite Patterning Devices for Soft Lithography)”的美国专利申请所教导的那样,所述专利申请通过引用的方式完整纳入本说明书中。
[0046] 另一种方法是使用“软粘合(soft adhesion)”的原理支配转印过程。这种情形下,转印元件上表面材料的粘弹性引起取决于剥离速度的剥离力(即可将物体从表面上提起的力)。在高剥离速度下,即使转印元件的静态表面能低于基片的静态表面能,剥离力也能大到足够将物体从基片上移除并使它们转移至转印元件上。在低剥离速度下,剥离力较低。在某些实施方案中,通过使支承着物体阵列的转印元件贴着最终的基片接触并随后缓慢地剥离该元件,使这些物体从转印元件转印至基片上。本发明的使用受控剥离速度的这一方法可与本说明书所述的其他转印方法结合使用。
[0047] 本发明的转印设备可具有单个连续的接触面或多个不连续的接触面。本发明转印设备的接触面可由选定的三维凸起图案确定,所述选定的三维凸起图案具有选定物理尺寸的凹入区域和凸起部件。可用于本发明的接触面能通过范德华力、共价键、粘合层、化学改性区(例如在其表面上有羟基的区域)、偶极-偶极力或其结合与可印刷半导体元件相结合。
[0048] 多种方法可用于促进可印刷半导体元件从接触面向基片表面中或基片表面上的转印。在一个示例性实施方案中,基片表面与接触面的表面能的不同有助于转印至基片表面。例如,可有效实现从包含PDMS层的、具有较低表面能的接触面转印至具有较高表面能的基片表面,例如聚酰亚胺、聚碳酸酯或聚酯薄膜层。此外,在与待转印的可印刷半导体元件接触前和/或接触过程中,可通过加热使塑料基片表面软化或部分熔化,从而形成嵌入基片中的半导体元件。先使基片冷却并变硬,然后再使接触面与半导体元件分离,这样有助于有效的转印。或者,基片表面可具有一个或多个化学改性区,使基片表现出对半导体元件更强的亲和力。例如,改性区可由一个或多个粘合层覆盖或被改性,从而使其与半导体元件一起发生有效的共价键合、范德华引力、偶极-偶极力或其组合,以促进有效的转印和组装。或者,可使部分聚合的聚合物前体与半导体元件或其他器件组件接触,并随后聚合,从而形成其中嵌有半导体元件的基片。
[0049] 在一个示例性实施方案中,制成顶面涂有薄的剥离层(release layer)的可印刷半导体元件,所述剥离层包括例如在确定并制造可印刷半导体元件的过程中构图于基片上的用作光掩模的光刻胶层。使可适应转印设备的接触面与可印刷半导体元件的涂层表面形成共形接触。剥离层促进可印刷半导体元件与转印设备的接触面的联结。然后使可印刷半导体元件未涂有剥离层的表面与基片的接受面接触。接下来,通过例如暴露至适当的溶剂——例如丙——除去剥离层,从而使可印刷半导体元件与可适应转印设备分离。任选地,接受面可涂有一层或多层粘合层以促进可印刷半导体元件的转印。
[0050] 在本发明的另一个实施方案中,通过溶液印刷将可印刷半导体元件组装至基片上。就本说明书而言,术语“溶液印刷”拟指如下方法,该方法将一个或多个结构——例如可印刷半导体元件——分散至载体介质例如载流流体(carrier fluid)或溶剂中,并以预定方式传送至基片表面的选定区域。在一种示例性的溶液印刷方法中,通过不依赖于进行构图的基片表面的形态和/或物理特性的方法实现结构向基片表面选定区域的转移。在另一个实施方案中,可印刷半导体元件保持悬浮于溶剂中直至溶剂蒸发,或者直至施加的力——例如静电力、磁力或由声波提供的力——将可印刷半导体元件从溶液中分出并传送至基片的选定区域。可通过选择避免过早沉淀所需的可印刷半导体元件适当的物理尺寸和质量实现该功能。由此可见,本发明的溶液印刷法实质上不同于某些流体自组装法,在后者中,悬浮于载体介质中的元件由于重力脱离溶液并以符合统计学的方式落入基片的凹入区域。
[0051] 本发明的将可印刷半导体元件组装至基片接受面上的方法包括将可印刷半导体元件分散在载体介质中,从而形成在载体介质中含有半导体元件的悬浮液的步骤。通过将悬浮液溶液印刷至接受面上来将半导体元件传送至基片上,从而将半导体元件组装至所述接受面上。在该实施方案中,溶液印刷可通过多种本领域已知的技术实现,所述技术包括但不限于,喷墨印刷法、热转印法以及丝网印刷法。本发明的溶液印刷法还可采用自组装调节技术(self assembly alignment technique)。例如,在一个实施方案中,在具有互补的图案化疏水区(例如甲基端基表面基团)和亲水区(例如羧酸端基表面基团)的接受面上,调节具有图案化疏水基和亲水基的可印刷半导体元件的排列、放置和定位。本发明的溶液印刷法还可利用含有分散的可印刷半导体元件的液滴的毛细管作用以实现排列、放置和定位。
[0052] 任选地,多种方法可用于本发明中以控制半导体元件和/或其他器件组件在基片表面上的取向、排列和选择性沉积。这些方法使得能够制造含有多个相互连接的下述器件组件的复杂的集成电子和光电子器件,所述器件组件具有精确指定的相对位置和空间取向。例如,可利用静电力、声波和/或静磁力以帮助将半导体元件和其他器件组件以选定的空间取向放置于基片表面的特定位置上。或者,可在选定区域中对基片表面本身的特性和/或组成进行改性,以实现半导体元件和其他器件组件的精确放置。例如,可对基片表面的选定区域进行化学改性,以使其表现出对半导体元件的选择性亲和力。此外,可对基片表面的电性能进行改性,例如通过在特定的表面区域形成势阱,以促进可印刷半导体元件和其他器件组件的选择性集成、取向及排列。
[0053] 本发明的印刷方法具有很多对制造高性能电子和/或光电子器件很重要的优点。第一,本发明的印刷方法能转印并组装无机单晶半导体结构,而不会使这些结构经受于大到足够引起明显损坏或劣化——例如由于破裂而损坏——的机械应变。第二,本发明的印刷方法能将一个或多个半导体元件以选定的取向和良好的放置准确度(即关于接受面的选定区域呈良好的空间定位)放置于基片表面的选定区域,与基片上绝对准确的取向和位置的空间偏差优选小于或等于5微米。第三,本发明的印刷方法能形成相对于选定的空间配置——例如对应于功能器件或器件阵列的空间配置——具有良好的保真度的图案,所述图案含有多个半导体元件、其他器件元件、集成功能器件或其任意组合。第四,本发明的印刷方法可在较低温度(即低于约400℃的温度)下实施,因此与多种基片特别是塑料基片相兼容。最后,本发明的印刷方法提供了一种制造高性能电子和/或光电子器件的低成本途径,并且不需要洁净的室内条件。
[0054] 本发明的将可印刷半导体元件组装、放置、组织、转印、构图和/或集成至基片上或基片中的组成和相关方法实际上可用于制造含有一个或多个半导体元件的任何结构。这些方法可特别用于制造复杂的集成电子或光电子器件或器件阵列,例如二极管、发光二极管、太阳能电池、晶体管(FET和双极晶体管)以及薄膜晶体管的阵列。本发明的组成及相关方法还可用于制造系统水平的集成电路,例如互补逻辑电路,其中将多个可印刷半导体元件以严格确定的空间取向印刷至基片上,并使其相互连接以形成所需的电路设计。在本发明这一方面的一个实施方案中,将具有选定的掺杂剂浓度和掺杂剂空间分布的可印刷N型和P型异质半导体元件进行组装并使其相互连接以制造复杂的集成电路。在另一个实施方案中,将含有不同半导体材料的多个可印刷半导体元件印刷至相同的基片上,并使其相互连接以制造复杂的集成电路。
[0055] 然而,本发明的组装方法并不限于半导体。相反,这些方法与多种非半导体材料广泛兼容。可通过本发明方法转印并且/或者组装的材料包括但不限于绝缘材料,例如SiO2;连接材料,例如导体;光学元件,例如有源光学材料、无源光学材料和光纤元件;用于传感的材料以及磁性材料。因此,本发明方法、设备及设备组件可用于制造多种微米级和/或纳米级结构及结构组合件,例如微流体设备和结构、NEMS设备和NEMS设备的阵列、以及MEMS设备和MEMS设备的阵列。特别地,本发明的转印和组装方法通过顺序叠加多个印刷层可用于生产复杂的三维结构,例如集成电路。
[0056] 本发明的组成以及相关的制造、组装和相互连接方法可用于在大面积的多种基片上制造器件,特别是基于半导体的器件。本发明方法的好处在于它们与在和大多数柔性基片相适应的温度下进行的器件组装兼容,所述柔性基片包括聚合物材料,例如热塑性材料、热固性材料、增强的聚合物材料以及复合聚合物材料。然而,本发明方法同样适用于在刚性和/或脆性基片上进行器件制造,所述刚性和/或脆性基片包括陶瓷材料、玻璃、介电材料、导体、金属和半导体材料。这些方法对在脆性材料上进行的器件制造具有适用性是因为使用本发明的印刷方法时,施加于基片上的力非常小。本发明的组成及制造方法还与在多种不常用的基片材料上进行器件制造相兼容,所述基片材料例如纸质、木质和橡胶以及轮廓基片,包括弯曲基片、弯曲刚性基片、凹状基片以及凸状基片。例如,本发明方法能将可印刷半导体元件和其他器件组件(例如电极、介电层、P-N节等)组装并集成至曲率半径在约10微米至约10米的范围内的基片上,所述基片包括刚性和柔性基片。
[0057] 另一方面,本发明的制造方法能将可印刷半导体组件异质集成(heterogeneous intergration)至功能基片中。例如,本发明的印刷方法能将可印刷半导体元件沉积并集成至具有严格确定的半导体区域、导体区域和/或绝缘区域的基片中。本发明制造方法的一个优点在于可印刷半导体元件可在选定的取向上和位置中以高放置准确度印刷至功能基片上,例如印刷至集成电路或集成电路的组件上,特别是对于本发明的干式接触转印法而言。
[0058] 本发明的可印刷半导体元件可由多种材料制成。制造半导体元件的有用的前体材料包括半导体晶片源,其中又包括大块的半导体晶片,例如单晶硅晶片、多晶硅晶片、锗晶片;超薄半导体晶片,例如超薄硅晶片;掺杂半导体晶片,例如P型或N型掺杂晶片以及具有选定的掺杂剂空间分布的晶片(绝缘体晶片上的半导体,例如绝缘体上的硅(例如Si-SiO2、SiGe));以及基片晶片上的半导体,例如基片晶片上的硅以及绝缘体上的硅。此外,本发明的可印刷半导体元件可由使用常规方法进行半导体器件处理所留下的废料或未使用的高质量半导体材料或再处理的半导体材料制成。另外,本发明的可印刷半导体元件可由多种非晶片源制成,所述非晶片源包括例如沉积在牺牲层或基片(例如SiN或SiO2)上并随后经过退火处理的无定形、多晶和单晶半导体材料(例如多晶硅、无定形硅、多晶GaAs和无定形GaAs)的薄膜。
[0059] 本发明还包括制造可印刷半导体元件和柔性半导体元件的方法。这些方法实现了由多种前体材料——例如绝缘体晶片上的硅、单晶硅晶片、多晶晶体硅薄膜、超薄硅晶片以及锗晶片——制造可印刷半导体元件以及柔性半导体元件。另外,这些方法能生产具有多种形状和物理尺寸的可印刷半导体元件。此外,本发明方法实现了在严格确定的相对空间取向上进行可印刷半导体元件大的阵列/图案的低成本制造。
[0060] 另一方面,本发明提供将可印刷半导体元件组装至基片的接受面上的方法,包括如下步骤:(1)提供含有无机半导体整体结构的可印刷半导体元件;(2)使可印刷半导体元件与具有接触面的可适应转印设备接触,其中接触面与可印刷半导体元件之间的接触将所述可印刷半导体元件结合或连接至所述接触面上,从而形成其上置有可印刷半导体元件的接触面;(3)使置于接触面上的可印刷半导体元件与基片的接受面接触;以及(4)使可适应转印设备的接触面与可印刷半导体元件分离,其中可印刷半导体元件转印到接受面上,从而将可印刷半导体元件组装到基片的接受面上。在一个实施方案中,本发明的该方法还包括如下步骤:(1)提供附加的各自包括无机半导体整体结构的可印刷半导体元件;(2)使可印刷半导体元件与具有接触面的可适应转印设备接触,其中接触面与可印刷半导体元件之间的接触将可印刷半导体元件结合或连接到接触面上,并形成其上置有可印刷半导体元件的接触面,所述可印刷半导体元件的相对取向形成选定图案;(3)使置于接触面上的可印刷半导体元件与基片的接受面接触;以及(4)使可适应转印设备的接触面与可印刷半导体元件分离,其中将可印刷半导体元件以形成所选定图案的相对取向转印到接受面上。
[0061] 另一方面,本发明提供一种将可印刷半导体元件组装到基片的接受面上的方法,包括如下步骤:(1)提供含有无机半导体整体结构的可印刷半导体元件,其中可印刷半导体元件有至少一个横截面尺寸大于或等于约500纳米;(2)将半导体元件分散在溶剂中,从而形成在溶剂中含有半导体元件的悬浮液;以及(3)通过将悬浮液溶液印刷到接受面上以将半导体元件传送至基片上,从而将半导体元件组装到接受面上。在一个实施方案中,本发明的该方法还包括如下步骤:(1)提供附加的可印刷半导体元件,其中各个附加的可印刷半导体元件有至少一个横截面尺寸大于或等于约500纳米;(2)将半导体元件分散在溶剂中,从而形成在溶剂中含有半导体元件的悬浮液;以及(3)通过将悬浮液溶液印刷到接受面上以将半导体元件传送至基片上,从而将半导体元件组装到接受面上。
[0062] 另一方面,本发明提供一种制造可印刷半导体元件的方法,包括如下步骤:(1)提供具有外表面的晶片,所述晶片含有无机半导体;(2)通过施加掩模遮蔽外表面的选定区域;(3)对晶片的外表面进行蚀刻(可任选各向异性蚀刻(anisotropically etching)),从而在晶片上形成凸起结构和至少一个裸露的晶片表面,其中凸起结构具有遮蔽的侧面和一个或多个未遮蔽的侧面;(4)将掩模施加于凸起结构的未遮蔽侧面的至少一部分上;以及(5)至少部分蚀刻晶片的裸露表面,从而使凸起结构的一部分与晶片脱离并制造可印刷半导体元件。在该实施方案中,可通过倾斜沉积法,例如溅射或气相沉积法,或者通过使外表面上的一部分掩模流至未遮蔽的侧面上而将掩模施加至凸起结构的未遮蔽侧面。
[0063] 另一方面,本发明提供一种制造可印刷半导体元件的方法:包括如下步骤:(1)提供具有外表面的晶片,所述晶片含有半导体;(2)通过施加第一掩模遮蔽外表面的选定区域;(3)对晶片的外表面进行蚀刻(可任选各向异性蚀刻),从而形成多个凸起结构;(4)对晶片进行退火,从而形成退火外表面(annealed external surface);(5)通过施加第二掩模遮蔽退火外表面的选定区域;以及(6)对退火外表面进行蚀刻(可任选各向异性蚀刻),从而形成半导体元件。
[0064] 另一方面,本发明提供一种制造可印刷半导体元件的方法,包括如下步骤:(1)提供具有外表面的超薄晶片,所述晶片含有半导体,并在沿着垂直于外表面的轴上具有选定的厚度;(2)通过施加掩模遮蔽外表面的选定区域;(3)对晶片的外表面进行蚀刻(可任选各向异性蚀刻),其中在沿着垂直于外表面的轴上的整个厚度内对晶片进行蚀刻,从而形成可印刷半导体元件。
[0065] 另一方面,本发明提供一种制造柔性半导体元件的方法,包括如下步骤:(1)提供具有内表面的可印刷半导体结构;(2)提供处于扩展状态的预应变弹性基片,其中弹性基片具有外表面;以及(3)将可印刷半导体结构的内表面联结至处于扩展状态的预应变弹性基片的外表面上;并且使弹性基片至少部分松弛到松弛状态,其中弹性基片的松弛使得可印刷半导体结构的内表面弯曲,从而形成具有弯曲内表面的半导体元件。在一个示例性实施方案中,预应变弹性基片沿着第一轴线、垂直于第一轴线的第二轴线或上述两条轴线扩展。处于扩展状态的预应变弹性基片可通过使弹性基片弯曲或将弹性基片卷起而形成。任选地,本发明这一方面的方法还可包括将具有弯曲内表面的半导体转移至柔性接受基片上的步骤。
[0066] 另一方面,本发明提供一种制造下述可印刷半导体元件的方法,该半导体元件通过一个或多个排列保持元件连接至母晶片上,该方法包括如下步骤:(1)提供具有外表面的母晶片,所述晶片含有无机半导体材料;(2)通过施加掩模遮蔽外表面的选定区域;(3)对晶片的外表面进行蚀刻,从而使晶片形成凸起结构和至少一个裸露的表面,其中凸起结构具有遮蔽的侧面和一个或多个未遮蔽的侧面;(4)对晶片裸露的表面进行蚀刻;以及(5)停止对裸露的结构的蚀刻,以防止凸起结构完全脱离,从而制造通过一个或多个排列保持元件连接至母晶片上的可印刷半导体元件。在该方法的一个实施方案中,可印刷半导体元件为具有第一端和第二端的花生状,其中排列保持元件将可印刷半导体元件的第一和第二端连接至母晶片上。在该方法的另一个实施方案中,可印刷半导体元件为具有第一端和第二端的带状,其中排列保持元件将可印刷半导体元件的第一和第二端连接至母晶片上。附图说明
[0067] 图1示意性说明了本发明用于生产和组装含有单晶硅带的可印刷半导体元件的一个示例性方法。
[0068] 图2提供了将可印刷半导体元件组装至基片的接受面上的选择性干式接触转印法的示意图。
[0069] 图3A-C是展示可用于本发明选择性干式接触转印法的设备、设备配置以及设备组件的示意图。图3D提供了印刷至聚碳酸酯透镜(FL为100mm)的球形表面上的光电二极管阵列的照片。图3E提供了印刷至球形玻璃透镜(FL为1000mm)的弯曲面上的光电二极管阵列的扫描电子显微照片。图3E所提供图像中的对比度被略微增强以显示p掺杂区域。图3F提供了说明图3E所示的光电二极管的光响应的电流(μA)-偏压(伏)曲线。
[0070] 图4A1和4A2展示了用于使用干式接触转印法的本发明组装方法的可印刷半导体元件的优选形状。图4A1提供了透视图,图4A2提供了俯视图。图4B1和4B2展示了用于使用干式接触转印法的本发明组装方法的可印刷半导体元件的优选形状。图4B1提供了透视图,图4B2提供了俯视图。
[0071] 图5A-C提供了含有物理尺寸已选定的单晶硅微条(microstrip)的多种可印刷半导体元件的光学及扫描电子显微照片。
[0072] 图6提供了在涂布有PDMS的聚酰亚胺片上含有单晶硅微条的转印的可印刷半导体元件的图像。
[0073] 图7提供了具有可印刷半导体元件的薄膜晶体管的光学显微图像。
[0074] 图8提供了展示在预氧化Si晶片上制造的器件的电流-电压(V)特性的曲线。
[0075] 图9提供了在VDS=0.1V下测得的展示下述器件传输特性的曲线,所述器件在涂有ITO和聚合物电介质的聚酯薄膜片栅极(gate)上制成。
[0076] 图10A-H提供了本发明的用于制造具有组合可印刷半导体元件的薄膜晶体管阵列的方法的示意图。
[0077] 图11A-D提供了本发明的用于制造含有集成栅电极、栅极绝缘、半导体、源电极和漏电极的可印刷器件的方法的示意图。
[0078] 图12提供了展示本发明可拉伸可印刷半导体元件的原子力显微照片。
[0079] 图13展示了提供具有弯曲内表面的半导体结构的放大图的原子力显微照片。
[0080] 图14展示了本发明的可拉伸可印刷半导体元件阵列的原子力显微照片。
[0081] 图15展示了本发明的可拉伸可印刷半导体元件的光学显微照片。
[0082] 图16展示了本发明的可拉伸可印刷半导体元件的原子力显微照片,所述半导体元件具有联结至柔性基片上的半导体结构,所述柔性基片的支承面上具有三维凸起图案。
[0083] 图17展示了说明本发明制造可拉伸半导体元件的示例性方法的流程图
[0084] 图18A展示了由Si-Ge epi基片制造可印刷半导体元件的示例性方法。
[0085] 图18B展示了由大块硅基片、优选单晶硅基片制造可印刷半导体元件的示例性方法。
[0086] 图18C展示了由大块硅基片、优选单晶硅基片制造可印刷半导体元件的另一种示例性方法。
[0087] 图18D展示了由大块硅基片、优选单晶硅基片制造可印刷半导体元件的又一种示例性方法。
[0088] 图18E展示了由超薄硅基片制造可印刷半导体元件的示例性方法。
[0089] 图18F展示了由支承基片上的多晶硅薄膜制造可印刷半导体元件的示例性方法。
[0090] 图18G展示了由SiO2基片上的多晶硅薄膜制造可印刷半导体元件的示例性方法。
[0091] 图18H(1)和18H(2)说明了使用本发明可印刷半导体元件制造单晶半导体薄膜的方法。
[0092] 图18I展示了由GaAs基片制造含有微米线的可印刷半导体元件的示例性方法。
[0093] 图18J展示了制造含有单晶硅带的可印刷半导体元件的一种替代方法。
[0094] 图18K展示了制造含有单晶硅带的可印刷半导体元件的一种替代方法。
[0095] 图19提供了说明形成GaAs纳米线阵列并将其转印至基片上的示例性方法的步骤的示意图,所述基片包括例如含有涂布了固化酯(PU)薄层的聚(对苯二甲酸二乙酯)(PET)片的塑料基片。
[0096] 图20A提供了由GaAs晶片制得的无支承(free-standing)的GaAs线的扫描电子显微照片,所述GaAs晶片用孤立的SiO2线条进行构图。图20B-E展示了由蚀刻下述GaAs晶片获得的单根线的扫描电子显微照片,所述GaAs晶片用2μm宽的SiO2线条进行构图。图20F提供了显示由本发明方法制造的线的顶面的平均宽度 随蚀刻时间变化的曲线图。
[0097] 图21A-G展示了印刷在PDMS和PU/PET基片上的多种GaAs线阵列的图像。
[0098] 图22A-C展示了PDMS和PU/PET基片上的InP线阵列的扫描电子显微照片。
[0099] 图23A提供一个示例性的、含有GaAs线阵列的二接头二极管器件的示意图和图像。图23B展示了在不同弯曲半径下记录的二接头二极管器件的电流-电压(I-V)曲线,它表明含有GaAs线阵列的二接头二极管器件表现出预期的二极管特性。图23C展示了在不同弯曲半径下弯曲后,二接头二极管器件再次松弛后所测得的电流-电压(I-V)曲线。
[0100] 图24提供了说明本发明的将具有包括磁标(magnetic tag)的操纵元件的可印刷半导体元件溶液印刷的示例性方法的示意图。
[0101] 图25提供了展示使用本发明的溶液印刷法形成含有可印刷半导体元件的微米结构的有序阵列的数张光学图像,所述可印刷半导体元件具有包括镍薄层的操纵元件。
[0102] 图26A说明了用于制造本发明示例性可弯曲薄膜晶体管器件的步骤。图26B提供了该薄膜晶体管的底栅极器件配置的示意性说明,以及该器件阵列的一部分的高放大率和低放大率光学图像。
[0103] 图27A提供了应用忽略接触影响的标准场效应晶体管模型所评估的本发明可弯曲薄膜晶体管的电流电压特性,结果表明在饱和段(saturation regime)的有效器件迁移率2 2
为140cm/Vs,在线性段(linear regime)的有效器件迁移率为260cm/Vs。图27B提供了在线性刻度(左轴)和对数刻度(右轴)上作图表示的几种器件的传输特性。图27C展示了由本发明方法制造的几种可弯曲薄膜晶体管的线性有效迁移率的分布。
[0104] 图28A提供了说明可印刷单晶硅半导体元件的显著柔性的溶液浇注带的高分辨率扫描电子显微照片(左侧插图)。图28中的右侧插图展示了用于使该研究中所评价的可弯曲薄膜晶体管弯曲的实验装置的图片。图28B展示了在受到拉伸应变和压缩应变时,环氧树脂绝缘体电容的小的(~<1%)线性变化(参见顶部插图)。图28B中底部插图提供了在栅极偏压与漏极偏压均为4V时测得的器件饱和电流的变化。
[0105] 图29A提供了对用于在PET基片上生产含有可印刷异质半导体元件的晶体管的制造方法的示意性描绘。图29B展示了具有使用本发明技术所制造的异质可印刷半导体元件的几种器件的光学图像。
[0106] 图30A展示了对于用来表征接触阻抗的可印刷异质半导体元件和接触垫的排列(参见插图),R总W随L变化的归一化的阻抗曲线。图30B展示了飞行时间二次离子质谱(TOF-SIMS)的测量结果,该结果表明使用构图的SOG作为扩散势垒(参见图29A中的示意图)将掺杂剂局限于硅中的所需区域。在图30B所示的该图像中,亮红色表示高的磷浓度。
[0107] 图31A-D展示了对应于在环氧树脂/ITO/PET基片上含有可印刷接触掺杂的硅半导体元件的晶体管的测量结果。图31A提供了L=7μm且W=200μm时,具有掺杂接触的单晶硅晶体管在PET基片上的典型的电流-电压特性。图31B提供了通道长度从高到低为97μm、72μm、47μm、22μm、7μm和2μm的器件的传输曲线(Vd=0.1V)。通道宽度在各例中均为200微米。图
31C展示了在不同栅极电压下宽度归一化的ON状态器件阻抗(RonW)随通道长度L的变化。实线代表线性拟合。换算结果与该通道长度范围内对器件性能具有可忽略影响的接触一致。
图31C中的插图展示了由图31C中线性拟合的斜率的倒数所测定的基片电导[Δ(RonW)/ΔL]-1随栅极电压的变化。图31D展示了对于具有非掺杂(三形)和掺杂(方形)触点的器件,其在线性段测得的有效迁移率随通道长度的变化。
[0108] 图32A展示了由未屈曲状态的值μ0eff归一化的有效器件迁移率随应变(或弯曲半径)的变化。图32B提供了经数百次使器件产生0至0.98%的压缩应变的弯曲周期后(至半径为9.2mm)的归一化的有效迁移率μeff/μ0eff。
[0109] 图33提供了使用本发明的异质集成方法制造的、含有直接联结至硅晶片(100)上的氮化镓微米结构的组合半导体结构的一个实例。
[0110] 图34A提供了示意性说明生产含有可印刷P-N节的太阳能电池的制造途径中的处理步骤的工艺流程图。图34B展示了由图34A所示的制造途径生产的太阳能电池器件配置的示意图。图34C展示了照射具有如图34B所示配置的太阳能电池器件后所观察到的光电二极管的响应。
[0111] 图35A提供了示意性说明生产含有可印刷P掺杂和N掺杂半导体层的替代制造途径中的处理步骤的工艺流程图。图35B展示了使用如图35A所示的制造途径所生产的太阳能电池器件的示意图。图35C展示了在图35B中示意性描述的太阳能电池的俯视SEM图像。图35D提供了说明图35C所示太阳能电池的光电二极管响应的电流-偏压曲线。图35E展示了说明如图35C所示的太阳能电池的光电二极管响应的、对应于几种不同的照射强度的电流-偏压曲线。
[0112] 图36A展示了说明生产可拉伸薄膜晶体管阵列的示例性方法的工艺流程图。图36B提供了处于松弛和拉伸状态的可拉伸薄膜晶体管阵列的光学显微照片,示出橡胶基片上的可拉伸μs-Si晶体管。
[0113] 图37A提供了展示将μs-Si元件构图至塑料基片上的本发明处理方法(方法I)的示意图。图37B提供了说明将μs-Si元件构图至塑料基片上的一种替代的本发明处理方法(方法Ⅱ)的示意图。
[0114] 图38A展示了用于本发明方法的称作花生状μs-Si物体的设计。图38A中的光学图像插图展示了优化的HF蚀刻条件,其中通道下的埋层氧化物被除去,而牺牲层的SiO2部分保留下来。图38B展示了当Si物体在HF溶液中被过度蚀刻时失去该次序的一个实例。图38C、38D、38E和38F展示了描述使用方法I所实施的各个μs-Si转印步骤的进行的一系列显微照片。
[0115] 图39A和39B提供了通过3600PDMS印模将μs-Si选择性转印至PU/PET片上的光学图像。图39C为涂有Sylgard 184的PET基片的一个片段的光学显微照片,其中μs-Si已与该基片化学联结并将随后转印至该基片上。这种方式转印的μs-Si的更高放大率的图像示于图39D中。
[0116] 图40A说明了根据使用方法I的转印法使用花生状μs-Si所制造的器件的一个示例性器件几何形状。图40B提供了μs-Si TFT在多个栅极电压(Vg=-2.5V至20V)下的I-V曲线。图40C展示了在恒定的源-漏电压(Vsd=1V)下测得的传输特性,它表明有效迁移率为
173cm2/Vs。图40C中的插图展示了本发明实际器件的光学显微照片。
[0117] 图41提供了在聚(对苯二甲酸二乙酯)(PET)基片上制造μs-GaAs MESFET的方法所涉及的步骤的示意性流程图。通过各向异性化学蚀刻由标准(100)GaAs晶片制得线状物。使用弹性体印模的印刷技术将这些线从晶片上以保持空间组织(即有序阵列)的方式转印至塑料器件基片。PR代表光刻胶。
[0118] 图42A提供了展示在塑料基片(PU/PET)上基于GaAs线的MESFET的几何形状的横截面的示意图。源/漏电极形成与n-GaAs层的欧姆接触。图42B展示了根据图41的工艺流程图制造的在塑料基片上基于GaAs线的两个MESFET的代表性图像,各个MESFET均使用10根GaAs线的阵列。图42C展示了具有数百个晶体管的2cm×2cmPET片的图像,它清楚显示了其柔性。
[0119] 图43A、43B以及43C提供了通道长度为50μm、栅极长度为15μm的与图42B所示MESFET相似的GaAs MESFET的结果。图43A展示了栅极电压在0.5V至-2.0V之间(步长为0.5V)时的电流-电压(漏电极与源电极之间)曲线。图43B展示了在不同VDS下测得的本发明GaAs MESFET的传输特性(即IDS-VGS)。图43C展示了在VDS=4V时对(IDS)1/2-VGS作图得到的传输曲线,它清楚展示了对MESFET所预期的线性关系。
[0120] 图44A和44B展示了以下两种情况下在柔性PET基片上的基于GaAs线的MESFET的栅极调制的电流-电压特性:(A)弯曲前;(B)弯曲至8.4mm弯曲半径后。图44C展示了在将屈曲基片松弛至其平的、未屈曲状态后,基于GaAs线的MESFET的栅极调制的电流-电压特性。图44D展示了在三个弯曲(具有不同的表面应变)/松弛周期内,在VDS=4V且VGS=0V时的IDS的变化,它表明这些MESFET在经过多次使器件的拉伸应变在0%至1.2%之间变化的屈曲周期后保持完好,它们的性能未显著改变(<20%)。
[0121] 图45提供了说明用于塑料基片上的P型底栅薄膜晶体管的本发明一个示例性器件配置的示意图,示出P型μs-Si底栅TFT。
[0122] 图46提供了说明用于塑料基片上的互补逻辑栅极的本发明一个示例性器件配置的示意图,示出基片上的互补逻辑栅极(换流器)。
[0123] 图47提供了说明用于在塑料基片上的顶栅薄膜晶体管的本发明一个示例性器件配置的示意图,示出塑料上的顶栅μs-Si晶体管。

具体实施方式

[0124] 参考附图,相似的数字指示相似的元件,并且在多个附图中出现的相同的数字指代相同的元件。另外,下文中适用如下定义。
[0125] “可印刷”指能转印、组装、构图、组织和/或集成至基片上或基片中而未使基片暴露于高温(即在低于或等于约400℃下)的材料、结构、器件组件和/或集成功能器件。在本发明的一个实施方案中,可印刷材料、结构、器件组件和器件能通过溶液印刷或干式接触转印方式转印、组装、构图、组织和/或集成至基片上或基片中。
[0126] 本发明的“可印刷半导体元件”包括能通过使用例如干式接触转印和/或溶液印刷法组装和/或集成至基片表面上的半导体结构。在一个实施方案中,本发明的可印刷半导体元件为单晶、多晶或微晶无机半导体整体结构。就本说明书而言,整体结构为具有机械连接的部件的单块元件。本发明的半导体元件可掺杂或不掺杂,可具有选定的掺杂剂空间分布,并且可用多种不同的掺杂剂材料掺杂,例如P型和N型掺杂剂。本发明包括有至少一个横截面尺寸大于或等于约1微米的微米级结构可印刷半导体元件,以及有至少一个横截面尺寸小于或等于约1微米的纳米级结构可印刷半导体元件。可用于多种应用场合的可印刷半导体元件包括对高纯度的大块材料——例如使用常规的高温处理技术所生产的高纯度晶体半导体晶片——进行“自顶向下”的处理所获得的元件。在一个实施方案中,本发明的可印刷半导体元件包括组合结构,所述组合结构具有与至少一个附加的器件组件或结构——例如导电层、介电层、电极、附加半导体结构或其任意组合——可操作地连接的半导体。在一个实施方案中,本发明的可印刷半导体元件包括可拉伸的半导体元件和/或异质半导体元件。
[0127] “横截面尺寸”指器件、器件组件或材料的横截面尺寸。横截面尺寸包括宽度、厚度、半径以及直径。例如,带状的可印刷半导体元件的特征在于长度和两个横截面尺寸:即厚度和宽度。例如,筒形的可印刷半导体元件的特征在于长度和横截面尺寸直径(或者半径)。
[0128] “填充系数”指两个元件——例如第一和第二电极——之间的由材料、元件和/或器件组件所占据的面积百分比。在本发明的一个实施方案中,第一和第二电极与一个或多个可印刷半导体元件以电接触方式设置,所述可印刷半导体元件在第一与第二电极之间提供大于或等于20%的填充系数,对于某些应用优选大于或等于50%,并且对于某些应用更优选大于或等于80%。
[0129] “由基片支承”指的是至少部分存在于基片表面上的结构,或至少部分存在于一个或多个位于其自身与基片表面之间的中间结构上的结构。术语“由基片支承”还可指部分或完全嵌入基片中的结构。
[0130] “溶液印刷”拟指如下方法,该方法是将一个或多个结构——例如可印刷半导体元件——分散至载体介质中并以预定(concerted)方式传送至基片表面的选定区域。在一种示例性的溶液印刷方法中,通过不依赖于进行构图的基片表面的形态和/或物理特性的方法实现结构向基片表面选定区域的传送。可用于本发明的溶液印刷法包括但不限于喷墨印刷法、热转印法和毛细管作用印刷法。
[0131] “基本纵向取向”指这样一种取向:一组元件,例如可印刷半导体元件,其纵向轴线与选定的排列轴线呈基本平行的取向。就该定义而言,与选定的轴线基本平行指的是在绝对平行取向的10度以内的取向,更优选在绝对平行取向的5度以内的取向。
[0132] “可拉伸”指材料、结构、器件或器件组件被拉紧而不发生断裂的能力。在一个示例性实施方案中,可拉伸材料、结构、器件或器件组件可承受大于约0.5%的应变而不发生断裂,对于某些应用优选应变大于约1%而不发生断裂,并且对于某些应用更优选应变大于约3%而不发生断裂。
[0133] 术语“柔性”和“可弯曲的”在本说明书中作为同义词使用,并且均指材料、结构、器件或器件组件变形至弯曲形状而不发生引起显著应变——例如定义材料、结构、器件或器件组件破坏点的应变——的形变的能力。在一个示例性实施方案中,柔性材料、结构、器件或器件组件可变形为弯曲形状而未引起大于或等于约5%的应变,对于某些应用优选大于或等于约1%的应变,并且对于某些应用更优选大于或等于约0.5%的应变。
[0134] “半导体”指在非常低的温度下为绝缘体,而在约300K的温度下具有明显的电导率的任何材料。在本说明书中,拟使术语半导体的使用与微电子和电子器件领域中该术语的使用相一致。可用于本发明的半导体可包括元素半导体和化合物半导体。前者例如硅、锗和金刚石。后者例如第Ⅳ族化合物半导体,例如SiC和SiGe;Ⅲ-Ⅴ族半导体,例如AlSb、AlAs、Aln、AlP、BN、GaSb、GaAs、GaN、GaP、InSb、InAs、InN和InP;Ⅲ-Ⅴ族三元半导体合金,例如AlxGa1-xAs;Ⅱ-Ⅵ族半导体,例如CsSe、CdS、CdTe、ZnO、ZnSe、ZnS和ZnTe;I-Ⅶ半导体CuCl;Ⅳ-Ⅵ族半导体,例如PbS、PbTe和SnS;层半导体,例如PbI2、MoS2和GaSe;氧化物半导体,例如CuO和Cu2O。术语半导体包括本征半导体和非本征半导体,后者用一种或多种选定的材料掺杂,包括具有p型掺杂材料和n型掺杂材料的半导体,以提供对给定应用或器件有益的电性能。术语半导体包括含有半导体和/或掺杂剂的混合物的复合材料。对于本发明的某些应用而言可使用的具体半导体材料包括但不限于Si、Ge、SiC、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InP、InAs、GaSb、InP、InAs、InSb、ZnO、ZnSe、ZnTe、CdS、CdSe、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、PbS、PbSe、PbTe、AlGaAs、AlInAs、AlInP、GaAsP、GaInAs、GaInP、AlGaAsSb、AlGaInP和GaInAsP。多孔硅半导体材料可用于本发明在传感器和发光材料——例如发光二极管(LED)和固态激光器——领域中的应用。半导体材料的杂质为除了半导体材料本身或者引入半导体材料中的任何掺杂剂以外的原子、元素、离子和/或分子。杂质为存在于半导体材料中的、可能对半导体材料的电性能造成负面影响的不希望有的材料,包括但不限于氧、碳及金属(包括重金属)。重金属杂质包括但不限于元素周期表上和铅之间的元素、、钠及其所有离子、化合物和/或络合物。金是显著降低半导体电性能的一种具体的重金属杂质。
[0135] “塑料”指的是通常能在加热时模塑或成型并能硬化为所需形状的任何合成或天然材料或材料的组合。可在本发明设备和方法中使用的示例性塑料包括但不限于聚合物、树脂和纤维素衍生物。在本说明书中,术语塑料拟包括含有一种或多种塑料以及一种或多种添加剂的复合塑料,所述添加剂包括例如结构增强剂、填充剂、纤维、增塑剂、稳定剂或可提供所需化学或物理性能的添加剂。
[0136] “介电体”和“介电材料”在本说明书中用作同义词,并且均指对电流的流动具有高阻抗的物质。可用的介电材料包括但不限于SiO2、Ta2O5、TiO2、ZrO2、Y2O3、SiN4、STO、BST、PLZT、PMN和PZT。
[0137] “聚合物”是指包含多个重复化学基团的分子,所述重复化学基团通常称为单体。聚合物通常具有高分子量的特征。可用于本发明的聚合物可以是有机聚合物或无机聚合物,并且可以处于无定形、半无定形(semi-amorphous)、结晶或部分结晶状态。聚合物可以包含具有相同化学组成的单体,或者可以包含具有不同化学组成的多种单体,例如共聚物。
具有相连的单体链的交联聚合物对于本发明的一些应用而言特别有用。可用于本发明的方法、设备和设备组件中的聚合物包括,但不限于,塑料、弹性体、热塑性弹性体、弹性塑料、热固性塑料、热塑性塑料以及丙烯酸酯。示例性的聚合物包括,但不限于,缩聚合物、可生物降解聚合物、纤维素聚合物(cellulosic polymer)、含氟聚合物、尼龙、聚丙烯腈聚合物、聚酰胺-酰亚胺聚合物、聚酰亚胺、多芳基化合物、聚苯并咪唑、聚丁烯、聚碳酸酯、聚酯、聚醚酰亚胺、聚乙烯、乙烯共聚物以及改性聚乙烯、聚酮、聚甲基丙烯酸甲酯、聚甲基戊烯、聚苯醚以及聚苯硫醚、聚邻苯二甲酰胺、聚丙烯、聚氨酯、苯乙烯树脂、砜基树脂、乙烯基树脂或上述聚合物的任意组合。
[0138] “弹性体”指的是能够被拉伸或变形,并能够没有实质性永久变形地回复原形的聚合物材料。弹性体通常发生基本上弹性的变形。可用于本发明的示例性的弹性体可包括聚合物、共聚物、组合材料,或聚合物与共聚物的混合物。弹性体层指的是包括至少一种弹性体的层。弹性体层也可包括掺杂剂或其它非弹性体材料。可用于本发明的弹性体可包括,但不限于,热塑性弹性体、苯乙烯材料、烯属材料、聚烯、聚氨酯热塑性弹性体、聚酰胺、合成橡胶、PDMS、聚丁二烯、聚异丁烯、聚(苯乙烯-丁二烯-苯乙烯)、聚氨酯、聚氯丁二烯和硅氧烷。
[0139] 术语“电磁辐射”指的是电场磁场波。可用于本发明方法的电磁辐射包括,但不限于,伽射线、X射线、紫外光、可见光、红外光、微波无线电波或这些电磁辐射的任意组合。
[0140] “良好的电子性能”和“高性能”在本说明书中用作同义词,并且均指器件和器件组件具有提供所需功能——例如电信号转换和/或放大——的电子特性,例如场效应迁移率、阈电压和开关比。具有良好的电子性能的本发明的示例性可印刷半导体元件可具有大于或等于100cm2V-1s-1的本征场效应迁移率,对于某些应用优选大于或等于约300cm2V-1s-1。具有良好的电子性能的本发明的示例性晶体管可具有大于或等于约100cm2V-1s-1的器件场效应迁移率,对于某些应用优选大于或等于约300cm2V-1s-1,并且对于某些应用更优选大于或等于约800cm2V-1s-1。具有良好的电子性能的本发明示例性晶体管可具有小于约5伏的阈电压和/或大于约1×104的开关比。
[0141] “大面积”指大于或等于约36平方英寸的面积,例如用于器件制造的基片接受面的面积。
[0142] “器件场效应迁移率”指的是采用对应于电子器件的输出电流数据计算出的电子器件——例如晶体管——的场效应迁移率。
[0143] “共形接触”指的是在表面、涂布的表面、和/或其上沉积有材料的表面之间建立的接触,所述接触可用于将结构(例如可印刷半导体元件)转印、组装、组织以及集成至基片表面上。一方面,共形接触涉及可适应转印设备的一个或多个接触面对基片表面的总体形状的宏观适应。另一方面,共形接触涉及可适应转印设备的一个或多个接触面对基片表面的微观适应,所述微观适应导致没有空隙的密切接触。拟使术语共形接触与其在软光刻领域中的使用一致。共形接触可以在可适应转印设备的一个或多个裸露接触面与基片表面之间建立。或者,共形接触可以在可适应转印设备的一个或多个涂布的接触面与基片表面之间建立,所述涂布的接触面包括例如其上沉积有转印材料、可印刷半导体元件、器件组件和/或器件的接触面。或者,共形接触可以在可适应转印设备的一个或多个裸露的或涂布的接触面与涂布有材料的基片表面之间建立,所述材料例如转印材料、固体光致抗蚀剂、预聚物层、液体、薄膜或流体。
[0144] “放置准确度”指的是转印方法或设备将可印刷元件例如可印刷半导体元件转印至选定位置的能力,所述选定位置或者相对于其他器件组件的位置,例如相对于电极的位置,或者相对于接受面的选定区域。“良好的放置”准确度指的是方法和设备能将可印刷元件转印至相对于另一个器件或器件组件或相对于接受面的选定区域所选择的位置,该位置与绝对准确位置的空间偏差小于或等于50微米,对于某些应用更优选小于或等于20微米,并且对于某些应用进一步更优选小于或等于5微米。本发明提供含有至少一个以良好的放置准确度转印的可印刷元件的器件。
[0145] “保真度”指的是将元件的选定图案——例如可印刷半导体元件的图案——转印至基片接受面的优劣程度的度量。良好的保真度是指元件选定图案的如下转印,在所述转印中,单个元件的相对位置和取向保持不变,例如在转印中单个元件与其在选定图案中的位置的空间偏差小于或等于500纳米,更优选小于或等于100纳米。
[0146] “杨氏模量”是材料、设备或层的一种机械特性,它指的是一种给定物质的应力与应变之比。杨氏模量可表示为:
[0147]
[0148] 其中E是杨氏模量,L0是平衡长度,ΔL是施加应力后的长度变化,F是施加的力,A是力的施加面积。杨氏模量也可通过下式用拉梅(Lame)常数表示:
[0149]
[0150] 其中λ和μ是拉梅常数。高杨氏模量(或“高模量”)和低杨氏模量(或“低模量”)是给定的材料、层或设备的杨氏模量大小的相对描述语。在本发明中,高杨氏模量大于低杨氏模量,在某些应用中优选大于约10倍,在其它应用中更优选大于约100倍,在另外的应用中进一步优选大于约1000倍。
[0151] 在以下叙述中,为了提供对本发明的确切实质的详尽解释,提出了本发明的设备、设备组件和方法的大量具体细节。然而对于本领域技术人员而言明显的是,本发明可以在没有这些具体细节的情况下实施。
[0152] 本发明提供用于制造可印刷半导体元件并将可印刷半导体元件组装至基片表面上的方法和设备。本发明提供多种可印刷的半导体元件,包括单晶无机半导体、含有与一个或多个其他器件组件操作性地连接的半导体结构的组合半导体元件、以及可拉伸半导体元件。本发明的方法、设备和设备组件能生产高性能的电子和光电子器件及器件阵列,例如柔性塑料基片上的薄膜晶体管。
[0153] 图1以图解的方式说明了本发明用于生产和组装含有单晶硅带的可印刷半导体元件的示例性方法。该方法首先提供具有单晶硅薄层105、SiO2隐埋层107以及Si操纵层108的硅绝缘体(silicon-on-insulator,SOI)基片100。任选地,如果在单晶硅薄层105上有表面自然氧化层,可通过例如将SOI基片100的表面暴露于稀释的(1%)HF而除去表面自然氧化层。充分剥离自然氧化层后,遮蔽SOI基片100外表面110的选定区域,从而在外表面110上形成掩模元件的图案120、遮蔽区域125和裸露的表面区域127。在图1所示的实施方案中,用矩形的Al/Au表面层在外表面110上构图,所述矩形的Al/Au表面层提供能防止外表面110的遮蔽区125受到蚀刻的掩模元件120。掩模元件120可具有任意尺寸和形状,所述形状包括但不限于方形、矩形、圆形、椭圆形、三角形或这些形状的任意组合。在一个示例性的实施方案中,使用微米接触印刷、纳米接触印刷技术或光刻技术以及蚀刻法(对于Au为TFA;对于Al为预混有AL-11的Cyantec蚀刻剂)制成提供所需几何形状的掩模元件的Al/Au层。含有金属薄膜的掩模元件的沉积可通过电子束蒸发器例如Temescal BJD1800实现,例如通过先沉积Al(20nm;0.1nm/s)再沉积Au(100nm;1nm/s)。
[0154] 对SOI基片100的外表面110进行向下的各向异性蚀刻。如图1所示,虽然材料从裸露的表面区127被选择性移除,但掩模元件120防止了对遮蔽区125的蚀刻,从而形成含有单晶硅结构的多个凸起的部件140,所述单晶硅结构具有略微倾斜的侧壁141。在一个凸起部件具有厚度147为约100纳米的侧壁141的示例性实施方案中,将裸露的表面区域127暴露于氢氧化四甲铵(TMAH)中约3.5分钟。在该实施方案中,蚀刻步骤在具有Al/Au掩模元件120的单晶硅凸起部件140上形成光滑的侧壁,优选与平均表面位置的偏差小于10纳米。当例如使用浓缩(49%)的HF使下面的SiO2层107部分或完全地被各向同性蚀刻掉时,凸起部件140可从基片100上剥离。凸起部件140的剥离形成含有分立的单晶硅结构的可印刷半导体元件150,所述结构有一个表面被掩模元件覆盖。掩模元件120,即本实例中的Al/Au层,可被移除或直接集成至最终的器件结构中,例如作为薄膜晶体管中的源电极和漏电极。如图1所示,可以通过干式接触转印技术(如箭头166所示)或通过溶液浇注法(如箭头165所示)将可印刷半导体元件150组装至基片(例如塑料基片)表面的接受面160上。两种组装方法均可在室温下于周围环境中进行,因此它们均可与多种基片相兼容,包括低成本的柔性塑料基片。
[0155] 使用干式接触转印法组装可印刷半导体元件,具有在可印刷半导体元件从SOI基片上剥离以前即可利用其已知的取向和位置的优势。在这种情形下,使用与软光刻转印技术类似的工艺将可印刷半导体元件从SOI上移至(在蚀刻掉SiO2之后,但在剥离硅之前)器件基片上所需位置。具体而言,可适应弹性体转印元件将物体从SOI表面提起并将其转印至所需基片。类似地,使用在目标基片表面上限定的接收垫通过金的冷焊可将可印刷半导体元件直接转印至薄的塑料基片上。
[0156] 在一个示例性方法中,至少一部分可印刷半导体元件150与可适应转印设备175的接触面170形成共形接触,从而将可印刷半导体元件150的至少一部分联结至接触面170上,所述可适应转印设备175包括例如弹性体转印模、聚合物转印设备或复合聚合物转印设备。置于可适应转印设备175的接触面170上的可印刷半导体元件150优选以在接触面170与基片接受面160之间建立共形接触的方式与基片的接受面160接触。将接触面从与基片接受面
160接触的可印刷半导体元件150上分离,从而将可印刷半导体元件150组装至接受面上。本发明的该实施方案能在严格确定的位置、以严格确定的空间取向在接受面上形成可印刷半导体元件的图案。在图1所示的实施方案中,可印刷半导体元件150可与基片接受面160上的金垫162操作性地连接。
[0157] 图2提供了说明将可印刷半导体元件组装至基片的接受面上的选择性干式接触转印法的示意图。在母片305上将多个可印刷半导体元件300制成可印刷半导体元件300的第一图案310,所述第一图案310的特征是具有严格确定的位置和空间取向。使具有接触面320的可适应转印设备315与母片305上的可印刷半导体元件300的至少一部分形成共形接触,所述接触面320具有多个分立的结合区325。接触面320上的结合区325的特征为对可印刷半导体元件310具有亲和力,并且结合区325可为化学改性区,例如具有自PDMS层表面上伸出的羟基的区域,或涂有一层或多层粘合层的区域。共形接触将与结合区325接触的可印刷半导体元件310的至少一部分转印至接触面320上。使转印至接触面320上的可印刷半导体元件310与基片335的接受面330接触,所述基片335可为柔性基片,例如塑料基片。随后将半导体元件310与接触面320分离,导致半导体元件310组装至基片335的接受面330上,从而形成可印刷半导体元件340的第二图案,所述第二图案的特征在于不同于可印刷半导体元件340的第一图案的严格确定的位置和空间取向。如图2所示,残留在母片305上的可印刷半导体元件340的特征在于可印刷半导体元件的第三图案345,所述第三图案345不同于可印刷半导体元件的第一和第二图案。使用本发明的印刷方法,包括选择性干式转印法,可将形成第三图案345的可印刷半导体元件340随后转印和/或组装至基片335或另一个基片上。
[0158] 图3A-C是展示可用于本发明选择性干式接触转印法的设备、设备配置以及设备组件的示意图。图3A示出了母片305上的多个可印刷半导体元件300,其中选定的可印刷半导体元件300具有一层或多层粘合层350。如图3A所示,粘合层350具有严格确定的图案。图3B示出了具有接触面320的可适应转印设备315,所述接触面320具有形成严格确定的图案的多个分立的结合区325。图3C示出了具有三维凸起图案355的可适应转印设备315,所述三维凸起图案355含有图案严格确定的凸起部件360。在图3C所示的实施方案中,凸起图案355提供了可任选涂有一层或多层粘合层的多个接触面320。粘合层350、结合区325以及凸起部件360的图案优选对应于器件配置或器件阵列配置——例如薄膜晶体管阵列配置——中的可印刷半导体元件300的相对位置和空间取向。
[0159] 使用干式转印法可在本发明中用于将可印刷半导体元件组装、组织以及集成至具有多种组成和表面形态——包括弯曲面——的基片上。为证实本发明方法和组成的上述功能能力,使用弹性体印模通过干式转印法将含有半导体元件的硅光电二极管直接(即无粘合剂)印刷至多种光学透镜的弯曲面上。图3D提供了印刷至聚碳酸酯透镜(FL为100mm)的球形表面上的光电二极管阵列的照片。图3E提供了印刷至球形玻璃透镜(FL为1000mm)的弯曲面上的光电二极管阵列的扫描电子显微照片。图3E所提供图像中的对比度被略微增强以显示p掺杂区域。图3F提供了说明图3E所示的光电二极管的光响应的电流(μA)-偏压(伏)曲线。
[0160] 图4A1和4A2展示了用于使用干式接触转印法的本发明组装方法的可印刷半导体元件的优选形状。图4A1提供了透视图,图4A2提供了俯视图。可印刷半导体元件包括沿着中心纵轴线502延伸的带状物500,所述带状物500具有第一端505、中心区510和第二端515。如图4A所述,带状物500的宽度沿着其长度方向选择性变化。具体而言,第一端505和第二端515比中心区510宽。在一个示例性方法中,带状物500通过对母片520进行蚀刻形成。在该实施方案中,将母片各向同性暴露于蚀刻剂,直至带状物500仅通过两个排列保持元件连接至母片520,所述排列保持元件包括邻近第一端505和第二端515的牺牲层525。在制造过程中,这时停止蚀刻处理,并使带状物500与可适应转印设备接触和/或联结。当转印设备从母片
520上移走时,牺牲层525断裂并且带状物500脱离。该方法还可适用于对具有如图4所示形状的多个可印刷半导体元件的干式接触转印。本发明该方法的一个优点在于可在转印、组装和集成步骤中精确保持母片520上多个带状物500的取向和相对位置。对于~2um至100um的带状物宽度而言,牺牲层厚度的示例性范围为~1um至~100nm。有趣的是,带的断裂通常发生在物体的末端(非常靠近带状物连接至母晶片上的点/边)。宽的带状物在脱离并与印模联结的过程中通常不发生变形。
[0161] 图4B1和4B2展示了用于使用干式接触转印法的本发明组装方法的可印刷半导体元件的优选形状。图4B1提供了透视图,图4B2提供了俯视图。可印刷半导体元件包括沿着平行的中心纵轴线528延伸的带状物527。带状物527通过排列保持元件530固定于选定的位置和取向上,所述排列保持元件530将带状物沿着中心纵轴线528的至少一端连接至母片529上。在对带状物527进行构图的过程中通过不确定带状物沿其中心纵轴线的一端或两端来制造排列保持元件530。在带状物与转印设备的接触面接触并随后从母片520上移走后,排列保持元件530断裂并且带状物527脱离。
[0162] 为通过溶液印刷实现组装,将可印刷半导体元件150的至少一部分分散于载体介质中,从而形成在载体介质中含有半导体元件150的悬浮液190。通过将悬浮液溶液印刷至基片的接受面160上而将可印刷半导体元件150传送至基片并实现组装。溶液印刷可通过本领域已知的多种技术实现,包括但不限于喷墨印刷法、热转印法以及丝网印刷法。在图1所示的实施方案中,将可印刷半导体元件150操作性地连接至位于基片的接受面160上的金垫162。
[0163] 图5A-C提供了多种可印刷半导体元件150的光学及扫描电子显微照片,所述可印刷半导体元件150含有物理尺寸已选定的单晶硅微条。可印刷半导体元件以乙醇悬浮液的形式和浇注于多种类型的基片上的形式示出。图5A示出了硅棒(宽2微米;厚2微米;长~15毫米)的溶液浇注缠绕网的光学显微照片。插入的图像示出了分散于乙醇溶液中的可印刷硅条(约有一千万)。图5B中低分辨率的SEM图像说明了溶液浇注至裸露的硅晶片上的某些平微条(厚340纳米;宽5微米;长~15毫米)的机械柔性范围。图5C示出了这些物体中某一个的高分辨率SEM图像。注意由各向同性湿式蚀刻工艺所生产的极光滑的侧壁。
[0164] 线状、小板状和盘状的可印刷半导体元件也可使用本发明方法形成。通过使用大面积的软光刻技术,可以在单个低成本工艺序列中生产大量(即上十亿)的横向尺寸低至50nm并具有几乎任意几何形状的可印刷半导体元件。还可通过本发明方法制得横向尺寸小至20纳米的可印刷半导体元件。对于在柔性电子系统中的薄膜晶体管中的应用,含有又长(~10微米)又窄(~1微米)的单晶硅条的可印刷半导体元件非常有用。
[0165] 图6提供了转印于涂有PDMS的聚酰亚胺片上的含有单晶硅微条的可印刷半导体元件的图像,所述聚酰亚胺片的厚度为约25微米。顶部插入的图片说明了该系统本身的柔性。底部插入的图片示出了冷焊于涂有薄的Ti/Au的聚酯薄膜片上的可印刷密集硅微条(25微米宽,间隔~2微米)的俯视显微照片。如图6所示,含有硅微条的可印刷半导体元件以受控制的取向被整齐排列并转印。经扫描电子显微镜仔细检查后未观察到由组装引起的可印刷半导体元件的破裂,即使当基片显著屈曲时,也未观察到上述情形。使用Au涂布的聚酯薄膜片获得(无需弹性体层)了相似的结果,如底部插入的显微图片所示。以该方式可获得近
100%的覆盖密度
[0166] 本发明还提供包括半导体结构的组合可印刷半导体元件,所述半导体结构操作性地连接至一个或多个其他器件组件,例如介电元件、导电元件(即电极)或附加半导体元件。本发明可特别用于制造薄膜晶体管的示例性的可印刷半导体元件包括集成的半导体和介电元件。这样的组合可印刷半导体元件提供了具有高质量的、不漏的介电体的晶体管,并且不需要为了制造薄膜晶体管中的介电元件而使用独立的旋涂步骤。此外,使用组合可印刷半导体元件实现了通过低成本的印刷技术在大的基片面积上进行有效的器件制造。
[0167] 下述参考文献涉及自组装技术,该技术可在本发明方法中用于使可印刷半导体元件通过接触印刷和/或溶液印刷技术进行转印、组装和相互连接,所述参考文献有:(1)“Guided molecular self-assembly:a review of recent efforts”,Jiyun C Huie Smart Mater.Struct.(2003)12,264-271;(2)“Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems”,Whang,D.;Jin,S.;Wu,Y.;Lieber,C.M.Nano lett.(2003)3(9),1255-1259;(3)“Directed Assembly of One-Dimensional Nanos tructures into Functional Networks”,Yu Huang,Xiangfeng Duan,Qingqiao Wei和Charles M.Lieber,Science(2001)291,630-633;以及(4)“Electric-field assisted assembly and alignment of metallic nanowires”,Peter A.Smith等,Appl.Phys.Lett.(2000)77(9),1399-1401。
[0168] 本申请所引用的全部参考文献特此通过引用的方式以不与本申请所公开内容矛盾的程度完整纳入本说明书中。将本申请所提供的某些参考文献通过引用的方式纳入,以提供有关原料、附加原料、附加试剂、附加合成方法、附加分析方法和本发明其它用途的来源的细节。对于本领域技术人员而言明显的是,除了本说明书所具体公开的方法、器件、器件元件、材料、工艺和技术以外,其他的方法、器件、器件元件、材料、工艺和技术亦可用于实施本说明书所概括公开的本发明,而无需借助过多的实验。本发明拟涵盖本说明书所具体公开的方法、器件、器件元件、材料、工艺和技术的所有本领域已知的功能等同物。
[0169] 分别于2004年6月4日、2004年8月11日、2005年2月4日、2005年3月18日以及2005年5月4日提交的美国专利申请No.60/577,077、No.60/601,061、No.60/650,305、No.60/663,
391和No.60/677,617特此通过引用的方式以不与本申请所公开内容矛盾的程度完整纳入本说明书中。
[0170] 当本说明书公开了一组材料、组成、组件或化合物时,应理解为这些组的所有单独的成员以及这些组的所有亚组(subgroup)也被分别公开。当本说明书使用马库什组或其他分组方式时,拟将该组所有的单独成员以及该组所有可能的组合及亚组合(subcombination)包括在公开内容中。除非另有声明,本说明书所述或例举的组件的各种组合均可用于实施本发明。在本说明书中只要给出一个范围,例如温度范围、时间范围或组成范围,则该范围所包括的全部中间范围和子范围以及单个值均拟包括在公开内容中。
[0171] 如本说明书所使用,“含有”与“包括”、“包含”或“具有……特征”(“特征在于”)同义,并且是非穷举的或可扩充的,且不排除其它的、未列举的元件或方法步骤。如本说明书所使用,“由……组成”将权利要求中未指明的任何元件、步骤或成分排除在外。如本说明书所使用的,“基本由……组成”不排除那些未对权利要求的基本特性和新颖性产生实质性影响的材料或步骤。在本说明书的各种情形中,术语“含有”、“基本由……组成”以及“由……组成”均可用另外两个术语中的任何一个代替。
[0172] 实施例1:具有可印刷半导体元件的薄膜晶体管
[0173] 本发明的可印刷半导体元件在薄膜晶体管中提供半导体通道的能力通过实验研究予以证实。具体而言,本发明的一个目的在于提供能通过印刷方法在柔性塑料基片上制造的薄膜晶体管。另外,本发明的一个目的在于在塑料基片上提供下述高性能的薄膜晶体管,所述薄膜晶体管与常规高温处理法制造的薄膜晶体管相比,具有相似或更优的场效应迁移率、开关比以及阈电压。
[0174] 图7提供了具有可印刷半导体元件的薄膜晶体管的光学显微图像。图示的晶体管531包括源电极532、漏电极533、可印刷半导体元件534、介电体(未在图7的显微照片中示出)以及栅电极(亦未在图7的显微照片中示出)。薄膜晶体管由含有聚酯薄膜片的基片支承,所述聚酯薄膜片上涂有作为栅极的氧化铟(ITO,~100纳米厚)的和作为栅极电介质的光固化的环氧树脂(SU8-5;Microchem公司)。使用形成于器件附近的电容器测试结构评价电介质的电容(2.85nF/cm2)。该器件使用下述溶液浇注的可印刷半导体元件,所述可印刷半导体元件包含约5毫米长、20微米宽、340纳米厚的微条,所述微条在器件层厚度为340纳米、电阻率为14-22Ω·cm的p掺杂SOI晶片(Soitec)上制成。在水平的石英管式炉中通过干氧化在硅的上面生长25纳米厚的SiO2层。Al(20纳米)/Au(180纳米)的源电极和漏电极由剥离(liftoff)技术形成。半导体通道的长度为50微米,宽度为20微米。
[0175] 图8和图9示出了从具有可印刷半导体元件的本发明薄膜晶体管中采集到的电测量数据。该器件以与具有顶部接触(top contact)配置的反向栅极式(back gated)SOI器件类似的方式运行。半导体在长度为50微米的通道中采用与20微米单晶硅微条相等的宽度。该情形中,可印刷半导体元件通过溶液浇注法进行构图。源/漏接触通过光刻法及剥离技术确定。
[0176] 图8提供了在预氧化Si晶片上制造的器件的电流-电压(IV)特性曲线。图9提供了在VDS=0.1V下测得的下述器件的传输特性曲线,所述器件在涂有ITO栅极和聚合物电介质的聚酯薄膜片上制成。该曲线的斜率确定了有效的器件迁移率(使用源电极和漏电极的物理宽度,所述宽度在该情形中与半导体元件微条的宽度相等)为180cm2/Vs。在可印刷半导体元件的触点上涂布Al/Au为硅提供合理低阻抗的肖特基势垒(Schottky barrier)接触,正如对在p掺杂的硅上涂布Al(逸出功为4.2eV)所预期的。已公知Al能快速扩散至硅中,但并不需要特别注意避免局部化的(localized)-硅相互作用,因为在涂布金属后未采取高温退火处理步骤。该器件的开关比略低于103。使用电介质电容的平行板模型对图9传输特性进行分析表明线性场效应迁移率为180cm2V-1S-1。该分析忽略了接触和处理所引起的阈电压变化的影响。
[0177] 有理论论据表明,即使具有理想的接触,在通道区(即纳米管或纳米线)中含有极高长宽比(即长度与宽度的比值过高)的半导体元件的晶体管也将具有不同于常规器件的响应。为避免上述影响,我们选择含有宽度与晶体管通道长度在相同数量级上的微条的半导体元件。在该情形下观测到的性能(迁移率、归一化跨导(normalized transconductance)、开关比)为在SOI基片上蚀刻Si以后但进行剥离以前所制得的薄膜晶体管的约3/4。在这些测量中,埋入的SiO2氧化物充当电介质,并且承载硅的基片充当栅电极。该结果表明,生产可印刷半导体元件并将其转印至器件基片的处理步骤未显著改变由初始的构图和硅蚀刻步骤所获得的硅或其表面的性能。该结果还表明与SU8电介质的范德华界面能支持良好的器件性能。
[0178] 本实施例制造方法的一个基本优点在于它将硅的晶体生长和处理与塑料基片以及其他器件组件相分离。并且,本发明的处理可印刷半导体元件的方法在处理顺序以及可能的材料选择方面具有高度的灵活性。例如,可以与本说明书所示的对集成的源/漏电极进行金属涂布相类似的策略在硅的一侧上形成SiO2层(例如通过先生长热氧化物,然后剥离Si元件或将埋在SOI中的氧化物与Si器件层一起剥离)以生产集成的电介质。以这种方式引入的电介质避免了在塑料基片上的多种溶液浇注的薄电介质中与泄漏、滞后、掺杂、俘获(trapping)等相关的大量问题。
[0179] 图10A-H提供了说明本发明用于制造具有组合可印刷半导体元件的薄膜晶体管阵列的方法的示意图。如图10A所示,栅电极547沉积在薄的柔性基片的表面548上,所述柔性基片包括例如Kapton、聚酯薄膜或PET。可通过本领域已知的任何途径——包括但不限于光刻法、微米转印、纳米转印、软光刻法或这些方法的组合——将栅电极构图在柔性基片上。如图10B所示,该方法还包括制造多个组合可印刷半导体元件550的步骤,所述可印刷半导体元件550包括操作性地连接至SiO2介电元件560的单晶硅结构555。如图10B所示,组合可印刷半导体元件550具有沿着中心纵轴线551延伸选定长度552的带状。组合可印刷半导体元件550具有选定厚度553以及随厚度变化的宽度。
[0180] 如图10C所示,该方法还包括通过干式接触转印或溶液印刷将组合可印刷半导体元件550组装至栅电极547及基片548上的步骤。将组合可印刷半导体元件的取向设置为使得SiO2介电元件560与栅电极547接触。如图10D所示,该方法还包括在基片548已构图的表面上旋涂一层薄的正性光刻胶561的步骤。或者,可采用辊筒将该薄层正性光刻胶561涂布至基片548已构图的表面上。将光刻胶561未被栅电极547遮蔽的区域暴露于穿过基片548的下侧562透射的电磁辐射束。对于本发明方法,优选使用透光基片548,特别是在电磁波谱的紫外和/或可见光区至少部分透明的基片548。如图10E所示,该方法还包括使薄的光刻胶层显影的步骤。如该图所示,薄的光刻胶层561被栅电极遮光的区域未显影。如图10F所示,该方法还包括对集成的SiO2电介质进行干式或湿式蚀刻的步骤,从而断开源电极与漏电极之间的接触。在图10F所示的实施方案中,这是通过将基片548已构图的表面暴露于CF4等离子体实现的。如图10G所示,该方法还包括通过遮光掩模(shadow mask)蒸发来确定源电极和漏电极的步骤。半导体元件、源电极以及漏电极的对准不需要非常精确,因为半导体通道将在下个制造步骤中确定。如图10H所示,该方法还包括通过将正性光刻胶剥离——例如通过暴露于诸如丙酮的溶剂——确定半导体通道的步骤。
[0181] 图11A-D提供了本发明用于制造含有集成的栅电极、栅极电介质、半导体、源电极和漏电极的可印刷器件的方法的示意图。如图11A所示,通过对SOI晶片表面的热氧化生成高质量的栅极电介质。然后,沉积栅电极材料(例如金属或掺杂的多晶硅)。随后使用例如光刻法遮蔽顶面的选定区域。在一个实施方案中,具有受控的间隔的相同图案的阵列在单个掩模步骤中形成。然后通过各向异性湿式和/或干式蚀刻制造可印刷半导体元件。优选地,依次实施三种不同的选择性蚀刻法以蚀刻掉栅电极材料、栅电介质以及顶部硅层的裸露区。
[0182] 如图11B所示的光刻工艺用于确定晶体管的通道。在该工艺步骤中,蚀刻(干式或湿式蚀刻)掉栅电极材料的裸露区。如图11C所示,然后将光刻胶加热至其玻璃化转变温度以上,从而引发回流过程。光刻胶的回流距离(reflowing distance)可通过仔细选择适当的光刻胶层的厚度、光刻胶层的玻璃化转变温度或回流过程的温度和持续时间予以选择。然后使用HF溶液蚀刻栅极电介质的裸露区。
[0183] 接着,实施如图11D所示的金属涂布工艺,然后剥离沉积在光刻胶上的金属以完成可印刷器件的制造。源电极和漏电极与栅极自对准(self align),并且源电极与漏电极之间的间隔可通过调节不同的参数予以选择,例如调节回流过程的温度和持续时间。
[0184] 图11D所示的可印刷器件可通过本发明的干式转印或溶液印刷法转印并组装至基片上,例如塑料基片上。图11A-D所示的自对准法提供了一种将实现可印刷器件,例如MOSFET器件所需的全部元件组装起来的简单方法。本发明该制造方法的一个重要优点在于所需温度不适于塑料基片(例如所需温度>约400℃)的全部方法步骤均可在将器件剥离并转印至基片上以前在SOI基片上实施。例如,其它的处理步骤,如源电极与漏电极接触区的掺杂、硅化物层的形成以及器件的高温退火,均可在将元件转印至塑料基片前实施。
[0185] 实施例2:可拉伸的可印刷半导体元件
[0186] 本发明提供能在拉伸、挠曲或变形时具有良好性能的可拉伸的可印刷半导体元件。此外,本发明的可拉伸的可印刷半导体元件可适应多种器件配置以提供全柔性的电子和光电子器件。
[0187] 图12提供了展示本发明的可拉伸可印刷半导体元件的原子力显微照片。可拉伸可印刷半导体元件700包括具有支承面710的柔性基片705和具有弯曲内表面720的屈曲半导体结构715。在该实施方案中,弯曲的半导体结构715的弯曲的内表面720的至少一部分联结至柔性基片705的支承面710上。弯曲的内表面720可在沿着内表面720的选定点上或在沿着内表面720的几乎全部点上与支承面710联结。图12所示的示例性半导体结构包括宽度等于约100微米并且厚度等于约100纳米的屈曲单晶硅带状物。图12所示的柔性基片为厚度约1毫米的PDMS基片。弯曲的内表面720具有呈大致的周期波特征的轮廓,所述周期波沿着带状物的长度方向延伸。如图12所示,该周期波的振幅为约500纳米,并且峰的间隔为约20微米。图13是给出具有弯曲内表面720的屈曲半导体结构715的放大图的原子力显微照片。图14展示了本发明可拉伸可印刷半导体元件阵列的原子力显微照片。对图14的原子力显微照片的分析表明屈曲半导体结构被压缩约0.27%。图15展示了本发明可拉伸可印刷半导体元件的光学显微照片。
[0188] 弯曲面720的轮廓使得屈曲半导体结构715能够在沿着变形轴线730的方向上扩展或收缩而不经受明显的机械应变。该轮廓还可使半导体结构能够在除了沿着变形轴线730以外的方向上屈曲、挠曲或变形,而不会由于应变引起显著的机械损坏或性能损失。本发明半导体结构的弯曲面可具有下述任何轮廓,所述轮廓在半导体结构挠曲、拉伸或变形时提供良好的机械特性和/或良好的电子性能,所述机械特性包括例如可拉伸性、柔性和/或可弯曲性,所述电子性能包括例如具有良好的场效应迁移率。示例性的轮廓可呈现多个凸起和/或凹入区域以及多种波形的特征,所述波形包括正弦波、高斯波、Aries函数、方波、洛仑兹波、周期波、非周期波或其任意组合。可用于本发明的波形可在两个或三个维度上变化。
[0189] 图16展示了本发明可拉伸可印刷半导体元件的原子力显微照片,所述半导体元件具有联结至柔性基片705上的屈曲半导体结构的715,所述柔性基片705在其支承面710上具有三维凸起图案。三维凸起图案包括凹入区域750和凸起部件760。如图16所示,屈曲半导体结构715在凹入区域750中和凸起部件760上与支承面710连接。
[0190] 图17展示了说明本发明制造可拉伸半导体元件的示例性方法的流程图。在该示例性方法中,提供处于扩展状态的预应变弹性基片。预应变可通过本领域已知的任何途径实现,包括但不限于辊压和/或使弹性基片预弯曲。可用于本发明该方法的示例性弹性基片为厚度等于约1毫米的PDMS基片。可通过沿着一条轴线扩展或沿着多条轴线扩展使弹性基片预应变。如图17所示,将可印刷半导体结构的内表面的至少一部分联结至处于扩展状态的预应变弹性基片的外表面上。可通过半导体结构的内表面与预应变弹性基片的外表面之间的共价键合、范德华力、使用粘合层或其任意组合实现所述联结。在弹性基片为PDMS的一个示例性实施方案中,对PDMS基片的支承面进行化学改性,以使它具有从其表面伸展出来的多个羟基,以促进与硅半导体结构的共价键合。回到图17上,将预应变弹性基片与半导体结构连接起来后,使弹性基片至少部分松弛到松弛状态。在该实施方案中,弹性基片的松弛使得所述可印刷半导体结构的内表面弯曲,从而形成具有弯曲内表面的半导体元件。
[0191] 如图17所示,制造方法可任选包括第二转印步骤,在该第二转印步骤中,将具有弯曲内表面720的半导体结构715从弹性基片上转印至另一个基片上,优选柔性基片上。该第二转印步骤可通过如下方式实现:使具有弯曲内表面720的半导体结构715的裸露表面与能结合半导体结构715的裸露表面的其他基片的接受面接触。与其他基片的联结可通过本领域的任何途径实现,包括共价键、由范德华力键合以及使用粘合剂。
[0192] 本发明的可拉伸半导体元件可有效集成至多种功能器件以及器件组件中,例如集成至晶体管、二极管、激光器、MEMS、NEMS、LED和OLED中。本发明的可拉伸半导体元件具有某些优于常规的刚性无机半导体的优点。首先,可拉伸半导体元件可为柔性的,因此与常规的刚性无机半导体相比,较不易于受到由挠曲、弯曲和/或变形引起的结构损伤。其次,由于屈曲半导体结构可处于轻微的机械应变状态以提供弯曲的内表面,因此本发明的可拉伸半导体元件可以比常规的无应变无机半导体表现出更高的本征场效应迁移率。最后,可拉伸半导体元件有可能提供良好的热性能,因为它们能在器件的温度周期性变化中自由扩展和收缩。
[0193] 实施例3:制造可印刷半导体元件的方法
[0194] 本发明提供由多种原料制造可印刷半导体元件的方法,所述原料包括单晶片、基片晶片上的硅、锗晶片、多晶硅薄膜以及超薄硅晶片。具体而言,本发明提供以选定取向在选定的相对位置制造大量可印刷半导体的低成本方法。
[0195] 图18A展示了由Si-Ge epi基片制造可印刷半导体元件的示例性方法。在该方法中,通过沉积掩模材料遮蔽Si epi层的选定区域,所述掩模材料包括例如含有金属、SiO2或SiN的薄膜。该掩模步骤确定待制造的可印刷半导体元件的形状和某些物理尺寸(例如带状物的长度和宽度)。通过干式或湿式化学蚀刻法对Si-Ge epi基片裸露的Si表面进行各向异性蚀刻。这形成硅的凸起部件,所述凸起部件优选具有光滑的侧壁,它可通过剥离技术有效脱离Si-Ge epi基片,所述剥离技术包括例如使用1:1:4的NH4OH:H2O2:H2O在50℃下进行选择性SiGe湿式蚀刻。任选地,可在剥离前使源电极、增益电极、栅电极、介电元件或其任意组合集成至半导体元件中。该制造方法的一个优点在于可清洗母片并对其进行再利用。
[0196] 图18B展示了由大块硅基片、优选单晶硅基片制造可印刷半导体元件的示例性方法。在该方法中,首先在例如石英管式炉中于选自约800℃至约1200℃范围的温度下将硅晶片干氧化。然后,在硅晶片的氧化表面上沉积一层薄的栅极材料。示例性的栅极材料包括金属或掺杂的多晶硅。用光刻胶对上述栅极材料薄层进行选择性构图。该构图步骤确定待制造的可印刷半导体元件的形状和某些物理尺寸(例如带状物的长度和宽度)。对该栅极材料薄层和电介质层进行各向异性反蚀刻(back etch),从而形成含有光刻胶层、栅极材料层、电介质层和硅层的凸起部件,并且该凸起部件优选具有光滑的侧壁。然后,通过例如退火至选自约100℃至约130℃范围的温度使光刻胶层回流。光刻胶的回流使一部分光刻胶转移至凸起部件的侧壁。如图18B所示,裸露的Si表面用湿式或干式蚀刻法进行各向同性蚀刻,从而使凸起部件脱落并形成组合半导体元件,所述组合半导体元件优选具有光滑表面。硅的各向同性蚀刻可使用64:3:33的HNO3:NH4F:H2O溶液实现。该制造方法的优点在于硅基片原料的成本较低并且母片能在平面化(ECMP)后再利用。
[0197] 图18C展示了由大块硅基片、优选单晶硅基片制造可印刷半导体元件的另一种示例性方法。在该方法中,大块硅基片的外表面用光刻胶进行选择性构图。该构图步骤确定待制造的可印刷半导体元件的形状和某些物理尺寸(例如带状物的长度和宽度)。对已构图的基片表面进行各向异性蚀刻,优选使用干式蚀刻法,例如反应性离子蚀刻和诱导耦合等离子蚀刻,从而形成凸起部件,所述凸起部件优选具有光滑的侧壁。通过沉积掩模材料,例如一层薄的金属、SiO2或SiN,遮蔽凸起部件的至少一部分侧壁。在一个实施方案中,通过倾斜的蒸发或溅射沉积技术使掩模材料涂布至凸起部件的侧壁,所述沉积技术与样品的旋转相结合以确保对所有裸露侧壁的沉积。如图18C所示,使用湿式或干式蚀刻法对裸露的Si表面进行各向同性蚀刻,从而使凸起部件脱落并形成可印刷半导体元件,所述可印刷半导体元件优选具有光滑表面。硅的各向同性蚀刻可使用64:3:33的HNO3:NH4F:H2O溶液实现。该制造方法的优点在于硅基片原料的成本较低并且母片能在平面化(ECMP)后再利用。
[0198] 图18D展示了由大块硅基片、优选单晶硅基片制造可印刷半导体元件的又一种示例性方法。在该方法中,大块硅基片的外表面用光刻胶进行选择性构图。对已构图的基片表面进行各向异性蚀刻,从而形成凸起部件。接着,对硅基片进行退火,例如在石英炉中于约1100℃的温度下在氮气中进行退火。然后,通过遮蔽选定区域用光刻胶对已退火的硅基片的表面进行构图。该构图步骤确定待制造的可印刷半导体元件的形状和某些物理尺寸(例如带状物的长度和宽度)。如图18D所示,使用湿式或干式蚀刻法对已退火的Si基片的已构图表面进行各向异性蚀刻,从而形成可印刷半导体元件,所述可印刷半导体元件优选具有光滑表面。该制造方法的优点在于硅基片原料的成本较低,且母片能在平面化(ECMP)后再利用,并且能在退火步骤后集成源电极、漏电极、栅电极和介电器件组件。此外,在第一蚀刻步骤中,可对110硅晶片使用湿式蚀刻。
[0199] 图18E展示了由超薄硅基片制造可印刷半导体元件的示例性方法。在该方法中,对超薄硅基片的外表面用光刻胶进行选择性构图。该构图步骤确定待制造的可印刷半导体元件的形状和某些物理尺寸(例如带的长度和宽度)。在超薄硅基片的整个厚度上对已构图的基片表面进行各向异性蚀刻,从而形成可印刷半导体元件。对于该制造方法的某些应用而言,优选具有选自约10微米至约500微米范围厚度的超薄硅基片。该制造方法的一个优点在于超薄硅基片原料的成本较低。
[0200] 图18F和图18G展示了由多晶硅薄膜制造可印刷半导体元件的示例性方法。在该方法中,在具有牺牲表面层的支承基片上沉积一层薄的多晶硅,所述支承基片包括例如玻璃基片或硅基片,所述牺牲表面层包括例如含有SiN或SiO2的涂层。然后对多晶薄膜进行退火,通过沉积掩模材料选择性遮蔽裸露表面的选定区域,所述掩模材料包括例如含有金属、SiO2或SiN的薄膜。该掩模步骤确定待制造的可印刷半导体元件的形状和某些物理尺寸(例如带的长度和宽度)。通过干式或湿式化学蚀刻法对已构图表面进行各向异性蚀刻,形成由牺牲层支承的硅的凸起部件,所述凸起部件优选具有光滑的侧壁。对牺牲层进行各向同性蚀刻使凸起部件脱离,从而形成可印刷半导体元件。该制造方法的一个优点在于可清洗支承基片并对其进行再利用。或者,可将多晶硅薄层直接沉积在SiO2基片上。如图18G所示,可使用类似的退火、构图、各向异性蚀刻以及剥离步骤形成可印刷半导体元件。任选地,在上述两种方法中,均可在剥离前将源电极、增益电极、栅电极、介电元件或其任意组合集成至半导体元件中。
[0201] 图18H(1)和18H(2)说明了使用本发明的可印刷半导体元件制造单晶半导体薄膜的方法。如图18H(1)所示,在基片表面上制备无定形或多晶半导体薄膜,所述基片含有绝缘材料,例如SiO2。无定形或多晶半导体薄膜可通过本领域已知的任何途径制备,所述途径包括但不限于沉积技术,例如汽相沉积或溅射沉积。再次参见图18H(1),将含有单晶半导体结构的可印刷半导体元件转印至覆盖有无定形或多晶半导体薄膜的基片表面上。对于该方法的某些应用而言,优选使用具有一个长的横向尺寸的单晶半导体结构。本发明还包括如下方法,在该方法中先将含有单晶半导体结构的可印刷半导体元件转印至基片表面上,然后再沉积无定形或多晶半导体薄膜。
[0202] 如图18H(2)所示,在无定形或多晶半导体薄膜与单晶半导体结构接触时,对其进行退火,例如在高温——例如高于1000℃的温度——下进行退火。在本发明的该实施方案中,单晶半导体结构充当晶种,促进整个薄膜从无定形或多晶态相变为严格有序的单晶态。如图18H(2)所示,相变随着高温梯度前沿(front)在晶片的整个表面上移动而发生。不同的高温炉或聚焦光系统可用于产生实现半导体薄膜有效相变所需的温度梯度。该方法的一个优点在于,它可显著降低产生单晶半导体薄膜——例如单晶硅或锗薄膜——的成本。
[0203] 图18I展示了由GaAs基片制造含有微米线的可印刷半导体元件的示例性方法。如该图所示,用掩模材料,例如光刻胶,对GaAs基片裸露的表面进行构图。构图可通过微米接触印刷或纳米接触印刷或常规光刻法实现,如图18E所示。已构图的表面用湿式蚀刻法进行各向异性蚀刻。在所示的示例性方法中,侧壁的凹面用H3PO4-H2O2-H2O溶液获得,并且对形成的凸起部件进行蚀刻,直至它们从GaAs基片上脱落,从而形成GaAs微米线。如图所示,光刻胶层可通过用丙酮清洗并暴露于O2反应性离子蚀刻(RIE)除去。该技术的一个优点在于GaAs基片可在平面化(ECMP)后进行再利用。该技术还可用于由InP基片制造微米线。
[0204] 图18J展示了制造含有单晶硅带的可印刷半导体元件的一种替代方法。该方法中的原料为Si(110)晶片。如图18J所示,对Si(110)晶片的外表面用SiO2薄膜进行选择性构图,所述SiO2薄膜在处理过程中充当掩模。该掩模步骤确定待制造的可印刷半导体元件的形状和某些物理尺寸(例如带的长度和宽度)。然后通过干式或湿式化学蚀刻法对Si(110)晶片裸露(即未遮蔽)的表面进行各向同性蚀刻。该处理步骤形成硅的凸起部件,所述凸起部件优选具有由一系列具有选定深度的沟槽所隔开的光滑侧壁。然后通过各向同性蚀刻和剥离处理使硅的凸起部件从Si(110)晶片上脱离,从而形成可印刷半导体元件。任选地,可在剥离前将源电极、增益电极、栅电极、介电元件或其任意组合集成至半导体元件中。该制造方法的一个优点在于可清洗母晶片并对其进行再利用。图18J还展示了该处理方法中在不同点上的Si(110)的SET显微照片。
[0205] 图18K展示了制造含有单晶硅带的可印刷半导体元件的一种替代方法。该方法中的原料为Si(111)晶片。对Si(111)晶片进行选择性各向同性蚀刻,例如使用常规光刻法掩模与湿式蚀刻法的结合。该处理步骤形成硅的凸起部件。如图18K所示,使用钝化工艺对硅的凸起部件的侧壁、表面或上述两者进行涂布。通过各向同性蚀刻和剥离处理使可印刷单晶硅带从Si(111)晶片上脱落。图18J还展示了由该方法形成的单晶硅带在即将剥离前的SET显微照片。
[0206] 实施例4:制造半导体纳米线和微米线的方法
[0207] 本发明的一个目的在于提供制造半导体纳米线和微米线的方法,所述纳米线和微米线具有良好的机械和电性能,使其能够用于多种器件、器件组件和器件设置(device setting)中。本发明的另一个目的在于提供组装纳米线和微米线的方法,以构建选定的单层结构、多层结构和含有这些元件的功能器件。为评价本发明方法的效用,制造了GaAs和InP的纳米线及微米线,并对其在多种器件配置中的导电性和机械柔性进行了评价。此外,通过制造多种含有单层结构和多层结构的复杂纳米/微米线组合体评价了本发明方法在严格确定的位置上以严格确定的取向组装大量纳米线和微米线的能力,所述位置和取向对应于大的基片表面积。本发明的制造和组装GaAs及InP纳米线和微米线的方法经证实可严格控制线的宽度、长度和空间取向。此外,所制造的GaAs及InP纳米线和微米线在集成至微电子器件中时,表现出良好的机械和电性能。
[0208] 图19提供了说明形成GaAs纳米线阵列并将其转印至基片上的示例性方法的步骤的示意图,所述基片包括例如含有涂布了固化聚氨酯(PU)薄层的聚(对苯二甲酸二乙酯)(PET)片的塑料基片。如图19所示,该方法从一片其表面沿(100)方向取向的GaAs晶片(American Xtal Technology,Fremont,加利福尼亚)开始。将SiO2的蚀刻掩模限定为沿方向取向的线状形式,这样制备出用于下述各向异性蚀刻的结构,所述各向异性蚀刻使用含有体积比为1:13:12的H3PO4(85wt%):H2O2(30wt%):H2O的H3PO4与H2O2的水溶液(图19中的步骤i)。当以该方式应用时,该蚀刻化学组成表现出高度的各向异性,从而在SiO2掩模条下形成清晰确定的倒台(reverse mesa)形GaAs轮廓。对于蚀刻时间足够长的情形,各倒台的两个侧壁相交,导致形成具有三角形横截面的线。该三角形横截面在图19面板A(左侧)的顶部插图中示出。
[0209] 在一个实施方案中,已构图的SiO2线条被大块的SiO2薄膜围绕,导致各GaAs线的两端与母晶片连接。该连接对这些线形成约束,并保持空间取向和布置如SiO2图案所确定的那样。图20A提供了由GaAs晶片制得的无支承的GaAs线的扫描电子显微照片,所述GaAs晶片用孤立的SiO2线条进行构图。值得注意的是,GaAs的横向凹蚀(lateral undercutting)随竖直蚀刻一同出现,使得能将得到的GaAs线的宽度降至纳米级,即使在SiO2线条具有微米宽度的情形下亦是如此。
[0210] 由本发明方法制备的GaAs线的阵列可在保留各根线在阵列中的取向和相对位置的情况下转印至塑料基片上。在图19所示的实施方案中,将可适应弹性体转印元件,例如一片扁平的聚(二甲基硅氧烷)或PDMS、Sylgard 184,A/B=1:10,(Dow Corning),置于GaAs晶片上以拾取线(如图19的步骤ii所示)。在该实施方案中,在PDMS片与SiO2掩模层之间需要较强的联结力以打破线端处与下层基片的晶体连接。
[0211] 用弱的氧等离子体清洗PDMS印模和具有SiO2掩模的GaAs晶片有助于通过缩合反应在PDMS与SiO2之间形成共价硅氧(Si-O-Si)键(参见图19的中间插图)。因此,本发明包括如下方法,在该方法中,将弹性体转印元件、具有SiO2掩模的半导体晶片或上述两者暴露于弱的氧等离子体,以使具有SiO2掩模的半导体晶片以有效的机械方式牢固转印至弹性体转印元件。界面上键的密度与PDMS表面上-OnSi(OH)4-n的数量成比例,后者高度依赖于氧等离子体的强度和处理时间。用强的等离子体处理一长段时间可导致键合作用过强,以至于线无法从PDMS上脱离至所需塑料基片上。受控的实验表明,PDMS和涂有SiO2的GaAs晶片分别用由氧气在10mTorr压力、10sccm流速和10W功率密度(Uniaxis 790,等离子-热反应性离子蚀刻系统(Plasma-Therm Reactive Ion Etching System))下产生的等离子体处理3秒和60秒产生最佳效果。在这些实施方案中,电子束蒸发的SiO2掩模层与GaAs之间的相互作用的强度足以防止转印过程中的层离作用(delamination)。使PDMS印模与具有SiO2掩模的GaAs晶片接触~2小时后,将其从GaAs基片上剥离,使得线全部脱离(如图19的步骤iii所示)。
[0212] 本发明方法使得大量纳米线和/或微米线的制造和组装变得实际可行。例如,对转印步骤(图19的步骤iii)后的GaAs晶片进行抛光,以恢复用于另一轮线制造(图19的步骤iv)的平面。上述晶片抛光与线制造的结合使得用单块晶片生产大量GaAs线成为可能。例如,如果一个各向异性蚀刻和抛光处理周期消耗2μm厚的GaAs,则一块直径为10cm且厚度为450μm的GaAs晶片(从American Xtal Technology购得)可生产足以密集覆盖面积为1.76m2的塑料基片的整个表面的线(~22亿根宽度为~400纳米且长度为100μm的线)。这些条件对于本发明所述的结果具有典型性。因此,这样重复实施线制造继之以晶片抛光步骤能以高度成本有效的方式利用大块晶片。
[0213] 如图19的步骤v和vi所示,具有SiO2掩模元件的GaAs线能有效转印至外表面上具有粘合层的基片上,例如塑料基片。在一个实施方案中,将具有键合的GaAs线的PDMS印模暴露于周围环境中一天或用乙醇清洗,使PDMS表面复原为其原来的疏水状态。PDMS表面的该疏水性基本防止PDMS与通常为亲水性的粘合剂发生强烈的相互作用。将复原的PDMS印模靠着粘合层放置时,只有附着在SiO2掩模条上的GaAs线对粘合剂具有可湿性,所述粘合层包括例如旋涂至塑料基片(例如厚度为~175μm的PET,聚脂薄膜,Southwall Technologies,Palo Alto,加利福尼亚)上的PU层(从Nolarland products,Cranbury,新泽西购得)。通过控制旋转速度,PU层的厚度可在1微米至数十微米内变化。用紫外灯(Model B 100 AP,Black-Ray,Upland,加利福尼亚)照射样品1小时使PU层固化,并在固化的PU与GaAs线和SiO2掩模条之间、以及固化的PU与下层PET片之间形成强键(图19的步骤v)。剥离PDMS印模使得GaAs线和SiO2条在保持次序和晶向与剥离之前线的次序和晶向相似的情况下埋入固化的PU基体中(图19的步骤vi)。SiO2与PDMS印模的分离通过两种作用实现:i)与PDMS和SiO2间界面上稀疏的硅氧键相关的适中的粘合强度,该强度在复原PDMS表面的过程中进一步削弱;以及ii)SiO2粘结失效后残留在PDMS上的、可为无定形、松散且脆性的超薄SiO2层(厚度为几纳米)。将塑料片浸入缓冲的氧化物蚀刻剂溶液(BOE,NH4F(40wt%):HF(49wt%)=10:1)中15分钟除去SiO2掩模条,使GaAs纳米线干净的(100)顶面朝外(图19的步骤vii)。
[0214] 用于制造并干式印刷GaAs线阵列的简单的“自顶向下”方法提供了许多优点。例如,线的几何形状(即长度、宽度和形状)及其空间组织可通过最初的光刻步骤确定以满足所需的电子或光学目的应用的设计。转印技术可在保持由光刻法确定的图案的情况下获得高达100%的产率。塑料基片上转印线的严格取向的晶面(即顶(100)面)提供极平的顶面(平整度与原始晶片的平整度类似),这对器件的制造非常有用。并且,SiO2掩模条防止GaAs线的顶面被有机物——例如PDMS、PU和处理中所使用的溶剂——污染。将GaAs线埋入固化的PU中使其固定,从而防止它们在横向或竖直方向上移动,特别是当塑料基片屈曲或扭曲时尤为如此。重要的是须注意PU和PET仅为本发明可用材料的实例。因此,本领域的技术人员应理解其他粘合剂(例如NEA 155( ))和其他类型的塑料基片(例如或聚酰亚胺薄膜)均可用于本发明方法中。
[0215] 与现有技术“自底向上”的方法不同,本发明“自顶向下”的方法可产生数微米至数十厘米(即原始晶片的直径)的长度均匀的GaAs纳米线。图20A示出了随机组装至母晶片上的、宽度为~400nm且长度为2cm的无支承GaAs纳米线的SEM照片。长纳米线在干燥过程中形成弯曲的结构,显示出由其窄的宽度所提供的高度柔性。如图20A下部的插图所示,成环的纳米线具有小至~20μm的弯曲半径,这表明宽度为~400纳米的纳米线可承受~1.3%的应变。图20A中的上部插图提供了纳米线剥离前横截面的扫描电子显微照片,它清楚显示了GaAs倒台状轮廓的形成以及各向异蚀刻引起的凹蚀(undercutting)。
[0216] 在本发明的一个方面,通过选择性调节SiO2掩模线条的宽度、选择性调节蚀刻时间或上述两者对GaAs线的宽度进行控制。使用本发明方法可获得数百微米至数十纳米之间的宽度。控制蚀刻时间提供了一种简单的由具有微米级宽度的SiO2图案生成纳米线的方法。图20B-E展示了由蚀刻下述GaAs晶片获得的单根线的扫描电子显微照片,所述GaAs晶片用2μm宽的SiO2线条进行构图。使用上述方法将这些线转印至PDMS表面以精确测量其顶面的平均宽度(记为 )。图20F提供了显示由本发明方法制造的线的顶面平均宽度 随蚀刻时间变化的曲线图。该曲线表明使用本发明该实施方案可获得宽度低至50nm的GaAs线。宽度与蚀刻时间之间的线性关系与前述H3PO4-H2O2-H2O溶液中GaAs蚀刻动力学的研究结果一致,即当H2O2与H3PO4之间的摩尔比(nH2O2/nH3PO4)大于2.3且H2O的摩尔分数(rH2O)等于或小于0.9时(在该实验中所使用的蚀刻剂的nH2O2/nH3PO4和rH2O分别为7.8和0.9),蚀刻速度与蚀刻时间成比例。统计结果表明宽度为~50nm的线宽度的分布(沿其长度方向取平均测得)<9%,这略窄于一种据报道平均宽度为~16.8nm的“自底向上”的纳米线中>14%的偏差。
[0217] 图20B-D所示的扫描电子显微照片还显示线的三角形横截面在变薄的过程中保持下来,这表明蚀刻是高度各向异性的,即使对于无支承的GaAs线亦是如此。近处观察线发现在其侧壁上有一些粗糙。这种粗糙大多数直接源于用于形成SiO2掩模条的光刻工艺;一些是由于掩模线条未对准和蚀刻本身引起的。该粗糙度决定了可使用本发明该实施方案获得的最小的连续线的宽度。如图20F所示,沿着各根线的宽度偏差与平均线宽度的比值也高度依赖于蚀刻时间。当比值小于100%时可制备连续的GaAs纳米线。图20F所提供的曲线表明由实施本发明的该实施方案所获得的纳米线的宽度可低至~40nm。具有不同平均宽度的纳米线表现出沿着各根线的基本相同的宽度偏差(即~40nm),这与沿着各SiO2掩模线条的宽度偏差(即~36nm)接近。该比较证实线侧壁的粗糙度主要由SiO2掩模条的粗糙边缘引起,而与蚀刻时间无关。因此,使用降低光掩模条粗糙度的光刻法降低线边缘的粗糙度。重要的是须注意该实施例中所述的转印方法使线的原始的、超平的、未蚀刻的顶面裸露出来以在最终的基片上(即图19的PET)实现电连接和器件制造。
[0218] 图21A-G展示了印刷在PDMS和PU/PET基片上的多种GaAs线阵列的图像。该例中线的宽度为~400nm且长度为~100μm。相应的SiO2掩模线条在(100)GaAs晶片上沿 方向取向,宽度为2μm且长度为100μm。图21A为拍摄的通过SiO2掩模层与PDMS平印模联结的GaAs线阵列的扫描电子显微照片,它表明线的顺序被保留下来。图21A的插图以较高的放大率显示了三根线的端部,它清楚揭示了端部的断裂。如图21B所示,从固化的PU上剥离PDMS印模得到了SiO2掩模条朝外的光滑表面(与PDMS的表面一样光滑)。如图21C所示,用BOE蚀刻掉SiO2层使GaAs线原始的顶面裸露出来。图21D提供了采集自埋有GaAs线的PU/PET基片的光学图像,它表明可使用图19所示的方法将大面积的线阵列按程序印刷至PU/PET基片上。具有其他图案(例如,由不同长度的线组成的线条片(patch))的GaAs线阵列也可转印至PU/PET基片上。
[0219] 重复进行转印过程,以通过旋涂一层新的PU将多层GaAs线阵列印刷至相同的PET基片上。这些方法提供了生产含有纳米线和/或微米线的多层结构的重要途径。图21E和21F提供了具有双层GaAs线阵列的多层结构的典型图像。在一个实施方案中,这样的多层结构通过将第二层相对于第一层旋转不同的角度(对于E和F分别为~90°和~45)得到。图21G提供了通过在图21E和21F中所示的样品上重复印刷过程所获得的具有三层GaAs线阵列的PU/PET基片的图像。可通过调节旋转速度进行控制的PU层的厚度控制线阵列之间的间隔。这类多层的性能并不一定需要任何形式的外延生长,并且PU将不同层的阵列隔离。该制造能力可用于多种器件制造应用。
[0220] 本发明的线制造和印刷技术可通过使用适合的各向异性蚀刻剂在塑料基片上生产其他半导体材料的线阵列。例如,通过在1%(v/v)Br2的甲醇溶液中蚀刻(100)InP晶片来制造具有三角形横截面的InP线,所述(100)InP晶片具有沿着 方向的SiO2掩模线条。图22A-C展示了PDMS和PU/PET基片上的InP线阵列的扫描电子显微照片。这些线由具有长50μm、宽2μm的SiO2线条形成的图案的InP晶片制得。所示的线分别具有~35μm和~1.7μm的长度和宽度。就线端的轮廓和横向凹蚀而言,InP在Br2的甲醇溶液中的蚀刻特性明显不同于GaAs在H3PO4-H2O2水溶液中的蚀刻特性。例如,蚀刻方法使所有的InP线端与母晶片断开,即使蚀刻掩模与制造GaAs线(图21)中所使用的蚀刻掩模相似,情形亦是如此。此外,InP中的凹蚀程度低于GaAs中的凹蚀程度,这表明通过使用窄的SiO2条而不是通过控制蚀刻时间可更易于制备小宽度(小于500nm)的InP线。
[0221] 通过测量电性能随弯曲半径的变化,对用PU/PET基片上的GaAs线阵列(与图21所示的相同,由Si掺杂的、载流子密度为1.1-5.6×1017cm3的n-GaAs晶片制得)制得的简单二接头二极管器件的机械柔性进行评价。该结构由根据图19方法所确定的GaAs线阵列制得。通过光刻法和金属沉积在这些线上确定两个由Ti/Au(5nm/150nm)制得的、间隔10μm的肖特基接触。图23A提供一个示例性的、含有GaAs线阵列的二接头二极管器件的示意图和图像。
在即将进行电极沉积前,将基片浸入浓HCl溶液中10min除去GaAs线表面的自然氧化物层。
[0222] 图23B展示了在不同弯曲半径下记录的电流-电压(I-V)曲线。这些曲线均表现出预期的二极管特性。这些曲线间小的区别表明即使当基片的弯曲半径(R)为0.95cm时,也几乎没有GaAs纳米线断裂。这种情况下PET表面上的应变为~0.92%,小于估计存在于图20A的插图中所示的无支承GaAs纳米线中的应变。这些结果进一步证实通过本发明“自顶向下”的制造方法所生产的GaAs纳米线是柔性的,并且能与可弯曲塑料片集成。我们注意到,数据显示当基片在第一次弯曲后松弛时,电流比弯曲前所记录的原始器件的电流小~40%。图23C展示了在不同弯曲半径下弯曲后,二接头二极管器件再次松弛后所测得的电流-电压(I-V)曲线。为进行比较,图23C中的黑色曲线表示与弯曲前的器件配置相对应的电流-电压曲线。然而,I-V特性不随弯曲半径的改变而变化以及不随着第一个弯曲/松弛周期后的多个弯曲/松弛周期而变化的事实表明,电流的一度降低可能是由于电极与线之间的界面上性能的初始变化(initial variation)所引起的。
[0223] 传统的光刻法与这些材料的高质量大块单晶片的各向异性化学蚀刻的结合使用,形成有吸引力的制造三角形横截面的GaAs和InP微米线和纳米线的“自顶向下”途径。线的尺寸及其组织可通过适当选择光刻法及蚀刻条件,例如蚀刻时间,进行选择性调节。得到的母片上的线阵列能以高保真度有效转印至涂有一薄层粘合剂的塑料基片上,所述线嵌入所述粘合剂中。母片能在抛光后再利用,这使得能从单个晶片制得大量的线。“自顶向下”的纳米线/微米线的上述“干式”转印法代表了一类新的转印方法,它们在保持线的顺序和晶向以及活性表面的纯度方面提供了许多优于“自底向上”的纳米线“湿式”组装法的优点。特别是对于其中使用宽于100-200nm的线的大型电子(macroelectronics)应用而言,本发明“自顶向下”的制造方法具有许多有吸引力的特征。本发明所示的塑料基片上的线体系以举例的方式说明了其优良的可弯曲性以及在该类应用中使用的重大潜力。
[0224] 实施例5:可印刷半导体元件的溶液印刷法
[0225] 本发明提供能将可印刷半导体元件转印并组装至许多基片的大面积上的溶液印刷法。本发明的这一方面提供适用于多种半导体器件和器件组件的连续的高速制造方法。
[0226] 在本发明这一方面的一个方法中,提供具有操纵元件的可印刷半导体元件。就本说明书而言,术语“操纵元件”指的是在将溶液相传送至基片表面后使得能对可印刷半导体元件的位置和/或取向进行可控操纵的组件。在一个实施方案中,半导体元件设有一个或多个各自含有一层对磁场、电场或这两者有响应的材料的操纵元件。本发明的这一方面可用于提供通过静电力和/或静磁力使可印刷半导体元件在基片表面上排列、定位和/或取向的方法。或者,本发明提供如下方法,在该方法中,半导体元件设有一个或多个各自含有一层对激光诱导的动量传递过程有响应的材料的操纵元件。本发明的这一方面可用于提供通过将含有一个或多个操纵元件的可印刷半导体元件暴露于一系列激光脉冲(例如激光钳(laser tweezers)法)使可印刷半导体元件在基片表面上排列、定位和/或取向的方法。或者,本发明提供如下方法,在该方法中,半导体元件设有一个或多个各自含有对由毛细管作用产生的力有响应的液滴的操纵元件。本发明包括采用具有一个或多个操纵元件或者一种或多种不同类型的操纵元件——例如对不同类型的场有响应的操纵元件——的可印刷半导体元件的方法和器件。可在多种类型的本发明可印刷半导体元件中设置操纵元件,所述可印刷半导体元件包括但不限于微米结构、纳米结构、微米线、纳米线、微米带和纳米带。
[0227] 在本发明的这一方面中,将一个或多个各自具有一个或多个操纵元件的可印刷半导体元件分散至溶液或载流流体中并传送至基片表面上。可印刷半导体元件与溶液/载流流体混合物的传送将可印刷半导体元件随机分布在基片表面上。然后,通过施加由于可印刷半导体元件的操纵元件的存在而产生的力,以预定方式将随机分布在基片表面上的半导体元件移至基片表面上的选定位置和取向。本发明的这一方面可用于将具有操纵元件的可印刷半导体元件排列成有序阵列,或排列成与选定的器件或器件组件配置相对应的位置和取向。例如,通过施加具有适当的强度和方向分布的磁场,可将具有一个或多个含有一层磁材料的操纵元件的可印刷半导体元件移至基片表面上的选定位置和取向。在该实施方案中,具有选定的强度和方向分布的磁场可通过在邻近基片处(例如在基片表面下、基片表面上和/或沿着基片侧面放置)放置一个或多个磁元件或电磁元件来施加,从而形成与可印刷半导体元件或选定的器件或器件组件配置所需的组装、图案或结构相对应的选定的强度与方向分布。本发明的这一方面中,在可印刷半导体元件通过操纵元件的操纵进行选择性定位及取向之前、过程中或之后,可通过本领域已知的任何方式,包括通过蒸发或通过解吸法去除溶剂、载流流体或上述两者。
[0228] 图24提供了说明本发明的用于对具有包含磁标(magnetic tag)的操纵元件的可印刷半导体元件进行溶液印刷的示例性方法的示意图。如图24所示,提供多个可印刷半导体元件,它们各自具有多个含有镍薄层的磁标。在一个实施方案中,镍薄层提供于微米级或纳米级的半导体结构表面上。在该实施例中使用镍为操纵元件仅为示例性的,并且任何结晶的或无定形的铁磁材料均可用于这些方法中,所述铁磁材料包括但不限于Co、Fe、Gd、Dy、MnAs、MnBi、MnSb、CrO2、MnOFe2O3、NiOFe2O3、CuOFe2O3、MgOFe2O3以及无定形的铁磁合金,例如过渡金属-准金属合金。
[0229] 如图24中示意图的步骤I所示,将各自具有操纵元件的多个可印刷半导体元件分散至溶液中并浇注至基片表面上。该步骤以随机的位置和取向分布将可印刷半导体元件提供至基片表面上。如图24中示意图的步骤Ⅱ所示,然后向可印刷半导体元件施加磁场,优选具有选定的强度和方向分布的磁场。在图24所示的示意图中,通过将一个或多个磁体的磁极放置在其上置有可印刷半导体的基片表面的相对侧面上,施加具有选定的强度和方向分布的磁场。由于镍为铁磁材料,因此磁场与组成操纵元件的镍层之间的相互作用产生将可印刷半导体移至基片表面上所需位置中和取向上的力。在图24所示的实施方案中,磁场的施加使可印刷半导体元件取向为有序的阵列,该有序阵列的特征在于可印刷半导体元件长的侧面呈基本平行的排列。如图24中示意图的步骤Ⅲ所示,以建立电连接的方式并以保持施加磁场所形成的取向的方式,将电连接体沉积于形成有序阵列的可印刷半导体元件的端上。
[0230] 图25提供了展示用本发明的溶液印刷法形成含有可印刷半导体元件的微米结构的有序阵列的数张光学图像,所述可印刷半导体元件具有包含镍薄层的操纵元件。图25左侧面板所示的光学图像对应于在未施加磁场的情况下具有分散在基片表面上的可印刷半导体的基片表面。如这些图像所示,可印刷半导体元件随机分布在基片表面上。图25右侧面板所示的光学图像对应于在施加磁场后具有分散在基片表面上的可印刷半导体的基片表面。与左侧面板中所示的图像不同的是,与施加磁场的情形相对应的光学图像表明,可印刷半导体元件以对应于有序阵列的选定取向和位置的方式存在。将图25的左侧面板与右侧面板中所示的图像进行对比表明,施加具有选定的强度和方向分布的磁场能产生将各个可印刷半导体元件移至选定位置和取向上的力。
[0231] 器件制造领域中的技术人员应理解,图25的右侧面板中可印刷半导体元件的位置和取向仅仅是使用本发明的溶液印刷方法能实现的取向和位置的一个实例。选择操纵元件在可印刷半导体元件上的适当位置,并选择具有选定的强度和方向分布的适当磁场,可用于产生半导体元件位置和取向的几乎任何分布。
[0232] 实施例6:在柔性塑料基片上制造高性能的单晶硅晶体管
[0233] 本发明的一个目的在于提供含有组装在柔性基片上的可印刷、高质量半导体元件的可弯曲的大型电子器件、微电子器件和/或纳米电子器件及器件组件。另外,本发明的一个目的在于提供表现出类似于或超过由常规高温处理方法制造的薄膜晶体管的场效应迁移率、开关比和阈电压的可弯曲的电子器件,例如可弯曲的薄膜晶体管。最后,本发明的目的在于提供与在较低温度下、在大面积的柔性基片上进行的有效的高处理量方法——例如室温下在塑料基片上进行的处理方法——相兼容的可弯曲电子器件。
[0234] 通过实验研究,证实了本发明方法、器件和组成提供下述有用的大型电子器件和/或微电子器件及器件组件的能力,所述器件和器件组件在呈屈曲及平面构造时表现出高的器件性能特征。这些测量的结果表明,本发明提供了具有优良的定位能力、能通过沉积多种高质量的半导体——包括单晶Si带、Ga-As和InP线以及单壁碳纳米管——将可弯曲的薄膜晶体管组装至塑料基片上的干式接触转印技术。例如,这些实验研究的结果表明,含有干式转印的可印刷单晶硅元件的空间严格确定阵列的可弯曲薄膜型晶体管表现出高的器件性能特性,例如在线性段估算的平均器件有效迁移率为~240cm2/Vs,且阈电压接近0V。此外,这些研究显示本发明的薄膜晶体管表现出可与有机半导体制得的器件相比的可弯曲性(即破坏发生时的应变),并且在经受向前或向后的弯曲时表现出机械强度和柔性。
[0235] 大面积柔性基片上的高性能印刷电路代表了在传感器、显示器、医疗器械和其他领域中具有广泛应用的电子器件的一种新形式。在塑料基片上制造所需要的晶体管代表了实现这些大型电子系统所面临的一个挑战。在过去的几年里已开发出来的数条途径均是基于在玻璃/石英基片上制造常规的硅基薄膜晶体管(TFT)的一类方法步骤的改进的低温形式。与针对生产单晶硅薄膜所开发的定向固化(directional solidification)法(即使用连续激光、聚焦灯、电子束或石墨条加热器使Si膜在SiO2上区域熔化再结晶)相伴随的高温使得这类途径不适用于塑料基片。基于激光的途径已经获得了某些程度有限的成功,但是在均匀性、处理量和使用低成本塑料方面仍面临着需要继续进行实验的难题。将已生成电路直接全晶片转移至塑料基片上能生产一些有用的器件,但是该途径难以放大至大的面积上,并且无法保留对低成本、大面积的大型电子器件而言可能是重要的印刷型制造顺序。有机半导体材料为柔性电子器件提供了一种替代途径;其中基于有机物的电子材料可通过室温沉积与多种塑料基片自然集成。然而,目前已知的有机半导体材料仅能实现中等的器件迁移率。例如,即使是这些材料的高质量晶体,对于n型和p型器件而言,也仅分别具有在1-2cm2/Vs和10-20cm2/Vs范围内的迁移率。
[0236] 其他制造技术例如流体自组装,将生产高迁移率材料的高温步骤与在塑料基片上构建器件所需的低温处理分离。然而,这些方法并未实现沉积物组织或位置的有效控制。
[0237] 图26A说明了用于制造本发明示例性可弯曲薄膜晶体管器件的步骤。首先,用光刻法在SOI晶片(具有100nm Si顶层和145nm氧化物埋层的Soitec unibond SOI)的表面上确定光刻胶的图案。该光刻胶充当使用SF6等离子体(Plasmatherm RIE系统,SF6流速为40sccm,室底压为50mTorr,RF功率为100W,进行25s)对SOI晶片的硅顶层进行干式蚀刻的掩模。使用浓HF溶液蚀刻氧化物埋层,并使可印刷单晶硅半导体元件与其基片脱离(但不完全脱落)。使一块平的聚(二甲基硅氧烷)(PDMS)片与晶片的顶面形成共形接触,然后仔细剥离以拾起相连的带阵列。光刻胶与PDMS之间的相互作用足以使两者联结以进行非常有效的移除。
[0238] 涂有氧化铟锡(ITO;厚度为~100nm)的聚(对苯二甲酸二乙酯)(PET;厚度为~180μm)塑料片用作器件基片。用丙酮和异丙醇清洗,去离子水漂洗,然后用氮气流干燥以清洁塑料片表面。用氧等离子体短暂处理ITO(Plasmatherm RIE系统,O2流速为20sccm,室底压为100mTorr,RF功率为50W,进行10s),促进它与旋涂的环氧树脂电介质(用66%的SU8-2000稀释剂稀释的Microchem SU8-5以3000RPM旋涂30s)之间的粘合。该光敏环氧树脂在50℃下于热板上预固化~1min。将表面上具有可印刷单晶硅半导体元件的PDMS与热的环氧树脂层接触,然后剥离PDMS使可印刷单晶硅半导体元件转印至环氧树脂上。该结果表明硅与软环氧树脂层之间的结合力(有一部分是机械作用,由可印刷单晶硅半导体元件周围的环氧树脂流引起)强于光刻胶与PDMS印模之间的结合力。环氧树脂层在100℃充分固化5min,暴露于透射自透明基片底侧的UV光10s,然后在115℃下后烘干(post bake)5min使聚合物交联。用丙酮使光刻胶掩模(在转印步骤中方便地防止可印刷单晶硅半导体元件的顶面受到污染)溶解,然后用去离子水充分漂洗样品。
[0239] 将Ti(~70nm;Temescal电子束蒸发器)沉积在可印刷单晶硅半导体元件的顶面上形成源电极和漏电极。通过在Ti上构图的光刻胶掩模(Shipley S1818)进行蚀刻(1:1:10的HF:H2O2:DI,进行~2s)确定这些电极的几何形状。制造的最后一个步骤涉及通过光刻胶掩模进行干式蚀刻(SF6,使用上述RIE参数)以在器件的位置上确定硅的孤岛(island)。图26B提供了该薄膜晶体管的底栅极器件配置的示意性说明,以及该器件阵列的一部分的高放大率和低放大率光学图像。
[0240] 图27A提供了应用忽略接触影响的标准场效应晶体管模型所评估的本发明可弯曲薄膜晶体管的电流电压特性,结果表明在饱和段的有效器件迁移率为140cm2/Vs,在线性段的有效器件迁移率为260cm2/Vs。然而,这些器件中肖特基接触的高阻抗(~90Ωcm)对器件响应具有显著影响。图27B提供了在线性刻度(左轴)和对数刻度(右轴)上作图表示的几种器件的传输特性。插图中的曲线显示阈电压在0V附近具有窄的分布。传输特性中小(对于一个±10V周期的电流<4%)的滞后作用表明硅(具有自然氧化物)与环氧树脂电介质之间的界面上具有底密度的俘获电荷。归一化的亚阈值(subthreshold)斜率的值较小(≤13V.nF/dec.cm2)证实了该界面的良好质量,这可主要由硅与其自然氧化物之间的界面决定。图27C展示了由本发明方法制造的几种可弯曲薄膜晶体管的线性有效迁移率的分布。高斯拟合表2 2
明中心值为240cm/Vs,标准偏差为30cm/Vs。一些低值与器件的电极或其他组件中明显的缺陷有关。使用与制备晶体管栅极电介质所使用的基片及方法相同的基片和方法构建具有
256个(200×200μm)方电容器的阵列对环氧电介质的一致性进行研究。图27C中的插图示出了测得的电容值。高斯拟合表明标准偏差小于2%,证实环氧树脂层具有优良的电性能和物理性能一致性。在不同频率(1kHz与1MHz之间)下进行电容测量表明介电常数具有小的(<
3%)频率依赖性
[0241] 本发明可弯曲薄膜晶体管的机械柔性和强度通过进行向前和向后的弯曲试验进行研究。图28A提供了溶液浇注的带状物的高分辨率扫描电子显微照片(左侧插图),以说明可印刷单晶硅半导体元件的显著柔性。图28中的右侧插图展示了用于使该研究中所评价的可弯曲薄膜晶体管弯曲的实验装置的图片。为时塑料片屈曲时薄膜晶体管中引起的应变最大化,在这些研究中使用较厚(~180μm)的塑料基片。图28B展示了在受到拉伸应变和压缩应变时,环氧树脂电介质电容的小的(~<1%)线性变化(参见顶部插图)。使用翘曲片的有限元模型计算弯曲半径和应变值。将翘曲片的弯曲曲线与使用有限元方法获得曲线进行比较(针对数个弯曲半径)证实了模拟的准确度。图28B中底部插图提供了在栅极偏压与漏极偏压均为4V时测得的器件饱和电流的变化。可弯曲薄膜晶体能运行的拉伸应变的最大值似乎为ITO栅电极的破坏(在拉伸应变值为~-0.9%时破坏)所限。可弯曲薄膜晶体管即使在压缩应变高达1.4%时也运行良好。这一水平的可弯曲性能与最近报道的基于并五苯的有机晶体管相比。本发明可弯曲薄膜晶体管的破坏有可能仅在非常高的应变下发生,如Takahiro等最近所证实的,由SOI晶片的顶层蚀刻的微米级单晶硅物体可承受非常高的拉伸应力(>6%)[t.Namazu,Y.Isono,以及T.Tanaka J.MEMS 9,450(2000)]。
[0242] 在我们的器件中,引起输出电流随应变的变化较小的原因尚未完全知晓,已知的迁移率随应变的变化是引起这些电流变化的原因之一,但并非全部原因。我们在该实施例中所描述的这类器件能为研究下述机械应变状态的硅中的电荷运输提供新的可能,所述应变状态的应变值是大块Si晶片屈曲时不易于达到的。
[0243] 总而言之,该实施例证实了通过本发明所提供的简单有效的硅的平行印刷方法在塑料基片上形成的可弯曲单晶硅晶体管的高器件性能和有益的机械性能。就我们所知道的,这些器件的性能超越了具有相似程度的机械可弯曲性的最佳器件(基于硅或其他材料)的性能。对可印刷硅半导体的形状、物理尺寸和组成(例如掺杂或未掺杂的)进行自顶向下的控制以及印刷技术与其他途径相比提供了许多优点。并且,所得到的器件的机械柔性非常好。此外,这些相同的通用途径可适用于其他无机半导体(例如GaAs、GaN等),并且可用于制造多种柔性微电子和大型电子器件以及器件组件,例如太阳能电池、二极管、发光二极管、互补逻辑电路、信息存储设备、双极结晶体管以及FET晶体管。因此,本发明方法和器件可用于生产柔性电子产品的多种制造应用。
[0244] 实施例7:可印刷异质半导体元件以及含有可印刷异质半导体元件的器件
[0245] 本发明提供含有多材料元件的异质可印刷半导体元件以及相关器件和器件组件。该实施例的可印刷异质半导体元件包括具有选定空间分布的掺杂剂的半导体层,所述可印刷异质半导体元件在多种大型电子器件、微电子器件和/或纳米电子器件中提供提高的功能性。
[0246] 本发明方法制造表现出有用的电子性能的异质可印刷半导体元件的能力通过实验研究得到证实。此外,通过制造含有下述可印刷单晶硅半导体元件的柔性薄膜晶体管,表明了本发明方法将可印刷元件组装至功能器件中的适用性,所述可印刷单晶硅半导体元件具有接触用集成掺杂区。
[0247] 大面积的机械柔性电子系统,即大型电子器件,对于消费电子产品、传感器、医疗器械和其他领域中的多种应用有吸引力。多种有机、无机和有机/无机杂合材料已开发为用于这些系统的半导体。使用本发明“自顶向下”的技术途径生产单晶硅微米/纳米元件(统称为可印刷硅半导体元件的线、带、小板等)是已证实的可用于在柔性基片上制造高性能薄膜晶体管的替代途径。已证实该制造途径对其他的重要半导体材料(例如GaAs、InP、GaN和碳纳米管)是适用的。
[0248] 本发明途径的一个重要特性是其使用高质量的基于晶片的半导体材料源,所述材料的生成和处理与随后的器件组装步骤分离。分离的半导体处理与组装步骤便于在与大多数柔性器件基片,例如塑料基片相适应的较低温度(例如,室温±30℃)下进行器件组装。本发明包括如下方法,在该方法中,高质量的半导体在独立于随后的涉及将可印刷半导体元件组装至柔性基片上的制造步骤的制造步骤中以其他方式生成,并进行处理。在一个实施方案中,本发明包括如下方法,在该方法中,掺杂剂在高温处理的过程中进入半导体内,并且得到的掺杂半导体材料随后用于生产可组装至多种有用电子器件中的可印刷异质半导体元件。可用于对半导体进行掺杂的处理步骤包括高温处理,以及将掺杂剂以控制其在一维、二维或三维(即控制植入的面积和植入的深度)上的空间分布的方式引入的处理步骤。在一个方法中,通过在独立于低温基片所执行的步骤中,以晶片制造水平进行的旋涂掺杂(spin on doping)工艺对半导体进行选择性接触掺杂。接触掺杂为掺杂剂在半导体材料中的空间分布提供精确控制,因此随后的构图和蚀刻步骤能制造高质量的、具有集成掺杂区的可印刷异质半导体元件。溶液印刷和干式接触转印均理想地适用于将这些可印刷异质元件组装至诸如薄膜晶体管的下述器件中,所述器件表现出所能达到的优良的器件性能和优良的可弯曲性。
[0249] 图29A提供了对用于在PET基片上生产含有可印刷异质半导体元件的晶体管的制造方法的示意性说明。在该实施方案中,可印刷异质半导体元件包括具有掺杂的源电极(S)和漏电极(D)接触的晶体硅。图29A所示途径使用溶液可处理的旋涂掺杂剂(SOD)对绝缘体上的硅晶片(SOI;具有100nm Si顶层和200nm氧化物埋层的Soitec unibond)的硅顶层的选定区域进行掺杂。因此,旋涂掺杂剂(SOD)提供磷掺杂剂,并且旋涂玻璃(SOG)用作掩模控制掺杂剂从何处扩散至硅中。该掺杂的SOI提供可印刷异质半导体元件的来源。
[0250] 为生产可印刷异质半导体元件,我们首先将旋涂玻璃(SOG)溶液(Filmtronic)旋涂至SOI晶片上,并将其在700℃下经受快速热退火(RTA)4分钟以形成均匀的膜(300nm厚)。通过光刻胶(Shipley 1805)的光刻构图层进行蚀刻(6:1的缓冲氧化物蚀刻剂(BOE)蚀刻50秒),使SOG中的源/漏窗口(source and drain window)断开。剥离光刻胶后,通过旋涂均匀沉积含磷的SOD(Filmtronic)。在950℃进行RTA5秒使磷从SOD中扩散穿过SOG中光刻确定的通路(opening)并进入下面的硅中。SOG阻断其他区域内的扩散。将晶片快速冷却至室温,浸入BOE中90秒以除去SOG和SOD,然后用DI水彻底清洗以完成掺杂过程。
[0251] 使用本发明方法将可印刷异质半导体元件组装至涂有氧化铟锡(ITO;100nm,栅电极)和环氧树脂(SU8;600nm,栅极电介质)的PET塑料基片上。环氧树脂不仅提供电介质,还有助于可印刷异质半导体元件的转印。通过对准的光刻步骤在掺杂的接触区上形成Ti(100nm)源电极和漏电极,然后进行深蚀刻(etch back)。图29B展示了具有使用本发明技术所制造的异质可印刷半导体元件的几种器件的光学图像。
[0252] 我们使用标准的传输线模型(transfer line model,TLM)估算掺杂水平和接触阻抗。具体而言,我们测量了印刷至塑料基片上的、含有均匀掺杂的晶体硅的可印刷异质半导体元件上的间隔(L)为5至100微米且宽度(W)为200微米的Ti接触垫之间的阻抗。图30A中的插图展示了用于表征接触阻抗的可印刷异质半导体元件和接触垫的排列的图像。线性的电流(I)-电压(V)曲线(未示出)表明接触符合欧姆定律,并且掺杂水平较高。阻抗对L的依赖性可通过R总=2Rc+(Rs/W)L描述,其中R总(=V/I)为两个接触垫之间的阻抗,Rc为接触阻抗,Rs为片阻抗。图30A展示了归一化阻抗R总W随L变化的曲线。R总W的线性拟合得出Rs=228±5Ω/sq,并且RcW~1.7±0.05Ω·cm。归一化接触阻抗RcW的值比以相似方式处理的未掺杂可印刷单晶硅半导体元件所观测到的值低一个数量级以上。电阻率为约2.3×10-3Ω·cm,这对应于1019/cm3的掺杂水平,如果我们为简便起见假设掺杂在整个100nm的掺杂的可印刷对半导体元件中是均匀的。图30B展示了飞行时间二次离子质谱(TOF-SIMS)的测量结果,该结果表明使用构图的SOG作为扩散势垒(参见图29A中的示意图)使掺杂剂局限在硅中的所需区域。在图30B所示的图像中,亮红色表示磷浓度高。
[0253] 图31A-D展示了对应于在环氧树脂/ITO/PET基片上含有接触掺杂的可印刷硅半导体元件的晶体管的测量结果。图31A对本发明器件(L=7μm,W=200μm)的电流-电压特性进行作图。通过应用标准场效应晶体管模型测得有效的器件迁移率(μeff)在线性段为~240cm2/Vs,并且在饱和段为~230cm2/Vs。图31B展示了通道长度为2μm至97μm,且通道宽度为200μm的本发明器件的传输特性。从ON状态到OFF状态的电流比在所有情形下均为~104。
当L从97μm变至2μm时,阈电压从~2V单调变化至~0V。图31C提供了在小的漏电压时测得的ON状态器件阻抗(Ron)与W的乘积在不同栅极电压下随L的变化。在各栅极电压下RonW-L的线性拟合提供了关于本征器件迁移率与接触阻抗的信息。在该简单模型中,Ron由通道阻抗(与L成比例)以及与源电极和漏电极相关的结合接触阻抗Rc的连续加和(series addition)组成。图31C显示由线性拟合截距测得的Rc与所评估的全部通道长度下的通道阻抗相比均可忽略不计。图31C中的插图展示了由图31C中线性拟合的斜率的倒数所测定的基片电导随栅极电压的变化。如图31C中的插图所示,对这些数据的线性拟合得出本征器件迁移率为~
270cm2/Vs,并且本征阈电压为~2V。
[0254] 图31D比较了具有非掺杂的和接触掺杂的可印刷单晶硅半导体元件的晶体管的有效迁移率μeff,该有效迁移率μeff直接从线性段(即未扣除接触效应)测得的传输特性得到。对于未掺杂的器件,随着通道长度L从100微米降至5微米,μeff从200cm2/Vs快速降至50cm2/Vs。当通道长度低于~50微米时,接触开始控制器件的性能。在接触掺杂的情况下,迁移率为约270cm2/Vs,当通道长度在上述范围内时,迁移率的变化<20%,这与由图31C的插图所测得的本征器件迁移率一致。这些数据提供了额外的证据证明接触阻抗的影响对于这些器件可忽略。我们注意到,除了迁移率不同以外,与未掺杂接触的器件相比,具有掺杂接触的器件更稳定、其性能更一致并且对处理条件较不敏感。
[0255] 机械柔性是该类器件的重要特性。我们在使器件置于压缩和拉伸的弯曲方向上对接触掺杂的μs-Si晶体管进行系统弯曲试验。我们还进行了一些疲劳试验。实验装置的细节在实施例6中给出。图32A展示了由未屈曲状态的值μ0eff归一化的有效器件迁移率随应变(或弯曲半径)的变化。正负应变分别对应于拉伸和压缩。对于该范围的应变(对于200微米厚的基片,相当于弯曲半径低至~1cm),我们仅观察到小的(在大多数情况下<20%)μeff/μ0eff、阈电压和开关比变化。机械柔性的这一水平可与报道的塑料基片上的有机和a-Si晶体管相比。图32B提供了经数百次使器件产生0至0.98%的压缩应变的弯曲周期后(至半径为9.2mm)的归一化的有效迁移率μeff/μ0eff。观察到器件性能的变化很小;350个周期后,μeff/μ0eff、阈电压和开关比的变化均小于20%。这些结果显示了含有可印刷异质半导体元件的本发明晶体管的良好的疲劳稳定性
[0256] 该实施例表明了旋涂掺杂剂工艺对塑料基片上晶体管中接触掺杂的可印刷单晶硅半导体元件的实用性。换算分析(Scaling analysis)显示本发明方法生产的器件不受接触的限制,这表明本发明方法对于在塑料基片上制造高频硅器件具有适用性。这一特征与器件的非常良好的机械柔性以及疲劳稳定性结合,使得该接触掺杂的可印刷异质半导体途径成为制造多种柔性大型电子系统、微电子系统和/或纳米电子系统的有价值的路线。
[0257] 本发明还提供将可印刷半导体元件集成至多种器件和器件配置中的异质集成方法。本发明的这一方面提供用于生产多种器件的制造途径,在该制造途径中,完全不同类的材料在相同的平台上组装并相互连接。本发明的异质集成方法使用溶液印刷和/或干式接触转印将两种或多种不同的材料以建立其电、光和/或机械互连性的方式结合起来。本发明的可印刷半导体元件可与不同的半导体材料或其他类型的材料——包括电介质、导体、陶瓷、玻璃和聚合物材料——集成。
[0258] 在该概念的一个实施方案中,异质集成涉及将可印刷半导体元件转印并联结至具有不同组成的半导体电路片(chip)上,以便例如在电路片型器件上组装系统。在另一个实施方案中,多个无支承的器件和/或器件组件在不同种类的半导体晶片(例如硅晶片和GaN晶片)上制成并随后一起集成至相同的接受基片上,例如接受晶片上。在又一个实施方案中,异质集成涉及通过以特定取向组装可印刷元件并将可印刷元件与集成电路中的其它组件有效互连,以将一个或多个可印刷半导体元件引入复杂的已制成的(performed)集成电路中。本发明的异质集成方法可采用大量本领域已知的将微米级和/或纳米级可印刷半导体元件组装并连接的其他技术,包括但不限于,晶片连接法、使用粘合剂及中间联结层,退火步骤(高温和低温退火)、剥离外部氧化物层的处理、半导体掺杂技术、光刻法以及通过连续的薄膜层转印进行的附加多层处理方法。
[0259] 图33提供了使用本发明的异质集成方法制造的、含有直接联结至硅晶片(100)上的氮化镓微米结构的组合半导体结构的SEM图像。为制造如图33所示的组合半导体结构,使用诱导耦合等离子体蚀刻在硅(111)晶片上对GaN进行微加工制得含有GaN的可印刷半导体元件,并且在热(100℃)的KOH水溶液中使用各向异性湿式蚀刻使所述含有GaN的可印刷半导体元件脱离硅。将可印刷GaN元件从母片上移除并使用PDMS印模通过干式接触转印法印刷至接受硅片上。可印刷GaN元件与硅片之间的联结由分子间的吸引力提供,而不需要使用粘合层。图33中所提供的SEM图像表明本发明的可印刷半导体元件及转印组装方法能实现不同半导体材料的异质集成。
[0260] 实施例8:具有可印刷半导体元件的高性能太阳能电池的制造
[0261] 本发明的一个目的在于提供在具有多种组成的大面积基片上,包括柔性塑料基片上制造太阳能电池、太阳能电池阵列以及具有太阳能电池的集成电子器件的方法。此外,本发明的一个目的在于提供能在下述太阳能电池中提供P-N节的异质可印刷半导体元件,所述太阳能电池表现出可与常规的高温处理方法所制造的太阳能电池相比的光电二极管响应。
[0262] 通过实验研究,证实了本发明可印刷半导体元件在太阳能电池中提供包括具有高质量P-N层界面的P-N节的异质可印刷半导体元件的能力。使用两种不同的生产P-N节的途径制造太阳能电池,并且对通过这些途径生产的器件的光电二极管响应进行评价。该实施例提供的实验结果表明本发明的可印刷异质半导体元件及相关的组装方法可用于在太阳能电池中提供高质量的P-N节。
[0263] 图34A提供了示意性说明含有可印刷P-N节的太阳能电池的制造途径中的处理步骤的工艺流程图。如图34A所示,以得到与P掺杂半导体区直接相邻的N掺杂半导体区的方式提供高质量的半导体材料,例如单晶硅晶片,并对其进行处理。为制造表现出良好效率的太阳能电池,优选使P区和N区物理接触并且在它们之间具有不存在未掺杂半导体的突变界面。随后对经过处理的半导体材料进行构图及蚀刻,以确定可印刷P-N节的物理尺寸。随后通过剥离技术的处理,生成含有与N掺杂半导体层直接相邻的P掺杂层的可印刷P-N节的整体结构。然后使用本发明的溶液印刷或干式接触转印法将可印刷P-N节组装至基片上。如图34A所示,P和N掺杂的半导体层上的触点(即电极)可通过以下两种途径形成:在对可印刷P-N节进行剥离处理之前沉积至整体式结构上;或者在组装至基片上之后沉积至可印刷P-N节上。在一个实施方案中,采用一种或多种金属的汽相淀积形成触点。
[0264] 图34B展示了由图34A所示的制造途径生产的太阳能电池器件配置的示意图。使5微米厚的、具有硼掺杂剂的P掺杂半导体层与两层具有磷掺杂剂的N掺杂半导体层直接接触。触点直接设置在N掺杂层上以及与形成P-N节的P掺杂半导体层接触的两层富集P掺杂层上。引入磷和硼掺杂的接触区克服了系统的接触阻抗。图34C提供了照射具有如图34B所示配置的太阳能电池器件后所观察到的光电二极管响应的电流-偏压曲线。如图34C所示,当照射太阳能电池并施加正偏压时,产生电流。
[0265] 图35A提供了示意性说明生产含有可独立印刷的P掺杂和N掺杂半导体层的替代制造途径中的处理步骤的工艺流程图。如图35A所示,以得到分立的N掺杂的与P掺杂的半导体区的方式提供高质量的半导体材料,例如单晶硅晶片,并对其进行处理。随后对经过处理的半导体材料进行构图及蚀刻以确定独立的P掺杂层和N掺杂层的物理尺寸。随后通过剥离技术的处理生成可独立印刷的P掺杂半导体层和/或可独立印刷的N掺杂半导体层。然后通过将第一掺杂半导体元件(N掺杂或P掺杂的)印刷至具有不同组成的第二掺杂的半导体元件上,以使第二掺杂的元件与第一掺杂的元件接触,从而组装成P-N节。在一个实施方案中,通过对P掺杂的和N掺杂的半导体层进行印刷而组装P-N节,其实现可通过例如将第一掺杂的半导体层印刷至基片上并随后将第二掺杂的半导体层印刷至第一掺杂的半导体层上。或者可通过将第一掺杂的半导体层印刷至含有第二掺杂的半导体层的基片上进行PN节的组装。在这些元件之间提供良好界面的任何P掺杂层和N掺杂层取向均可用于本发明中,包括但不限于其中第一掺杂的半导体元件与第二掺杂的半导体元件的顶面接触的取向。
[0266] 可通过本领域已熟知的晶片联结技术(参见,例如“Materials Science and Engineering R”,Jan Haisma和G.A.C.M Spierings,37,第1-60页(2002))实现N和P掺杂的可印刷半导体元件的接合。任选地,在印刷前、印刷中或印刷后对P和N掺杂的半导体层进行处理,以剥离其上的、可能妨碍在P-N掺杂层之间建立具有高质量界面的P-N节的任何外部绝缘层,例如外部氧化物层。任选地,在某些实施方案中,在使这些元件接触前,通过例如加热除去待接合的掺杂半导体表面上存在的任何水,以改善P-N节中界面的质量。组装第一与第二掺杂半导体元件可使用本发明的溶液印刷或干式接触转印法进行。任选地,本发明该方面的制造途径还可包括对P-N节进行退火处理的步骤,以在P掺杂和N掺杂的半导体层之间建立良好的界面。退火优选在足够低的、不明显损坏支承P-N节的基片的温度下进行,例如对于组装至塑料基片上的P-N节,在低于约200℃的温度下进行。或者,P-N节可在不涉及基片的处理步骤中进行退火。在该实施方案中,使退火的P-N节冷却并随后通过溶液印刷或干式接触转印法组装至基片上。如图35A所示,P和N掺杂的半导体层上的触点(即电极)可通过如下两种途径形成:在进行剥离处理之前沉积至独立的掺杂半导体层上;或者在组装至基片上之后沉积至可印刷的P-N节上。在该实施方案中,采用一种或多种金属的汽相沉积形成触点。
[0267] 图35B展示了通过将N掺杂的半导体层印刷至硅晶片的P掺杂的半导体层上所生产的太阳能电池器件的示意图。将组合结构退火至约1000℃的温度以生产在N掺杂的半导体层与P掺杂的半导体层之间具有高质量界面的P-N节。通过蒸汽沉积铝层在各掺杂的半导体层上直接设置电触点。图35C展示了在图35B中示意性描述的太阳能电池的俯视SEM图像。SEM图像展示了位于P掺杂的半导体层上的N掺杂的半导体层,并且还展示了各个掺杂半导体层上的铝触点。图35D提供了说明图35C所示太阳能电池的光电二极管响应的电流-偏压曲线。如图35D所示,当照射太阳能电池并施加正偏压时,产生电流。图35E提供了以不同光强度照射如图35C所示的太阳能电池后光电流随时间变化的曲线。
[0268] 可用于本发明太阳能电池的可印刷异质半导体元件——例如可印刷掺杂半导体元件和可印刷P-N节——的物理尺寸取决于多个变量。首先,厚度必须足够大,以使每单位面积上有可观比例的入射光子被P-N节吸收。因此,P掺杂层和N掺杂层的厚度至少部分取决于下层半导体材料的光性能,例如其吸收系数。对于某些有益的应用,可印刷硅元件的厚度为约20微米至约100微米,砷化镓元件的厚度为约1微米至约100微米。其次,在某些器件应用中,可印刷元件的厚度必须足够小,以使它们表现出对特定的器件应用有益的柔性程度。使用薄(<100微米)的元件能够得到柔性,即使对于脆性的材料例如单晶硅半导体也是如此,并且由于需要较少的原料而使制造成本降低。第三,可印刷元件的表面积应当足够大,以捕获显著数量的入射光子。
[0269] 可通过任何能得到具有严格确定的空间分布的高质量掺杂半导体材料的方法——包括使用旋涂掺杂剂的方法(例如,参见实施例8)——将掺杂剂引入半导体材料中。将掺杂剂引入半导体材料中的示例性方法证实了对掺杂剂在一维、二维或三维(即掺入深度和掺有掺杂剂的半导体层的面积)上的空间分布的控制。图34A和35A所示制造途径的一个重要优点在于掺杂剂的掺入和活化可独立地在洁净的室内条件下和高温下进行。然而,随后可印刷掺杂半导体元件和/或P-N节的制造和组装可在较低温度下及非洁净的室内条件下进行,从而能在多种基片材料上进行高处理量的太阳能电池的制造。
[0270] 实施例9:可拉伸电路和电子器件的制造
[0271] 本发明提供能在拉伸、挠曲或变形时具有良好性能的可拉伸电路、电子器件和电子器件阵列。与实施例2所述的可拉伸半导体元件类似,本发明提供包括柔性基片的可拉伸电路和电子器件,所述柔性基片具有与下述器件、器件阵列或电路接触的支承面,所述器件、器件阵列或电路具有弯曲的内表面,例如呈波形结构的弯曲的内表面。在该结构布置中,器件、器件阵列或电路结构的至少一部分弯曲的内表面与柔性基片的支承面联结。然而,与实施例2中的可拉伸半导体不同的是,本发明这一方面的器件、器件阵列或电路是含有多个集成器件组件——例如半导体、介电体、电极、掺杂半导体和导体——的多组件元件。在一个示例性实施方案中,具有小于约10微米的净厚度的柔性电路、器件和器件阵列含有多个集成器件组件,该器件组件的至少一部分具有周期波弯曲结构。
[0272] 在本发明的一个有用的实施方案中,提供了含有多个相互连接的组件的无支承的电路或器件。电路或器件的内表面与处于扩展状态的预应变弹性体基片接触并至少部分联结至后者。预应变可通过本领域已知的任何方式实现,包括但不限于,辊压和/或使弹性体基片预弯曲,并且弹性体基片可通过沿着一条轴线扩展或沿着多条轴线扩展实施预应变。可直接通过电路或器件的至少一部分内表面与预应变弹性体基片之间的共价键合或范德华力实现联结,或通过使用粘合剂或中间联结层实现联结。当预应变弹性体基片与电路或器件连接后,使弹性体基片至少部分松弛至松弛状态,这使得可印刷半导体结构的内表面弯曲。电路或器件的内表面的弯曲在某些有用的实施方案中产生具有周期或非周期波形的弯曲内表面。本发明包括如下实施方案,在该实施方案中,组成电子器件或电路的所有组件以周期波或非周期波形的形式存在。
[0273] 可拉伸电路、电子器件或电子器件阵列的周期波或非周期波形使得它们能适应拉伸或屈曲构造而不会对电路或器件的单个组件产生大的应变。本发明的这一方面使可拉伸电路、电子器件和电子器件阵列在以屈曲、拉伸或变形状态存在时具有有益的电性能。由本发明方法形成的周期波形的周期可随着如下参数变化:(i)组成电路或器件的集成组件集合的净厚度以及(ii)集成器件组件所含材料的机械性能,例如杨氏模量和抗挠刚度。
[0274] 图36A展示了生产可拉伸薄膜晶体管阵列的示例性方法的工艺流程图。如图36A所示,使用本发明技术提供无支承的可印刷薄膜晶体管阵列。通过干式接触转印法,以使晶体管内表面裸露出来的方式将薄膜晶体管阵列转印至PDMS基片上。然后使裸露的内表面与室温固化的、以扩展状态存在的预应变PDMS层接触。随后预应变PDMS层的充分固化使晶体管的内表面与预应变的PDMS层联结。使预应变的PDMS层冷却,并呈现至少部分松弛的状态。PDMS层的松弛将周期波结构引至阵列中的晶体管中,从而使其可拉伸。图36A中的插图提供了由本发明方法制得的可拉伸薄膜晶体管阵列的原子力显微照片。原子力显微照片展示了在拉伸或变形状态下提供良好电性能的周期波结构。
[0275] 图36B提供了处于松弛和拉伸状态的可拉伸薄膜晶体管阵列的光学显微照片。以使阵列产生约20%净应变的方式拉伸阵列未使薄膜晶体管断裂或损坏。晶体管从松弛状态变为应变状态据观察为可逆过程。图36B还提供了将几种电势施加至栅电极时的漏电流-漏电压曲线,该曲线表明可拉伸薄膜晶体管在松弛状态和拉伸状态下均表现出良好的性能。
[0276] 实施例10:可印刷微米结构的硅(μs-Si)的大面积、选择性转印:获得柔性基片支承的高性能薄膜晶体管的基于印刷的途径
[0277] 本发明的方法、设备和设备组件提供一种新的、生产高性能集成微电子器件和器件阵列的基于印刷的制造平台。本发明获得大型电子和微电子器件的技术途径优于常规处理方法的优点包括与多种基片材料、物理尺寸和表面形态的兼容性。另外,本发明基于印刷的途径实现了在大面积基片上生产集成的微电子器件和器件阵列的低成本、高效率制造途径,该制造途径与现有的高处理量印刷器件和技术兼容。
[0278] 塑造现代社会结构的高级信息技术关键依赖于微电子器件的使用,即涉及越来越高的集成密度的微电子器件的使用。从二十世纪五十年代后期的、包括少于4个晶体管的早期电路(IC)开始,现有技术中的IC在基本相同尺寸的封装中集成上百万个晶体管。然而,已更多的关注于开发新的器件形式要素(device form factor),这些器件形式要素使用力图在保持高的器件性能水平的同时降低成本的制造方法,将半导体器件的性能结合到包括大面积的和/或柔性的材料支承的结构中。这样的器件技术可在有源矩阵像素显示器驱动和RF识别标签中获得应用。最近的报道详细描述了使用溶液处理法构建这种电路的模型,特别是基于半导体纳米线(NW)或网状纳米管的电路的模型。虽然以这种方式制备的功能器件是有前景的,但它们通常具有明显低于常规高温半导体处理途径的器件性能水平的特征。例如,使用溶液处理法所制备的薄膜晶体管(TFT)据报道场效应迁移率在~2cm2/Vs至~
40cm2/Vs之间。
[0279] 一方面,本发明提供使用由绝缘体上的硅晶片制得的微米结构的单晶硅(μs-Si)带的“自顶向下”制造策略,以用于超高性能TFT中。该制造技术与多种有用的半导体材料相兼容,并且已成功适应包括GaN、InP和GaAs在内的其他工业上有用的半导体材料。
[0280] 在该实施例中,我们展现了用于实施该技术的多个重要的处理步骤,包括实现硅带在整个大基片面积上的选择性转印和准确定位的制造方法,以及适用于刚性(例如玻璃)和柔性塑料基片的通用印刷方法。在该实施例中,我们具体报道了两种可用于将μs-Si从SOI晶片上选择性移除并随后将其以所形成的图案形式转印至塑料基片上的方法。为简便起见,将该方法分为方法I(图37A)和方法Ⅱ(图37B),它们使用不同的粘合联结机理实现μs-Si基于印刷的图案转印。方法I利用Sylgard 3600聚(二甲基硅氧烷)(PDMS)模制的印模(一种由Dow Corning公司提供的新的实验性的、高模量PDMS产品)与μs-Si物体之间的物理联结。方法Ⅱ使用近来开发的无母版软光刻(masterless softlithography)技术以将μs-Si以化学方式联结至涂有PDMS的基片上。
[0281] 图37A提供了展示将μs-Si元件构图至塑料基片上的本发明处理方法(方法I)的示意图。在本实施例中,塑料基片包括聚(对苯二甲酸二乙酯)(PET)片。使用标准光刻技术使花生状的光刻胶图案在SOI基片上显影。等离子蚀刻以及随后的光刻胶剥离产生支承在氧化物埋层上的μs-Si“花生”。然后使用HF对样品进行不完全蚀刻以得到仅由存在于μs-Si的哑铃形端部上的残留氧化物层所支承的、侧凹(undercut)花生形图案。然后使SOI晶片与硬的、模制有与所需图案转印的潜像相对应的部件的3600PDMS印模层合。印模的凸起部件对应于如下区域,在该区域中,μs-Si由于与PDMS的强自粘性而从SOI表面上选择性移除。将印模从SOI晶片上剥离以后,将其与涂有聚氨酯(PU)的聚(对苯二甲酸二乙酯)(PET)片接触放置,所述聚氨酯(PU)已用UV灯部分固化。刮棒涂布(bar coating)技术可用于沉积PU粘合层以确保涂层厚度在整个大面积(600cm2)塑料基片上均匀。然后将印模上的μs-Si与塑料片涂有PU的一侧接触放置,然后从夹层结构的PET侧进行二次UV/臭氧曝光以使PU完全固化并增强它与μs-Si的联结。将印模从塑料基片上剥离,导致微米结构的硅与PDMS分离,从而完成向涂有PU的基片的转印。
[0282] 图37B提供了说明将μs-Si元件构图至塑料基片上的一种替代的本发明处理方法(方法Ⅱ)的示意图。在该实施例中,塑料基片包括聚(对苯二甲酸二乙酯)(PET)片。最近报道的贴花转印光刻(Decal Transfer Lithography,DTL)技术使用未成型(unmolded)的、经过光化学处理的PDMS厚平板,以使粘合具有空间调制的强度。使用微反应器光掩模在一厚块常规Sylgard 184 PDMS的整个表面上形成UV/臭氧(UVO)处理的图案,从而形成高的空间分辨率的UVO改性图案。曝光后,使涂有光化学改性的PDMS的PET与呈花生状的SOI晶片接触放置,并加热至70℃保温30分钟。在SOI晶片上制作花生形图案采用与方法I相同的过程(参见图37A),外加在HF蚀刻步骤后将SiO2薄膜(5nm)蒸发至表面上。该SiO2层有助于与PDMS的强的化学联结。加热后,将PDMS从SOI上剥离,使μs-Si以图案形式转印至PDMS的UVO改性区。
[0283] 图38A展示了用于本发明方法的称作花生状μs-Si物体的设计。图38A中的光学图像插图展示了优化的HF蚀刻条件,其中通道下的埋层氧化物被除去,而牺牲层的SiO2部分保留下来。花生状是特别有益的,因为该结构的端部略宽于主体。在HF溶液中蚀刻下面的氧化物层,可对时间进行优化,以使中心下面的氧化物层完全移除,而使牺牲层部分的SiO2仍保留在两端中的一端上(图38A的插图中所示的哑铃形区域)。正是该残留的SiO2层将μs-Si固定在其初始位置中。如果没有该氧化物桥接层(bridge layer),将易于丧失由光刻法在SOI晶片上生成的μs-Si的次序。图38B展示了当Si物体在HF溶液中被过度蚀刻时失去该次序的一个实例。如图38B所示,当样品在HF溶液中过度蚀刻时,Si物体开始漂浮在HF溶液中。当μs-Si通过方法I或方法Ⅱ从SOI晶片移除时,在牺牲区的边缘发生断裂。
[0284] 图38C、38D、38E和38F展示了描述使用方法I所实施的各个μs-Si转印步骤的进行的一系列显微照片。图38C展示了优化的HF侧凹蚀刻后SOI晶片上的μs-Si。图38D展示了PDMS印模移除了一部分μs-Si后的SOI晶片。如图38D所示,PDMS印模移除一部分μs-Si,由此保留SOI上相邻区域的完整性。由于SOI晶片上的未使用微米结构的硅物体保留在其原来的位置,因此它们可由印模拾取并在随后的印刷步骤中转印(如下所述)。图38E展示了转印至PDMS印模上的μs-Si结构。μs-Si带各端缺失的中心显示在将微结构的硅从SOI转印至PDMS印模的过程中出现断裂的图案。图38F展示了μs-Si二次转印(这次从PDMS印模转印至涂有PU的塑料基片)的典型结果,其中粘附至PU的μs-Si支承在塑料上。
[0285] 多次转印对于从小的PDMS印模至较大的塑料表面是可能的。图39A和39B提供了通过3600PDMS印模将μs-Si选择性转印至PU/PET片上的光学图像。如图39A所示的大面积(15×15cm)转印中,使用8×8cm的印模通过多次转印将μs-Si稀疏地转印至塑料基片上。图像中的各个像素具有如图38F所示的相同的布置,并且遵循图38C-38E所述的相同规程。图39B的插图展示了更复杂的模制形式,即由小于图38C-38E中所强调物体尺寸的花生状μs-Si物体组成“DARPA macroE”的文字。高的转印图案保真度通过形成字母“A”的物体(插图的圆圈)的质量说明,如图39B所示。这些数据表明仅有印模直接触及的区域最终转印至塑料基片上。我们注意到有两个原因使这样的转印在使用常规Sylgard 184 PDMS时更加困难。首先,当部件之间的间隔距离超过部件高度的20倍时,Sylgard 184将下陷。本说明书所示的实施例利用了该设计准则并排除使用低模量聚合物的高保真度转印。其次,我们还发现Sylgard 184某些时候不具有足够的粘合力将每个μs-Si花生从SOI晶片上拾起,并且在某些使用由该聚合物制备的印模的应用中观察到缺陷。Dow Corning的3600 PDMS在纵横比为1:200时也没有发生明显下陷,并且可能更重要的是,它与μs-Si物体的粘合强于184PDMS。
[0286] 使用方法Ⅱ进行μs-Si转印的一个实例示于图39C和29D中。图39C为涂有Sylgard 184的PET基片的一个片段的光学显微照片,其中μs-Si已与该基片化学联结并将随后转印至该基片上。以这种方式转印的μs-Si的更高放大率的图像示于图39D中。应注意的是在该实例中所使用的花生形状的尺寸相对较小,其中带的宽度为25μm。有趣的是,我们发现这些较小的部件在从SOI晶片上移除后具有不同的断裂点。在放大的图39D中,还可注意到PDMS表面也不再是平的。其原因在于一部分PDMS反过来被转印至SOI上,在被UVO处理图案活化的接触区中从大块上剥离,所述接触区中PDMS下陷并接触花生状物体之间的晶片表面。
[0287] 图40A说明了用方法I转印的使用花生状μs-Si制造的器件的一个示例性的器件几何形状。为构建这些器件,使用涂有氧化铟锡(ITO)的PET片作为基片。ITO用作栅电极,并且使用稀释的SU-8 5(测得的电容=5.77nF/cm2)作为栅极电介质。图40B提供了μs-Si TFT在多个栅极电压(Vg=-2.5V至20V)下的I-V曲线。如图40B所示,这些塑料支承的花生状μs-Si TFT展示了累积模式的n通道晶体管行为。如图40c的插图所示,该器件的通道长度为100μm并且器件的宽度为400μm。图40C展示了在恒定的源-漏电压(Vsd=1V)下测得的传输特性,它表明有效迁移率为173cm2/Vs。图40C中的插图展示了本发明实际器件的光学显微照片。传输特性表明有效迁移率为173cm2/Vs时阈电压(Vth)为-2.5V。这些值与100nm厚的该类底栅结构所预期的性能特性一致。
[0288] 该实施例中所述的选择性转印法提供了将微米结构的硅从SOI晶片转印至柔性大型系统的一种有效途径。与常规的溶液浇注法不同的是,使用这些技术,微米结构的硅物体可以精确的定位从SOI母晶片转印,并以将浪费降至最低的方式使用。在本申请中所研究的新的3600PDMS的机械性能表明它与市售的Sylgard 184PDMS树脂相比,具有许多重要优点,特别是其尺寸稳定性和更高的表面粘合性能。还证实印刷技术与含有高性能μs-Si薄膜晶体管的大型系统的构建相兼容。
[0289] 实验
[0290] 方法I
[0291] μs-Si物体的制造使用市售的SOI晶片(SOITEC,P型,顶层Si厚度=100nm,电阻率=13.5-22.5欧姆·cm,145nm氧化物埋层)进行。使用光刻法(Shipley 1805光刻胶)将SOI晶片构图为所需的花生状几何形状(中部长度:200μm、宽度:25μm,花生的直径:50μm)。然后使用干式蚀刻(Plasmatherm RIE系统,SF6流速为40sccm,50mTorr,RF功率=100W,进行45s)除去裸露的硅。接着在HF(49%)溶液中蚀刻下层SiO280秒。对于方法I的3600PDMS印模,将特制的PDMS(Dow Corning,3600,弹性模量=8Mpa)与Sylgard 184(Dow Corning,弹性模量=1.8Mpa)以一比一的比例混合并使用标准软光刻构图法固化。使用UV光源(臭氧活性汞灯,173μW/cm2)固化PU薄膜粘合层(Nor land光粘合剂,No.73)。使用刮棒涂布法(Meyer刮棒,RD特制)将这些后面的薄膜涂布至PET基片(180μm厚,聚酯薄膜,Southwall technologies)上。
[0292] 方法Ⅱ
[0293] 对于方法Ⅱ,所使用的花生状物体的尺寸(中部长度:10μm、宽度:2μm、端部直径:5μm)小于方法I所使用的尺寸。使用相似的制造方法生产这些结构,不同之处在于将RIE蚀刻时间降至25秒(以将侧壁蚀刻降至最低)并且在浓的(49%)HF溶液中蚀刻氧化物埋层30秒。当后一蚀刻步骤完成后,水浴漂洗样品并在烘箱中于70℃下干燥5分钟。然后将 的SiO2层蒸发至样品上(Temescal FC-1800电子束蒸发器)。为将PDMS薄层连接至PET基片上,首先以1000rpm持续30秒将一层PU旋涂至PET上并曝光于UVO(173W/cm2)4分钟。然后以1000rpm持续30秒将PDMS膜旋涂至PU上并在65℃热固化三小时。
[0294] 选择性区域软光刻构图法包括将有涂层的PET基片的未构图的PDMS侧与UVO光掩模已构图的一侧接触放置。该微反应器掩模的制造采用Childs等所述的方法。图案由两个联矩形阵列(1.2×0.6mm)组成。然后使PDMS在距汞球管(UVOCS T10×10/OES)~3cm的位置处通过UVO光掩模辐照3分钟。曝光后,将PDMS印模从UVO光掩模上剥离,并且将PDMS已曝光的面与含有花生状物体的SOI晶片接触放置。在70℃下加热30分钟后,使用镊子将PDMS缓慢剥掉,除去与辐照区域对应的μs-Si片段。
[0295] 器件制造
[0296] 将用66%(v)SU-82000稀释剂稀释的SU-85旋涂至有涂层的PET样品的ITO侧,旋涂在3000rpm下进行30秒。然后使SU-8环氧树脂在60℃下于热板上预固化~1分钟。然后使表面上有μs-Si的PDMS印模(方法I)与环氧树脂层接触30秒并剥离,以将μs-Si转印至环氧树脂。然后使SU-8电介质在115℃完全固化2分钟,曝光于UV10秒,并在115℃后烘干2分钟。随后通过电子束蒸发加入用于接触的金属(40nm),源-漏区域的构图使用标准光刻法与使用1%HF溶液的蚀刻结合进行。
[0297] 实施例11:用塑料基片上的印刷GaAs线阵列形成的可弯曲GaAs金属半导体场效应晶体管
[0298] 本发明的制造方法在可组装并集成至有用功能器件和器件组件的金属方面具有通用性。具体而言,本发明方法适用于使用多种高质量半导体材料,包括非硅材料,制造基于半导体的微电子和大型电子器件。为验证本发明方法的这一能力,使用本发明方法制造了具有GaAs纳米线的可弯曲金属-半导体场效应晶体管(MESFET),并评价了它们的电性能和机械性能。
[0299] 在大面积的机械柔性塑料基片上用高质量的单晶半导体纳米和微米结构形成的场效应晶体管在显示器、传感器、医疗器械和其他系统的多种应用中引起广泛兴趣。已证实有多种途径将高质量的半导体材料(例如,硅纳米线、微米带、小板等)转印至塑料基片上,以获得机械柔性的金属-氧化物-半导体场效应晶体管(MOSFET)。本发明可用于在塑料基片上使用已集成有欧姆源/漏接触的GaAs微米线(一类被称为微米结构GaAs或μs-GaAs的材料)制造可弯曲的金属-半导体场效应晶体管(MESFET)。在这些方法中,高质量的大块GaAs晶片提供“自顶向下”的制造方法的原料以形成微米/纳米线。此外,使用弹性体印模的转印技术使这些线的有序阵列与塑料基片集成。以这种方式形成的MESFET的电测量结果和机械测量结果表明使用本发明方法可获得良好的性能以及出色的可弯曲性。
[0300] 图41提供了在柔性塑料基片(聚(对苯二甲酸二乙酯)(PET))上制造MESFET的主要步骤的示意性说明,所述MESFET使用具有外延(expitaxial)n型通道层的单晶GaAs线阵列以及集成的AuGe/Ni/Au欧姆接触。具有外延Si掺杂的n型GaAs层(浓度为4.0×1017/cm3,IQE有限公司,Bethlehem,宾夕法尼亚)的(100)半绝缘GaAs(SI-GaAs)晶片提供生产微米线的原料。光刻法与通过电子束(和/或热)蒸发的金属涂布法产生窄金属条阵列(宽度为2μm并且间隔为13μm),包括用作欧姆接触的常规的多层堆叠,即AuGe(120nm)/Ni(20nm)/Au(120nm)。使晶片在石英管中于升高的温度下(即450℃下1分钟)在通入N2的条件下进行退火,形成与n-GaAs的欧姆接触。
[0301] 将金属条限定在GaAs的 晶向上使得微米线(具有集成的欧姆接触)能使用自顶向下的制造途径生产。如图41中的处理步骤所示,在金属条上确定光刻胶的图案(3μm宽);这些线条之间的缝隙位于相邻的金属条之间。这些缝隙使得蚀刻剂(体积比为1:13:12的H3PO4(85wt%):H2O2(30wt%):H2O)能扩散至GaAs表面以对GaAs进行各向异性蚀刻。光刻胶保护欧姆条与GaAs之间的界面免于曝露。各向异性蚀刻产生倒台以及沿着GaAs表面的侧凹,从而形成从母晶片上剥离的、具有三角形横截面和窄的宽度的GaAs线。通过控制光刻胶的几何形状以及蚀刻时间,侧凹产生宽度低至微米和/或纳米量级的GaAs线。各条线具有由一段间隙隔开的两个欧姆条,所述间隙确定了所得到的MESFET的通道长度。如图41中的处理步骤ii所示,使平的弹性体聚(二甲基硅氧烷)(PDMS)印模与涂有光刻胶的GaAs线接触,在PDMS与光刻胶的疏水性表面之间形成范德华键。如图41中的步骤iii所示,该相互作用使得印模从母晶片上剥离时,将所有的GaAs线从晶片上移除至PDMS表面。该转印过程保持了光刻胶确定的线的空间组织(即排列阵列)。然后使具有GaAs线的PDMS印模与覆盖有液态聚氨酯(PU,NEA 121,Nor land Products有限公司,Cranbury,新泽西)(一种可光固化的聚合物)薄层的PET片层合。
[0302] 如图41中处理步骤iv所示,使PU固化,剥离PDMS印模并通过O2反应性离子蚀刻(RIE,Uniaxis 790,Plasma-Therm RIE系统)除去光刻胶,得到嵌入在PU/PET基片表面上的具有裸露的欧姆条的有序的GaAs线。在转印过程中,光刻胶不仅用作粘合剂层,还用作防止GaAs线的表面以及欧姆接触被污染的保护膜。如图41中的处理步骤v所示,在PU/PET基片上进行的进一步的光刻处理确定连接欧姆条的电极(250nm Au)以形成源/漏电极,以及栅电极(Ti(150nm)/Au(150nm))。由于PU/PET片(厚度为~200μm)和GaAs线(宽度和厚度均小于5μm)的可弯曲性,得到的MESFET阵列具有机械柔性。
[0303] 图42A提供了展示在塑料基片(PU/PET)上基于GaAs线的MESFET的几何形状的横截面的示意图。源/漏电极形成与n-GaAs层的欧姆接触。栅电极形成与上述层的肖特基接触。固化的PU与GaAs线侧壁之间强的相互作用将线联结至PU/PET基片上。以这种几何形状并且采用前述处理途径,活性n-GaAs层(即晶体管通道)决不会与除了光刻胶以外的任何聚合物材料接触。Ti/Au栅电极形成与n-GaAs表面的肖特基接触;势垒使得能够施加相对负的电压(即<0.5V)以与在常规的MESFET中一样调制源电极与漏电极之间的电流,图42B展示了根据图41的工艺流程图制造的在塑料基片上基于GaAs线的两个MESFET的代表性图像,各个MESFET均使用10根GaAs线的阵列。这些线具有严格对准的取向以及~1.8μm的均匀宽度。宽度为150μm且长度为250μm的金垫将10根GaAs线上的欧姆条连接起来以形成各个单独的MESFET的源电极和漏电极。宽度为15μm且沉积在50μm间隙(晶体管通道)中的Ti/Au条提供栅电极。这些条连接至较大的金属垫以进行探测(probing)。线上的金属以及塑料上金属之间的衬度差(contrast difference)有可能是因为在光刻胶的RIE蚀刻过程中产生的PU上的表面粗糙度。图42C展示了具有数百个晶体管的2cm×2cmPET片的图像,它清楚显示了其柔性。多次印刷步骤和/或线制造的进行可用于生产在整个大面积塑料基片上构图的大量的线。可容易地调节多个参数,例如GaAs线的宽度、源/漏电极的宽度、通道以及栅电极长度,以生产具有多个所需输出特性的MESFET。
[0304] 对晶体管的DC性能进行表征以评价其电性能和机械性能。图43A、43B以及43C提供了通道长度为50μm、栅极长度为15μm的与图42B所示MESFET相似的GaAs MESFET的结果。图43A展示了栅极电压在0.5V至-2.0V之间(步长为0.5V)时的电流-电压(漏电极与源电极之间)曲线。IDS-VDS特性可与常规的用n型GaAs层和标准技术构建的、基于晶片的MESFET相比较,即IDS在高的VDS区饱和,且IDS随着栅极电压的下降而下降。在线性区,VGS=0V时的通道阻抗R通道=6.4kΩ。图43B展示了在不同VDS下测得的本发明GaAs MESFET的传输特性(即IDS-VGS)。全部曲线均在相同的栅极电压,即-2.65V时具有最小值。在高的正向栅极电压下IDS的下降是由于从栅电极到源电极的泄漏电流,它由该段中的肖特基接触引起。图43C展示了在VDS=4V时对(IDS)1/2-VGS作图得到的传输曲线,它清楚展示了MESFET所期望的线性关系。IDS=0.19mA且VDS=4V时的夹断电压和跨导分别为Vp=2.65V和gm0=168μS。这些特性表明在PET基片上制造的晶体管具有与通过传统途径在晶片上制造的典型的GaAs MESFET类似的性能。
[0305] 对于许多正在考虑中的目标应用而言,机械柔性代表塑料基片上器件的一个重要参数。我们通过使支承PET片弯曲对晶体管进行了测试。图44A和44B展示了以下两种情况下在柔性PET基片上的基于GaAs线的MESFET的栅极调制的电流-电压特性:(A)弯曲前;(B)弯曲至8.4mm的弯曲半径后。这些图比较了对于200μm厚的基片,在将基片屈曲至半径为8.4mm——即相应的表面应变为1.2%(在该例中为拉伸)——前后的晶体管的性能。结果表明晶体管可承受这些高应变而不破坏。实际上,在该例中,VGS=0V时的饱和电流提高了~
20%。图44C展示了在将屈曲基片松弛至其平的、未屈曲状态后,基于GaAs线的MESFET的栅极调制的电流-电压特性。比较图44C与图44A表明,释放应变后即基片再次变平后,晶体管恢复了其原始状态的性能。图44D展示了在三个弯曲(具有不同的表面应变)/松弛周期内,在VDS=4V且VGS=0V时的IDS的变化,它表明这些MESFET在经过多次使器件的拉伸应变在0%至1.2%之间变化的弯曲周期后保持完好,它们的性能未显著改变(<20%)。观察到的应变的系统变化可能与机械应变引起GaAs线晶格的位移及其能级分布的位移有关。
[0306] 该实施例描述了以下途径,该途径包括(i)在GaAs晶片上通过高温退火处理产生欧姆接触;(ii)使用这些集成的欧姆接触通过各向异性化学蚀刻产生GaAs微米线,(iii)使用弹性体印模将这些线干式转印至塑料基片上;以及(iv)通过在塑料上对这些线进行低温处理制造高质量的MESFET,以生产塑料基片上的柔性GaAs MESFET。GaAs的本征性能(例如高迁移率)、使用短的栅极长度制造MESFET的能力以及将这些器件集成至复杂电路中的直接途径(可能与使用类似途径但使用其它半导体构建的晶体管集成)表明了为高级通讯、空间和其他系统获得高频率响应的用途。这些器件的上述优点以及极好的机械柔性使得基于GaAs线的MESFET对于柔性大型电子系统而言值得关注。
[0307] 总而言之,具有集成欧姆接触的GaAs微米线/纳米线已经由大块晶片通过金属沉积和构图、高温退火及各向异性化学蚀刻制得。这些线为可直接在多种不常见的器件基片——例如塑料或纸——上构建的高性能器件提供了一类独特的材料。具体而言,在低温下将这些线的有组织阵列转印至塑料基片上产生高质量的、可弯曲的金属半导体场效应晶体管(MESFET)。在聚(对苯二甲酸二乙酯)(PET)上对器件进行的电表征和机械表征说明了能达到的性能水平。这些结果表明了该途径在消费电子系统和军用电子系统中涌现高速柔性电路中的应用前景。
[0308] 实施例12:使用可印刷半导体元件的器件配置
[0309] 图45提供了说明用于塑料基片上的P型底栅薄膜晶体管的本发明一个示例性器件配置的示意图。如图45所示,P型底栅薄膜晶体管包括具有掺杂接触区的可印刷硅半导体元件、氧化铟锡底栅电极、环氧树脂介电层以及源电极和漏电极。塑料基片为聚(对苯二甲酸二乙酯)(PET)片。图45还提供了这种器件在多个栅极电压下的典型的电流-电压特性。
[0310] 图46提供了说明用于塑料基片上的互补逻辑栅极的本发明一个示例性器件配置的示意图。如图46所示,互补逻辑栅极包括P型薄膜晶体管和N型薄膜晶体管,各个薄膜晶体管均含有可印刷半导体元件并设置在聚(对苯二甲酸二乙酯)(PET)片上。
[0311] 图47提供了说明用于塑料基片上的顶栅薄膜晶体管的本发明一个示例性器件配置的示意图。如图45所示,顶栅薄膜晶体管包括具有掺杂接触区的可印刷硅半导体元件、SiO2介电层以及栅电极、源电极和漏电极。塑料基片是具有薄层环氧树脂的聚(对苯二甲酸二乙酯)(PET)片,以便于薄膜晶体管及其组件的转印与组装。图47还提供了这种器件在多个栅极电压下的典型的电流-电压特性。
QQ群二维码
意见反馈