首页 / 国际专利分类库 / 物理 / 核物理;核工程 / 乏核燃料储存水池泄漏监测系统

乏核燃料储存泄漏监测系统

申请号 CN201680087077.4 申请日 2016-09-30 公开(公告)号 CN109690276A 公开(公告)日 2019-04-26
申请人 原子能技术科学研究设计院股份公司; 科学与创新股份公司; 发明人 S·I·伊萨耶夫; D·S·诺维科夫;
摘要 乏核 燃料 储存 水 池 泄漏 监测系统属于测试技术的领域,并旨在容器泄漏的监测。贮藏池的 焊缝 另行装上密封金属防护层。该密封金属防护层是通过带 阀 门 的小管连接着管道的,管道两头接入配有控制液位 传感器 的泄漏收集箱。控制单元接到全部阀门并管理它们。乏核燃料储存水池泄漏监测系统检查乏核燃料储存水池焊缝的 密封性 并在没有预先排水的情况下确定漏泄焊缝的 位置 ,从而增加储存水池 辐射 安全及缩短其维修时间。
权利要求

1.设有管道、液位控制传感器和接到它的控制单元的乏核燃料储存泄漏检测系统,其特征在于,贮藏池的焊缝另行装上密封金属防护层。该密封金属防护层是通过带的小管连接着管道的,管道两头接入配有控制液位传感器的泄漏收集箱。控制单元接到全部阀门并管理它们。
2.根据权利要求1所述的乏核燃料储存水池泄漏监测系统,其特征在于,其设有的压缩空气供应装置和压缩空气阀,同时压缩空气供应装置通过压缩空气阀与管道相接,并且它利用压缩空气阀、管道和阀门把压缩空气送入焊缝的金属防护层中以另行确定泄漏的地方。
3.根据权利要求1所述的乏核燃料储存水池泄漏监测系统,其特征在于,其装有的有色水供应装置和有色水供应阀,同时给有色水装置通过给有色水阀与管道相接,并且它利用给有色水阀、管道和阀门把有色水送入焊缝的金属防护层中以另行确定泄漏的地方。
4.根据权利要求1所述的乏核燃料储存水池泄漏监测系统,以装在泄漏收集箱进口上的收集阀,其出口上的止回阀为特点。
5.根据权利要求1所述的乏核燃料储存水池泄漏监测系统,以设置在泄漏收集箱和止回阀之间的为特点。
6.根据权利要求1所述的乏核燃料储存水池泄漏监测系统,以液位控制传感器作为传感器为特点。
7.根据权利要求1所述的乏核燃料储存水池泄漏监测系统,其特征在于,以液位控制传感器作为导电传感器为特点。
8.根据权利要求1所述的乏核燃料储存水池泄漏监测系统,其特征在于,控制单元以有线或无线通信接通全部阀门和泵,从而管理它们的操作。
9.根据权利要求2所述的乏核燃料储存水池泄漏监测系统,其特征在于,压缩空气装置装上压缩空气压力传感器

说明书全文

乏核燃料储存泄漏监测系统

技术领域

[0001] 本发明属于测试技术的领域,并旨在核电站贮藏池泄漏的监测。

背景技术

[0002] 目前已知,核电厂内的乏核燃料贮藏在由相焊接金属板制成的装满水的水池中。然而,核电站运行实践表明,虽然在水池建造过程中对不锈衬里制造进行密封性检测,在运行期间中,因焊缝中的高应集中与腐蚀的原因,放射性水则通常通过焊缝泄漏。这种水一般收集到位于乏核燃料储存水池以下的卷边内底。此时放射性水泄漏本身由于其环境危害还是不该有的,且需排除,为此必须监测放射性水泄漏和确定发生泄漏的焊缝。但是确定难点是储存水池金属衬里紧接着作为水池内液体压力承受构件及防辐射屏蔽的的环绕混泥土墙,因此对焊缝完整性的目视和接触检查是不可能的。为了解决上述的问题,提出了几种不同的技术方案。
[0003] 列如,泄漏监测是借助于乏核燃料储存水池设置的上部下部水位传感器,或者由于漏水通过管道从内底到带有水位控制传感器的容器中引排及其今后的到储存水池流回而实现的。这样的解决方案允许确定漏水的本身事实并大致估计单位时间内的漏水量的变化动态。但是,本解决方案有以下缺点:在没有预先排除发射性的情况下不可能准确地找出漏泄的焊缝,放射性水冲到储存水池混泥土侧壁上的可能性,有金属内底的必要,以及较低的辐射安全性。
[0004] 以前就作过依靠系统中液体蒸发量与凝聚量计算准确度提高而提高对储存水池漏液体动态的估计准确度的尝试。比如有气溶胶活度检查核电厂泄漏监测系统(100817,MПK F24K 3/14号实用新型专利证书,发表于2010年12月27日),它包括用于将受控房间内空气分成冷凝液和空气介质的装置,这个装置是通过空气导管连接着气溶胶放射性体积活度检测器,而通过冷凝液排出导管连接着液体中γ射线放射性核素体积活度检测模的。此时气溶胶放射性体积活度检测器自己也与泄压管连接,而液体中γ射线放射性核素体积活度检测模块与冷凝液向特种下水系统排放管连接。该系统的特点是设有空气冷却室及至少一个位于空气冷却室外的空气加热室的空气除湿机用作使受控房间内空气分成冷凝液和空气介质的装置,空气冷却室内表面装有由吸热气定向空气冷却室内的散热器。同时,空气冷却室和空气加热室之间设有珀贴元件。空气加热室配有除湿空气温度传感器,而空气冷却室下面设置带有冷凝液位传感器的冷凝液收集箱。系统设计规定了流量计。
[0005] 本冷却剂泄漏监测系统较为复杂,因为它需要额外的引线来定期进行附加除盐水和压缩空气回路测量体积的冲洗与吹干,并不能用上述设备去确定核电厂乏核燃料储存水池是否存在泄漏。另外,该系统不允许解决确定某一个泄漏的焊缝位置的任务。
[0006] 还有一个核电厂冷却剂泄漏监测系统(111709,MПK G21C 17/02号实用新型专利证书,发表于2011年12月20日),它包括空气化学物含量取样管路及其中依次设置的冷却器、带有排冷凝液管线的脱湿器、气流加热器、流量计和流量增压器。系统配有装在在冷却器前面的空气化学物含量取样管线中的双通气流导向器,其中一个排出口接到气流进入冷却器的进口、加热器后面的取样管线包括的水分温度测量仪,以及一头接着双通气流导向器第二排出口,另外一头接着加热器后面的取样管线的旁通管线。系统配备流量计后面的取样管线具有的气溶胶放射性体积活度检测器,以及一个冷凝液质量测试仪。系统另外包括两个温度传感器和一个压力传感器
[0007] 如前所述的这种系统由于其由真空和压缩冷气机组成而为相当复杂得组件。除此之外,本系统同样不解决找出某一个泄漏的焊缝位置的任务。
[0008] 与所申请发明的最相近类似物为核电站乏核燃料储存水池泄漏监测系统(2589726,MПK G21C17/022、G01M3/00号专利证书,发表于2016年7月10日),其包括通过净化管进的水流量传感器、安设在燃料元件定型座上的液位报警器、两个装在反应堆厂房通系统各个进排气口中的水分传感器和温度传感器和超过允许放射性水位报警器。与此同时,上述所有的传感器输出均是通过输入机接通控制器的,控制器输出连接到超过允许放射性水位报警器输入和计算机。此外,控制器具有设备操作人员和燃料元件数量信息输入装置,而为确保连续运行,系统还配备了稳压电源。
[0009] 本解决方案通过自动化装置使用减少了储存水池泄漏监测系统具备的烦琐性。然而,这样一个方案像上述的其他解决方案一样具有缺点:在没有预先排除发射性的情况下不可能准确地找出漏泄的焊缝,放射性水冲到储存水池混泥土侧壁上的可能性,有金属内底的必要,以及较低的辐射安全性。外加,所有的现有技术解决方案中,储存水池泄漏地方不确定性增加储存水池在移除核乏核燃和干燥之后的维修时间,因为找出泄漏地方额外时间的需要。

发明内容

[0010] 本发明的任务是开发一种用于监测乏核燃料储存水池泄漏的系统。该系统应该由于在没有完全消除放射性的情况下可以确定某一个泄漏焊缝的确保和放射性水冲到储存水池混泥土侧壁上的可能性排除而保证乏核燃料的可靠储存,并且通过对泄漏焊缝的预先确定缩短水池维修时间。
[0011] 本发明的技术效果:乏核燃料储存的安全性增加是由于在没有完全消除放射性的情况下可以确定某一个泄漏焊缝的确保和放射性水冲到储存水池混泥土侧壁上的可能性排除,以及水池维修时间缩短而实现的。
[0012] 技术效果达到途径:装有管道、液位控制传感器及与其连接的控制单元的乏核燃料储存水池泄漏监测系统具有另行装上密封金属防护层的焊缝。该密封金属防护层是通过带的小管连接着管道的,管道两头接入配有控制液位传感器的泄漏收集箱。控制单元接到全部阀门并管理它们。
[0013] 更加合理地把压缩空气供气装置和压缩空气阀装上给乏核燃料储存水池泄漏监测系统,同时压缩空气供应装置通过压缩空气阀与管道相接,并且它利用压缩空气阀、管道和阀门把压缩空气送入焊缝的金属防护层中以另行确定泄漏的地方。
[0014] 更加合理地把有色水供应装置和有色水供应阀装上给乏核燃料储存水池泄漏监测系统,同时给有色水装置通过给有色水阀与管道相接,并且它利用给有色水阀、管道和阀门把有色水送入焊缝的金属防护层中以另行确定泄漏的地方。
[0015] 建议在泄漏收集箱的进口上安装收集阀,而在其出口上-止回阀。
[0016] 建议在泄漏收集箱和止回阀之间设置一个泵。
[0017] 更加合理地以压力传感器用作控制液位传感器。
[0018] 建议以导电传感器用作控制液位传感器。
[0019] 建议以有线或无线通信把控制单元接通于全部阀门与泵。
[0020] 更加合理地给压缩空气装置装上压缩空气压力传感器。附图说明
[0021] 乏核燃料储存水池泄漏检测系统的优选设计方案包括带有焊缝1并由混泥土墙围绕(用晕线表示)的贮存池衬里6.每一条焊缝1上设置金属防护层2,金属防护层2是以外部焊缝11固定在贮存池上并用带阀的小管3接到管道的。管道可通过收集阀4把可能的泄漏液体引排至配有液位控制传感器5的泄漏收集箱7。从泄漏收集箱7里的水用泵8通过止回阀9流回贮存池6.该系统还具有可供压缩空气或有色水的压缩空气阀10,压缩空气阀配有压缩空气压力传感器12。各个阀门和泵用有线无线通信与控制单元(图上未示出)相接,同时控制单元可以管理全部阀门和泵。

具体实施方式

[0022] 乏核燃料储存水池泄漏检测系统如下操作。乏核燃料贮存在贮存池6中的时候,操作者借助控制单元,在其他阀门3关闭时定期一个接一个地打开阀门3,并在止回阀9与泵8关闭的情况下还检查液位控制传感器5的示度。同时,如果液位控制传感器5的示度不变时,操作者作出与开着阀门3相对的焊缝1无泄漏的结论。如果液位控制传感器5显示泄漏收集箱7中的液位提高时,操作者作出与开着阀门3相对的焊缝1有泄漏的结论。此后,操作员同样检查剩余的焊缝。检查或泄漏收集箱7装满之后,操作员用泵8,在止回阀9开着的时候使漏水流回贮存池中。随后,操作员关闭相对于前检查查找出的泄漏焊缝1的阀门3,以防止放射性水流到贮存池6侧壁上。同时,通过损坏的焊缝1流到贮存池6以外的放射性水由金属防护层2阻止流到贮存池6侧壁上。这样而来,贮存池6可以继续不间断地运行,一直到计划预修的进行。
[0023] 优选实施方案中的泄漏检测系带有压缩空气阀10,而压缩空气阀10,列入,从压缩空气瓶提供压缩空气。本方案中,操作员把压缩空气送入系统中,此时他打开压缩空气阀10和全部或部分阀门3并关上止回阀4和收集阀。这一时刻,压缩空气穿过管道和开着的阀门3,并以易见的水泡通过泄漏的焊缝1进入贮存池6中。这可允许操作员在没有从贮存池6里排水的情况下借助遥测技术装置去确定每一个焊缝的密封性及某一个焊缝失去密封性的位置。其中一个方案中,可以用有色水取代压缩空气以达到一样的结果。
[0024] 再者,给压缩空气装置10另有的压缩空气压力传感器12允许监测外部焊缝11和固定在贮藏池6上的金属防护层2的密封性。为此,比如,当一个阀门3在开放位置和剩余的阀门3、收集阀4和止回阀9在关闭位置时,操作员开始压缩空气向管道中的供应,并在确定相应的焊缝1内侧无有水泡之后查看压缩空气传感器12的示度。如果其压力下降的话,操作员决定相应的某一个焊缝失去密封性。
[0025] 工业应用
[0026] 乏核燃料储存水池泄漏检测系统允许提高辐射安全性及乏核燃料储存在储存水池中的可靠性,以及缩短维修储存水池的时间,并且可以广泛应用于核工业上。
QQ群二维码
意见反馈