首页 / 国际专利分类库 / 作业;运输 / 一般机械振动的发生或传递 / 在基于超声波的加工过程中的力测量和力调节

在基于声波的加工过程中的测量和力调节

申请号 CN201610024067.8 申请日 2016-01-14 公开(公告)号 CN105834575B 公开(公告)日 2019-06-28
申请人 英飞凌科技股份有限公司; 发明人 G·施特罗特曼; S·布莱坎普; T·内德曼;
摘要 本 发明 涉及一种用于基于 超 声波 的制造的设备。根据本发明的示例该设备具有振动系统,该振动系统包括至少一个用于产生 超声波 振动的声变换器,该振动系统还包括超声波发生器,在运行时通过该超声波发生器将超声波振动传递到 工件 上,以及包括将声变换器与超声波发生器机械连接的助 力 器。此外该设备还具有 框架 ,在其上如此设置该振动系统,使得能够通过该框架将过程力引入到振动系统中。在振动系统中或者在框架和振动系统之间如此布置至少一个力 传感器 ,使得引入到振动系统中的过程力作用在力传感器上。
权利要求

1.一种用于基于声波的制造的设备(100),包括
振动系统,所述振动系统具有至少一个用于产生超声波振动的声变换器(104)、超声波发生器(102)以及助器(103),所述超声波发生器(102)围绕工作轴(105)实施能够在运行时传递到工件上的扭转振动,所述助力器(103)将所述声变换器(104)与所述超声波发生器(102)机械地相连接;
框架(110),所述振动系统如此放置到所述框架(110)上,使得通过所述框架(110)能够将过程力引入到所述振动系统中;
其中所述助力器(103)布置在所述声变换器(104)与所述超声波发生器(102)之间并且布置在所述框架(110)中;
至少一个力传感器(301),所述至少一个力传感器(301)如此地布置在振动系统中或者在框架与振动系统之间,使得引入到所述振动系统中的过程力作用在所述力传感器(301)上;
其中所述力传感器(301)布置在助力器(103)和超声波发生器(102)之间或者布置在所述超声波发生器(102)的两个部分之间;或者
其中所述力传感器(301)布置在框架(110)和助力器(103)之间。
2.根据权利要求1所述的设备,所述设备具有一个或者多个另外的力传感器,所述一个或者多个另外的力传感器如此布置在振动系统中或者布置在框架和振动系统之间,使得引入到所述振动系统中的过程力作用在所述力传感器上。
3.根据权利要求1或2所述的设备,其中一个或多个所述力传感器也能够作为线性执行器运行。
4.根据权利要求1或2所述的设备,其中除了一个或多个所述力传感器之外如此布置一个或多个线性执行器,使得所引入的过程力作用在所述一个或多个线性执行器上。
5.根据权利要求1或2所述的设备,其中所述声变换器是压电式执行器或者磁致伸缩式执行器。
6.根据权利要求5所述的设备,其中将所述力传感器的传感器信号传送给分析单元,所述分析单元构造用于,根据所述传感器信号控制所述执行器。
7.根据权利要求6所述的设备,其中如此控制所述执行器,使得不引起垂直于所述超声波发生器的纵轴的横向力。
8.根据权利要求2所述的设备,其中将所述力传感器的传感器信号传送给分析单元,所述分析单元构造用于,根据所述传感器信号计算沿着所述超声波发生器的纵轴作用的力以及垂直于所述纵轴的力。
9.一种用于基于超声波的制造的方法,包括:
将工件与振动系统的超声波发生器(102)接触,所述振动系统包括至少一个用于产生超声波振动的声变换器(104)、所述超声波发生器(102)以及助力器(103),所述超声波发生器(102)围绕工作轴(105)实施能够在运行时传递到工件上的扭转振动,所述助力器(103)将所述声变换器(104)与所述超声波发生器(102)机械地相连接;
其中所述助力器(103)布置在所述声变换器(104)与所述超声波发生器(102)之间并且布置在框架(110)中;
在所述振动系统中引入过程力,在运行时所述过程力传递到所述工件上;
借助于至少一个力传感器(301)测量所引入的过程力,所述力传感器(301)如此布置在所述振动系统中或布置在框架与振动系统之间,使得引入到所述振动系统中的过程力作用在所述力传感器(301)上;
其中所述力传感器(301)布置在助力器(103)和超声波发生器(102)之间或者布置在所述超声波发生器(102)的两个部分之间;或者
其中所述力传感器(301)布置在框架(110)和助力器(103)之间。

说明书全文

在基于声波的加工过程中的测量和力调节

技术领域

[0001] 本发明涉及基于超声波的制造方法,尤其是超声波焊接(压焊)的领域。

背景技术

[0002] 对于灵敏的构件、例如对于功率半导体模的情况,对所使用的连接过程提出高的要求。除了高经济性且因此短的过程时间外,还使用以下方法,该方法造成构件中小的热输入。由此保护热灵敏的构件不被伤害。因为超声波焊接由于短的过程时间和小的热输入而出众,因此其适用于这种复杂的要求。其中该过程时间根据应用也能够低于一秒。作用在超声波发生器上的高频振动传递到接合部件上,接着其被局部地强烈地加热并由此被连接。当前使用的超声连接过程的过程参数在静止的系统状态中进行调整。为此垂直于接合位置的表面的按压力主要计算超声波振动的幅度和过程持续时间。因为超声波加工过程遭遇高动态,在一些使用中静止状态下的参数调节不足以作为解决方案,以在复杂的接合过程中也保证能复现的结果。此外按压是过程参数,具体而言是按压力,在接合过程中是困难的。在超声波加工过程中调整按压力是不可能的。下面按压力也被称作过程力。
[0003] DE19803638A1描述了一种用于利用超声波连续加工材料带的设备。在DE19753740C1中描述了一种用于加工材料带的设备,其中确定超声波发生器的按压力。在DE102008004880A1中示出一种用于材料带的焊接设备,其包括用于调节间隙尺寸的调节装置。DE19709912A1阐述了一种用于超声波压焊以批量生产半导体电路的方法和设备。

发明内容

[0004] 本发明的任务在于,如此构成用于基于超声波的制造过程的设备,使得更好地监测例如按压力的过程参数并且在需要时能够影响过程参数。
[0005] 本发明提出了一种用于基于超声波的制造的设备。根据本发明的示例该设备具有振动系统,该振动系统包括至少一个用于产生超声波振动的声变换器,振动系统还包括超声波发生器,在运行时能够通过该超声波发生器将超声波振动传递到工件上,并且包括将该声变换器与超声波发生器机械连接的助力器。此外该设备还具有框架,振动系统如此设置在该框架上,使得通过该框架能够向振动系统中引入过程力。在振动系统中或者在框架与振动系统之间如此布置至少一个力传感器,使得引入到振动系统中的过程力作用在力传感器上。
[0006] 此外本发明还提出了一种用于基于超声波的制造的方法。根据本发明的示例该方法包括将工件与振动系统的超声波发生器接触。该振动系统具有至少一个用于产生超声波振动的声变换器,以及超声波发生器,通过该超声波发生器在运行时将超声波振动传递到工件上,以及将声变换器和超声波发生器机械连接的助力器。此外该方法还包括向振动系统中引入过程力,在运行时该过程力被传递到工件上,以及借助于至少一个力传感器测量所引入的过程力,该至少一个力传感器如此布置在振动系统中或布置在振动系统上,使得引入到振动系统中的过程力作用在该力传感器上。附图说明
[0007] 下文根据在附图中所示的示例进一步阐述本发明。这些示意图不一定是按比例的且本发明不仅仅限于所示主题。相反重要的是,展示本发明所基于的原理。在这些附图中:
[0008] 图1示出了各种应用情况的超声波焊接装置的原理结构;
[0009] 图2示出了具有环形表面的助力器的示意图;
[0010] 图3示出了根据一个实施例的具有安装的传感器的用于超声波加工过程的设备;
[0011] 图4示出了根据一个实施例的根据图3的具有传感器的布置的超声波设备的顶视图;
[0012] 图5示出了根据另一实施例的具有安装的传感器的用于超声波加工过程的设备;
[0013] 图6示出了根据另一实施例的根据图4的具有传感器的位置的超声波设备的顶视图;
[0014] 图7示出了根据另一实施例的具有相应的传感器位置的用于超声波加工过程的设备;以及
[0015] 图8示出了根据另一实施例的在超声波发生器的传力轴中具有相应的传感器位置的用于超声波加工过程的设备。

具体实施方式

[0016] 在附图中为分别具有相同或相似作用的相同或相似的零件标记相同的附图标记。
[0017] 超声波焊接是一种热接合方法。图1通过简图示出了超声波焊接设备的原理结构。为了接合两个工件201和202对其进行局部地加热。结果两个接合部件(例如功率电子衬底上的接触板和接地线)局部地相互连接。在超声波方法中通过高频机械振动在接合区1中实现能量输入。该机械振动传递到接合部件上。两个接合部件至少部分重叠地设置并且在接合位置1的区域中在固定挡101和超声波发生器102之间通过施加限定的按压力900相互固定。该超声波设备能够按照图1到图8实施为变换器104(例如压电执行器)、助力器103和超声波发生器102的“串联线路”。该变换器通常也称作声变换器。这些单个元件固定不变地相互连接。根据待接合的材料将使用不同类型的工作原理。其通过接合部件上的机械振动的工作方向105区分。其分为超声波发生器振动的扭转的和纵向的工作方向105。该扭转的超声波发生器振动导致围绕工作轴105的扭转振动。根据应用情况,该纵向的超声波发生器振动要么垂直于上部的工件的表面201a工作,要么平行于上部的工件的表面201a工作。对能够通过熔化至少一个接合部件的物料、例如热塑性塑料,能够一方面使用工作方向105垂直于上部的工件的表面201a的纵向超声波发生器振动,另一方面能够使用工作方向105平行于上部的工件的表面201a的扭转的超声波发生器振动。通过对该塑料进行压缩和解压缩或者是接合部件之间的摩擦对其加热且该机械振动带入的能量消散为热能且之后加热接合区1。这在限定的按压力900下完成。
[0018] 与之相反通常为机械接合部件使用工作方向105平行于上部的工件的工件表面201a的超声波振动,而与纵向的或者扭转的超声波发生器振动无关。机械振动带入的能量在该应用情况时不通过内部摩擦产生,如在塑料的情况下。在金属接合部件中能量通过剪切力消散,该剪切力在接合部件之间的接合区1的范围产生。这同样在限定的按压力900的作用下完成。
[0019] 因此监测与过程相关的参数且按照应用,根据对应的运行状态能够调整,其需要采集相关的量(例如力),以及在必要的情况下附加的执行器,以能够在需要时控制对额定状态的必要干扰和偏置。这些执行器能够为与传感器301一起实施的单元并因此直接在测量位置控制参与,在此也采集这些测量值。替代方案也可以是,机械手150或者类似的仪器执行对过程参数的调整并且因此表现为执行器。作为执行器的机械手150表示所谓的传感器执行器组合301的替代。其他附图3、5、7和8用于表示这种装置的几种实施方式。此外也可以通过类似的设备实现其他的制造方法。为此示范性地为基于超声波的分离方法(例如钻孔或者研磨、尤其是超声波研磨),以及摩擦焊接
[0020] 图1示出了超声波焊接设备100的原理结构。该设备100将交流电流转换为高频机械振动并且通过该振动作用在工件201和202上。根据应当将何种材料相互接合,必须参考工件表面201a选择振动的相应的工作方向105。这些不同的工作方向105在其他的附图中阐明。该振动的产生在变换器104(超声波执行器)中完成。该变换器104例如包括压电元件,该压电元件通过施加在该压电元件上的交流电压控制机械振动。该超声波变换器104的机械振动通过坚固的机械连接传递到助力器103上,其将变换器104与超声波发生器102连接并且可选地导致幅度的增大。该助力器103制作为旋转体,围绕该制作为圆柱形的或者圆锥形的内部体103a布置封闭的圆环103b。该圆环103b紧紧地与制作为圆柱形的或者圆锥形的内部体103a连接。助力器103的任务是,增大压电元件(即变换器104)的小的幅度并且传递到超声波发生器102上,该超声波发生器102与助力器103同样机械地连接。超声波发生器102是通过限定的按压力900将振动传递到接合部件上的接触件。按照设备100的构造能够为此附加地使用该超声波发生器102,以再次放大已经由助力器103放大的幅度。振动系统的设计,如图1中所示能够仅通过考虑整个系统100实现。因此必需的是,所有元件相应地相互配合且基于对应的使用目标配合,因此能够通过超声波信号将所期望的振动(的频率和幅度)发出在接合位置1处。
[0021] 框架110用作,将振动设备100连接在机械手150或者类似的设备上。在当前示例中助力器103设置在框架110上。此外该框架110将由机械手150或者相应的仪器控制的按压力900传递到振动设备100上且因此传递到接合区1。固定挡铁101是框架110的支座。其上设置待接合的工件201、202。该支座的任务是,根据应用情况将振动能量以及按压力900通过部件扭转地作用或者通过坚硬的结构相对作用。机械振动在工件201、202中消散并且根据构造也将在固定挡铁101中加热接合区1。结果两个工件201和202局部地相互熔合。
[0022] 图1示出了用于未调整的焊接过程的设备100。按压力900以及其他参数在工艺进程之前预定且之后在工艺过程中不再在变动的环境下调整。按压力900尤其能够借助于机械手150产生。
[0023] 图2示出了精确表示的助力器103。该助力器103是旋转构件,其由内部圆柱形的或者圆锥形制作的体103a组成。该体103a由封闭的圆环103b包围。该助力器为集成构件,通常由金属制成,其通常通过旋转块制成。
[0024] 图3示出了根据本发明一实施例的用于超声波焊接的设备。图3中示出的设备主要具有图1中示例的所有特征。附加于图1中的设备的这些特征在图3中为设备100设置有传感器301和执行器301。传感器301如此布置,即作用在工件201、202上的接合区1中的力(尤其是垂直于工件201的表面201a的法向力)能够以这种方式采集,使得能够推导出接合区1中实际作用的力。传感器301能够例如布置在助力器103和框架110之间。由于框架110和传感器301以及超声波发生器102的机械连接该测量的力表征接合区1中作用的力。为了能够在超过一个空间方向和弯矩上采集分力,能够设置更多的力传感器。为此根据实施方式,计算弯曲力、横向力以及,扭转力。
[0025] 根据图3中所示的示例在助力器103和框架110之间布置一个或多个传感器301(参见图7)。替代方案能够是也在超声波发生器102和助力器103之间或者在超声波发生器的两个部分之间布置这些传感器(参看图5和图8)。这种情况下测量结果由于弹性不由不精确性或者由对惯性力的作用受到负面影响。如已经提到的,能够使用这些测得的力,以监测并且如有可能借助于借助于执行器来影响作用在接合区1中的力。例如能够借助于执行器通过适当地控制执行器(根据所测得的力)消除或者至少减小弯曲力或者横向力,这些执行器例如在框架110和助力器103之间起作用。
[0026] 图4中可见图3的顶视图。其中能够识别助力器103的圆环103b中各个传感器301的径向结构。其沿着助力器103的周围如此分布,即能够采集具有足够精度的各个分力。为了采集所有所述的力得出最小数量的三个传感器301,它们以理想的方式以120°的度均匀地沿着助力器103的周围分布。但是该角度根据所采用的传感器301的数量而定并且根据应用情况调整。
[0027] 图5示出了力传感器301的另一结构可能性。在该实施例中这些力传感器301如此布置在助力器103和超声波发生器102之间,即其直接处于振动的工作方向105上。从原理上可以仅集成一个力传感器301。于是能够仅采集一个分力(垂直于表面201a)。为得到接合区1中的其他分力在助力器103和超声波发生器102之间布置已经提到的多个传感器301。
[0028] 图6示出了根据图5的设备的顶视图。根据一实施例在助力器103和超声波发生器102之间布置相应的传感器301,从而能够测量沿着直线105(参见图5)的力。根据对应的应用情况也能够在超声波发生器102的横断面上布置多个传感器301。其中各传感器301仅仅能够沿着直线105(垂直于工件的表面201a)采集分力。在该实施例中该分力为工件表面
201a上的法向力。通过使用同样布置在超声波发生器102的横断面上的多个传感器301,可以确定多个分力。借助于三个或多个传感器(在适当布置的情况下)能够测量所有相关的分力。对图5中所示的实施例来说其为弯曲应力剪切应力和法向力。合成的、作用在接合区1中的力的结论能够通过对各个传感器301的不同的测量值而得到。基于各个测量值能够推断出超声波发生器尖端上的(即接合区1中的)准确的负载状态。
[0029] 图7中示出了另一实施例。在该装置中振动的工作方向105平行于上部的工件的表面201a。这种构造主要适用于金属接合部件的接合。通过在接合区1中作用剪切力在接合区1中产生热量。借助于机械手150垂直于振动设备100的工作方向105施加限定的按压力。其中传感器301布置在助力器103的外侧面上。在传感器301的外侧面设置框架110。具有至少三个传感器301的该装置能够进行弯曲应力和法向力的力测量。这些传感器301能够同时构造为执行器301并且还在接合过程中控制额定位置。
[0030] 图8示出了设备100的另一实施方式。根据图7中的方案在助力器103和超声波发生器102之间嵌入至少一个传感器。根据传感器301的数量和布置可能的是,测量三个主要的分力。为此计算弯曲应力、剪切应力和法向力。如对图5的展示中已经描述的,传感器301能够分开地设置。于是超声波发生器102的横断面划分为均包括一个传感器301的单独的区域。
[0031] 所述对振动过程的控制通过力传感器301和执行器的相互作用实现。传感器和执行器能够集成到同一构件中或者替代地由机械手150进行控制。采集当前的力的状态实现关于由传感器301发出的绝对的测量值。这些值给出关于所施加的最大力的平的情况。另一方面各传感器301的这些值相对地相互比较。在不同的传感器有偏差的情况下能够推出弯曲负荷。在所有传感器301中测量值相同时能够认为对超声波发生器102无弯曲按压。同理确定横向力和扭转力。在采集后分析这些测量值并向这些执行器301发送等效信号,这些执行器301控制相对于额定状态的偏差。
[0032] 本发明不限于这些详细阐述的实施例。相反,这些实施例仅是小部分可能性的展示。假如与确定的实施例一起描述的技术特征,在技术上能够是可能的,那么在其他实施例中也被使用。
QQ群二维码
意见反馈