用于高温部件的具有多孔基体的涂层

申请号 CN201580043643.7 申请日 2015-08-05 公开(公告)号 CN106660127B 公开(公告)日 2019-07-30
申请人 西门子能源公司; 发明人 G.J.布鲁克; A.卡默尔;
摘要 提供了一种用于在基底上形成涂层的方法。对包括基底(12)、处于基底(12)上的多孔基体(14)和处于多孔基体(14)上或内部的浸渍材料(16)的组件(10),所述方法包括从 能量 源(20)施加一定量的能量(18),该一定量的能量(18)有效地 熔化 浸渍材料(16)和基底的一部分。以这种方式,浸渍材料(16)浸渍多孔基体(14)。所述方法还包括冷却组件(10)以提供包括与基底(12)成为一体的多孔基体(14)的涂层(26)。
权利要求

1.一种涂覆基底的方法,包括:
对包括基底、处于所述基底上的多孔基体和处于所述多孔基体上或内部的浸渍材料的组件,从能量源施加某一量的能量,所述某一量的能量有效地熔化所述浸渍材料和所述基底的一部分,使得所述浸渍材料浸渍所述多孔基体;以及
冷却所述组件,以提供包括与所述基底成为一体的浸渍的多孔基体的涂层;
其中,所述多孔基体包括具有比所述浸渍材料的熔化温度要高的熔化温度的材料;
所述基底和所述浸渍材料包括选自如下组中的组分,所述组包括超级合金材料、金属陶瓷材料以及陶瓷材料。
2.如权利要求1所述的方法,其特征在于,所述多孔基体包括金属化物或陶瓷材料中的至少一种。
3.如权利要求1所述的方法,还包括:
将高温材料添加到所述组件的顶部,其中,所述高温材料选自包括金属氧化物材料、铝化钛、金属陶瓷材料和陶瓷材料的组中;
在从能量源施加一定量的能量期间熔化所述高温材料;以及
冷却熔融的高温材料,以由此在与所述多孔基体成为一体的涂层上形成外部保护层;
其中,所述高温材料包括选自如下组中的金属氧化物材料,所述组包括氧化铝、氧化锑(III)、氧化、氧化铬、氧化钴、氧化、氧化铕、氧化、氧化镍、二氧化、氧化、氧化钛、氧化钇、氧化锌、氧化锆及它们的组合。
4.如权利要求3所述的方法,还包括:
将焊剂粉末添加到所述组件;以及
在从能量源施加一定量的能量期间熔化所述焊剂粉末,以形成可去除的熔渣层。
5.如权利要求1所述的方法,其特征在于,所述多孔基体具有穿过所述多孔基体的不均匀的孔隙,并且其中,在所述冷却之后,在所述多孔基体中保持一定量的孔隙。
6.一种用于在基底上形成涂层的方法,包括:
对包括基底、处于所述基底上的多孔基体、处于所述多孔基体上或内部的浸渍材料和高温材料的组件,从能量源对所述组件施加一定量的能量,所述高温材料处于所述组件的外部上,选自包括金属氧化物材料、铝化钛、金属陶瓷材料和陶瓷材料的组中,其中,所述一定量的能量有效地熔化所述高温材料、所述浸渍材料和所述基底的一部分,使得所述浸渍材料浸渍所述多孔基体;
其中,所述多孔基体包括具有比所述浸渍材料的熔化温度要高的熔化温度的材料;以及
冷却所述组件,以提供包括与所述基底成为一体的网的涂层,所述网包括所述多孔基体和由所述高温材料形成的外层。
7.如权利要求6所述的方法,其特征在于,所述基底和所述浸渍材料包括选自如下组中的材料,所述组包括超级合金材料、铝化钛、金属陶瓷材料以及陶瓷材料,并且其中,所述多孔基体和所述高温材料包括金属氧化物材料。
8.如权利要求6所述的方法,其特征在于,所述基底和所述浸渍材料包括选自如下组中的材料,所述组包括超级合金材料、铝化钛、金属陶瓷材料以及陶瓷材料,其中,所述多孔基体和所述高温材料包括选自如下组中的陶瓷材料,所述组包括氧化铝、氧化锆、二氧化硅化硅、氮化硅、氮化铝、氮氧化硅、碳氮化硅、莫来石、堇青石、β-锂辉石、钛酸铝、硅酸锶铝、硅酸锂铝及它们的组合。
9.一种用于基底的涂层,包括:
设置在所述基底上的多孔基体;
浸渍在所述多孔基体内的浸渍材料,所述浸渍材料使所述基底与所述多孔基体成为一体,其中,所述多孔基体包括具有比所述浸渍材料的熔化温度要高的熔化温度的材料;以及由高温材料形成的设置在所述多孔基体上的外部保护层,所述高温材料选自包括金属氧化物材料、铝化钛、金属陶瓷材料和陶瓷材料的组中。

说明书全文

用于高温部件的具有多孔基体的涂层

技术领域

[0001] 本发明总体上涉及材料增强,并且更具体而言,涉及用于在基底上提供强化和保护涂层的过程以及所产生的结构。

背景技术

[0002] 燃气涡轮机或其他超级合金部件的结构修复通常被认为是用匹配的合金材料来更换受损的材料,并且实现接近原制造部件规格(例如,原规格的至少70%的极限抗拉强度)的性能,例如强度等。例如,优选的是对已经受表面开裂的涡轮机叶片进行结构修复,使得降低进一步开裂的险并且叶片被恢复至原材料结构和尺寸规格。用于陆基发电和用于航空航天应用的这些动叶和静叶通常由超级合金材料形成。术语“超级合金”在本文中如它在本领域中通常被使用的那样被用于表示即使在高温下也表现出优异的机械强度和耐蠕变性的高度耐腐蚀和耐化的合金。超级合金通常包括高的镍或钴含量。
[0003] 由于超级合金材料的开发,已采用各种策略来给材料提供机械强度,以在新的制造或修理期间提高其寿命。一些元素可以在固溶体中提供强度。示例包括Co、Cr、Fe、Mo、W、Ta和Re。化物沉淀也可以增加强度。形成碳化物的元素包括W、Ta、Ti、Mo、Nb、Hf和Cr。最特别地,超级合金材料可以通过形成称为gamma prime(γ')的析出相(precipitate phase)来强化。该相具有基本组成Ni3(AI,Ti)。如果大小适当并具有足够的体积分数,则该相提供显著的强化,最特别地是对于镍基超级合金而言。一些超级合金也被称为gamma double prime(γ'')的另一种析出物强化。该析出物具有组成Ni3Nb,并且对于强化一些镍和镍/基超级合金而言是重要的。γ'相具有有序的晶格,其有助于给材料提供增加的强度。此外,已经开发了用于超级合金的单晶凝固技术,其使得能够从铸件中完全消除晶界,以及增加γ'析出物的体积分数。替代性地,超级合金可以定向凝固,以便仅包括纵向定向的晶粒用于增加强度。
[0004] 氧化物弥散强化(ODS)的合金由于其高温强度和抗氧化性而对高温使用也具有吸引。然而,由于制造中的困难,包括有限的可成形性(特别是复杂的形状)、有限的可加工性、可焊性、可制造性或可修复性,这样的合金在实践中仅发现有限的应用。由于ODS材料到基底的不充分结合的问题,这种合金作为层或涂层的潜在应用甚至更具挑战性。附图说明
[0005] 根据附图在下面的描述中解释本发明,这些附图示出了:
[0006] 图1图示了根据本发明的一个方面的包括浸渍的多孔基体的涂层的形成;
[0007] 图2图示了根据本发明的一个方面将金属氧化物粉末添加到图1的材料,以在浸渍的多孔基体上形成外部金属氧化物层;
[0008] 图3图示了根据本发明的一个方面将粉末状焊剂包含到金属氧化物粉末中以形成熔渣层。

具体实施方式

[0009] 本发明人已开发了一种用于在基底上形成包括强化和保护性高温网的涂层的新颖的过程。在某些方面,本文所述的过程将包括例如金属氧化物、陶瓷或碳材料之类的高温材料的多孔基体放置在基底上,并且之后,使处于多孔基体上或内部的浸渍材料熔化,以用该材料浸渍多孔基体。多孔基体在该过程期间基本上不熔化。然而,基底的一部分也被熔化。浸渍到多孔基体中的材料与基底相容。因此,当基底和熔融材料冷却时,多孔基体被熔合到基底。以这种方式,可以在基底上形成包括强化和保护性高温网的涂层。在一个实施例中,例如金属氧化物材料之类的高温材料也被设置在浸渍材料或多孔基体上,被熔化和冷却以形成外部保护层,该外部保护层与未熔化的多孔基体一体化(integrate),以扩展强化和保护性的高温材料网。
[0010] 参照图1,其示出了组件10,该组件10包括基底12、设置在基底12上的多孔基体14以及设置在多孔基体14上或内部的浸渍材料16。在一个实施例中,浸渍材料16被选择为使得在浸渍材料16熔化时与基底12相容。多孔基体14可以被放置在基底12之上,以便在待接合或修复的区域中或在新制造品中所期望的区域上基本上覆盖基底12的顶表面。然后,可以将浸渍材料16预先放置或以其他方式供给到多孔基体14的表面上,例如作为均匀层。替代性地,多孔基体14可以作为预形成件来提供,其中浸渍材料16已放置在该预形成件上,该预形成件被放置在基底12上。
[0011] 为了形成高温保护涂层,以有效地熔化浸渍材料16并熔化基底12的一部分22的量从合适的能量源20对组件10施加能量18。然而,能量18基本上不熔化多孔基体14,使得在施加能量18之后保持多孔基体14的大部分(例如,体积百分比>50%)的结构完整性。以这种方式,熔融的浸渍材料16流动到多孔基体14中并浸渍多孔基体14,以形成浸渍的多孔基体24,该浸渍的多孔基体24在能量施加之后保持基本上自支撑。可以设想的是,一些熔融的材料16也可扩散到熔化的基底(部分22)中,但至少期望熔融的材料16与熔化的基底部分22接合(或界面接合,interface)。
[0012] 在本文所述的过程期间,基底12的熔化部分22可具有期望的深度,例如从0.05mm至1.0mm。在冷却和凝固时,例如通过冶金结合等,多孔基体14可通过浸渍的多孔基体24内的材料16与基底12成为一体,该材料16与基底的熔融部分22接合并与之一起凝固。有利地,这种锚固可以消除例如在超级合金上常规施加的涂层的典型的涂层剥落。因此,在凝固时,在基底12上形成包括高温网28的保护涂层26。
[0013] 对本文所述的过程而言,基底12可包括将受益于本文所述的过程的任何材料。在某些实施例中,基底12包括超级合金材料。如上所述,术语“超级合金”在本文中如它在本领域中通常被使用的那样被用于表示即使在高温下也表现出优异的机械强度和耐蠕变性的高度耐腐蚀和耐氧化的合金。示例性超级合金包括但不限于以如下商标和品牌名称来销售的合金,即:Hastelloy、Inconel合金(例如,IN 738、IN 792、IN 939)、Rene合金(例如,Rene N5、Rene 41、Rene 80、Rene 108、Rene 142、Rene 220)、Haynes合金、Mar M、CM 247、CM 247 LC、C263、718、X-750、ECY 768、262、X45、PWA 1483和CMSX(例如,CMSX-4)单晶合金、GTD 111、GTD 222、MGA 1400、MGA 2400、PSM 116、CMSX-8、CMSX-10、PWA 1484、IN 713C、Mar-M-
200、PWA 1480、IN 100、IN 700、Udimet 600、Udimet 500以及等。
[0014] 替代性地,基底12可包括铝化钛材料、金属陶瓷材料或陶瓷基复合材料或者包括氧化铝、氧化锆、二氧化、碳化硅、氮化硅、氮化铝、氮氧化硅、碳氮化硅、莫来石、堇青石、β-锂辉石、钛酸铝、铝锶硅酸盐、锂铝硅酸盐及其组合中的一种或多种的单片陶瓷。
[0015] 多孔基体14在其中包括例如微孔之类的多个孔,并且至少部分地由至少比浸渍材料16具有更高的熔化温度的材料形成。以这种方式,即使在施加能量18来熔化浸渍材料16时,多孔基体14也可基本上保持其结构完整性。例如,多孔基体14可以呈过滤体、海绵、蜂窝体或泡沫材料的形式。
[0016] 在一个实施例中,多孔基体14可以包括选自如下组中的金属氧化物,所述组包括氧化铝、氧化锑(III)(antimony(III) oxide)、氧化、氧化铬、氧化钴、氧化、氧化铕、氧化铁、氧化镍、二氧化硅、氧化、氧化钛、氧化钇、氧化锌、氧化锆(zirconia)及它们的组合。在一个特定实施例中,多孔基体14包括氧化锆,这是特别有利的,因为氧化锆比大多数超级合金材料具有更高的熔点。例如,多孔基体14可以包括氧化锆材料,例如可从Foseco或Sigma Aldrich商购获得的那些等。STELEX ZR氧化锆过滤器可从Foseco以各种尺寸商购获得,并且具有10-20ppi(每线性英寸的平均孔数)的孔隙率。
[0017] 在另一实施例中,多孔基体14可以替代地或进一步包括铝化钛材料、金属陶瓷材料或陶瓷材料。例如,所述陶瓷材料可以包括氧化铝、氧化锆、二氧化硅、碳化硅、氮化硅、氮化铝、氮氧化硅、碳氮化硅、莫来石、堇青石、β-锂辉石、钛酸铝、硅酸锶铝、硅酸锂铝及它们的组合。陶瓷蜂窝体可用于本文中的用途,例如,如来自Applied Ceramics Inc.的Versagrid™,其呈高达每平方英寸400个单元格的精细单元格图案并且具有各种材料,例如氧化铝、二氧化硅和莫来石等。
[0018] 在又一个实施例中,多孔基体14可以替代地或进一步包括碳材料,以给最终涂层26增加结构完整性。所述碳材料也可以比被能量18熔化的材料具有更高的熔化温度。此外,碳材料可由选自如下组中的成分(member)形成,所述组包括富勒烯结构、碳纱、碳纤维、碳织物、碳蜂窝体、碳纳米芽、石墨烯结构、类金刚石材料(例如,DLC涂覆的材料)及它们的组合。举例来说,碳纤维织物可从Protech Composites商购获得,并且碳蜂窝体可从Fiber Glast Nomex商购获得。
[0019] 浸渍材料16被选择成与基底12相容,使得当材料16被能量18熔化时,熔融的材料浸渍多孔基体14,并与熔融的基底部分22成为一体,以将基体14锚固到基底12。在一个实施例中,浸渍材料16包括与基底12相容的如本文所述的超级合金材料。在另一实施例中,材料16包括与基底12相容的如本文所述的铝化钛材料、金属陶瓷材料或陶瓷材料。浸渍材料16可具有针对预期应用的任何合适的尺寸范围。在一个实施例中,材料16具有从5μm至100μm的粒度。
[0020] 在一个实施例中,仔细地选择浸渍材料16的量,以便浸渍多孔基体14,而不从多孔基体14中满溢或溢出多孔基体14的边缘。在某些实施例中,材料16的量被选择为基本上充满多孔基体14。例如,在一个实施例中,至少90%的容积可填充有熔融的浸渍材料16。在某些实施例中,材料16的量被选择为使得在熔化时,材料16不完全充满多孔基体14的内部容积,并且在冷却之后在多孔基体14中保持一定量的孔隙。事实上,这在某些应用中可能是期望的,因为剩余的孔隙可以改善基底12的热性能。例如,在孔或气窝(void pocket)内存在的气体可以防止附加的热进入到多孔基体14中,从而作为良好的热障并给基底12提供附加的热保护。
[0021] 在另一实施例中,多孔基体14具有例如沿多孔基体14的长度的穿过多孔基体14的非均匀孔隙。有利地,非均匀的多孔基体可以增强熔体通过基体14的行进和/或有助于在基体14中维持一定量的孔隙,即使是在如上所述的浸渍之后。
[0022] 现在参照图2,其示出了另一实施例,其中,图1的高温网28可以通过添加外部保护性高温层30来扩展。在一个实施例中,通过在如上面参照图1所述的组件上添加例如金属氧化物粉末或陶瓷粉末的高温材料,来提供外部保护层30。具体而言,参照图2,其提供了组件10A,该组件10A包括基底12、设置在基底12上的多孔基体14、设置在多孔基体14上或内部的浸渍材料16以及处于材料16上的高温材料32。高温材料32可以作为均匀或可变厚度的层被预先放置或以其他方式供给到材料16上。替代性地,具有已放置在其上和/或其中的浸渍材料16的多孔基体14连同高温材料32一起可以作为预形成件提供并放置在基底12上。
[0023] 高温材料32可以包括将为涂层提供机械强度或耐高温性能的任何合适的材料。例如,材料32可以包括金属氧化物材料、铝化钛材料、金属陶瓷材料、陶瓷材料及它们的组合。当选择金属氧化物材料时,金属氧化物可以包括选自如下组中的成分,所述组包括氧化铝、氧化锑(III)、氧化硼、氧化铬、氧化钴、氧化铜、氧化铕、氧化铁、氧化镍、二氧化硅、氧化锡、氧化钛、氧化钇、氧化锌、氧化锆(zirconia)及它们的组合。在一个特定实施例中,多孔基体
14包括氧化锆。替代性地,材料32可包括如本文关于多孔基体14所述的铝化钛、金属陶瓷材料或陶瓷材料。高温材料32可以按照粉末的形式来提供,并且在该形式中可以具有从50微米至150微米的平均粒度。
[0024] 当经受来自能量源20的能量时,材料32被设置成足够薄的层,使得它和材料16将被熔化而基本上不熔化多孔基体14。在凝固时,外层30将形成为基底12上的最外层。此外,由于材料16流动到多孔基体14中并浸渍多孔基体14,因此熔融的材料32可以接触多孔基体14,凝固,并在基底12上提供包括强化和保护性高温网28A的涂层26A,如图2中所示。在某些实施例中,多孔基体14和材料32二者都具有相同的组分,例如相同的金属氧化物组分,以形成冶金相容或以其他方式相容的网28A。在一个实施例中,层30具有从10微米至1mm的最终厚度。
[0025] 本文所述的过程可在适当的焊剂条件下进行,以为熔融的材料屏蔽大气氧。在某些实施例中,本文所述的过程可以在真空中或者在存在氩气或其他惰性气体的流动流(在熔池上方,所述氩气或其他惰性气体的流动流为熔池屏蔽大气氧)的情况下进行。
[0026] 在其他实施例中,可以在合适的点和位置处将如美国公开专利申请号2013/0136868(其全部内容在此通过引用结合于本文中)中所述的大小和组成的焊剂粉末引入到所述过程,以类似地为熔池屏蔽大气氧。例如,如图3中所示,还可以给组件10A(图2)的部件提供粉末状焊剂材料34的层,以形成组件10B。焊剂材料34可以被预先放置或供给到材料32上,或者可以另外与材料32或浸渍材料16混合。为了说明的目的,焊剂材料34的层被示出为与材料32的层和材料16不同的层。当能量18熔化材料16、32和34并且熔融的材料凝固时,除了本文已描述的部件之外还形成熔渣层36。
[0027] 可以使用本领域中已知的任何合适的方法来去除熔渣层或熔渣36,这将留下如图2中所示的涂层26A和网28A。要理解的是,熔渣36通常是相当易碎的固体层。在某些实施例中,熔渣36可以通过机械方法来破碎,例如通过用钝物或振动工具来使熔渣36开裂,并从覆层(cladding)扫除熔渣36。在其他实施例中,熔渣36(一旦形成)可具有在冷却时自分离的特性。
[0028] 使用焊剂粉末具有多种与之相关联的优点,包括在熔池的顶表面处形成熔渣层,这有助于从熔池带走污染物并且有助于本身隔离以及控制散热,从而影响焊池的形状和应力
[0029] 在本文所述的过程中,能量源20可以是有效地熔化例如材料16加32、34(如果存在)的所期望的材料和基底12的部分22但如上所述基本上不熔化多孔基体14的任何合适的能量源。在一个实施例中,能量源20是激光能量源,但是本文所述的过程不限于此。在其他实施例中,能量源20可以包括例如电弧等离子体能量源、电子束或离子束。
[0030] 要理解的是,本领域技术人员将能够识别参数并理解以什么方式来改变参数以便提供预期的结果,例如将期望的材料熔化到基底上,以及以期望的速率熔化基底而基本上不熔化多孔基体14。这样的参数可以包括但不限于功率密度脉冲持续时间、脉冲间隔、频率、能量源的数量、混合(例如,等离子体和激光)源的使用、源和基底之间的间距等。在所述过程中,要理解的是,能量源20可以包括可沿沉积的方向38相对于基底12横过(图1-3)的一个或多个能量源。替代性地,可以使基底12沿沉积的方向38相对于能量源20横过。
[0031] 根据另一方面,本文所述的过程可以通过向待熔化的材料(例如,材料16和/或材料32)中的任一种添加一种或多种组分来进一步增强,或者附加的组分可以是在基底12上熔化之前作为不同的层的添加层。
[0032] 例如,在一个实施例中,可以包括例如氟化之类的氟化物,用于改善处理期间熔融材料的流动性。
[0033] 在另一个实施例中,可以添加例如碳酸钡或碳酸钙之类的碳酸盐,以便进一步为熔池屏蔽大气氧。
[0034] 在另一个实施例中,可以添加例如氧化钙、氧化镁或氧化锰之类的各种其他氧化物,以帮助消除凝固裂纹。
[0035] 在另一个实施例中,可以添加包括镍、钴、铝和/或铬的合金元素,以改善表面抗氧化性。
[0036] 在另一个实施例中,可以添加矾土或另外的氧化铝,以建立用于抗腐蚀、侵蚀和氧化的又一涂覆阻隔层。
[0037] 对于原始设备制造或零部件的原型设计,本文所述的过程可能是有用的。此外,本文所述的过程可被用于对部件的部件修复应用,所述部件例如已从服务中移除用于翻新的燃气涡轮机动叶或静叶。
[0038] 虽然本文已示出和描述了本发明的各种实施例,但将显而易见的是,这样的实施例仅作为示例提供。可以作出许多变型、改变和替换,而不脱离本文中的发明。因此,本发明意在仅通过所附权利要求的精神和范围来限制。
QQ群二维码
意见反馈