高反射率陶瓷颗粒及其制备方法

申请号 CN201510954789.9 申请日 2015-12-18 公开(公告)号 CN106893372B 公开(公告)日 2019-06-21
申请人 石家庄日加精细矿物制品有限公司; 发明人 李志杰; 卢红卫;
摘要 本 发明 公开了高反射率陶瓷颗粒及其制备方法。本发明的陶瓷颗粒包含砂芯颗粒和至少一层涂层,其中所述砂芯颗粒包含在700℃‑1200℃ 煅烧 的铵伊利石,所述砂芯颗粒用无机涂料涂覆后,在800-1200℃进行煅烧,得到陶瓷颗粒。所述陶瓷颗粒的粒度为0.1‑3.5 mm,具有不低于80%的太阳光反射率SR和小于6%的污染指数DL*。所述陶瓷颗粒应用到 沥青 卷材/板材上,具有不低于70%的太阳光反射率;应用到聚 氨 酯 泡沫 层板上,具有不低于72%的太阳光反射率。
权利要求

1.陶瓷颗粒,其包含砂芯颗粒和涂覆在其上的至少一层涂层,其中所述砂芯颗粒为煅烧后的铵伊利石,所述至少一层涂层为无机涂料涂层,所述陶瓷颗粒的反射率为80%至
93%,
其中,经X射线衍射检测,所述煅烧后的铵伊利石包含晶相和/或莫来石晶相,及非晶相,并且保留了铵伊利石的层状结构,
其中由硅酸铝20.07° X射线衍射峰和莫来石16.44° X射线衍射峰计算得出的晶粒尺寸<35 nm。
2.权利要求1的陶瓷颗粒,其中所述煅烧后的铵伊利石是在700-1200℃的温度下煅烧铵伊利石矿石得到的。
3. 权利要求2的陶瓷颗粒,其中所述铵伊利石矿石中铵伊利石的含量为50 wt%-100 wt%,以铵伊利石矿石的重量为基准。
4.权利要求1的陶瓷颗粒,其中涂覆了无机涂料涂层的砂芯颗粒是在800-1200℃的温度下煅烧得到的。
5.权利要求1的陶瓷颗粒,其中所述无机涂料为选自硅酸盐、磷酸铝、硅溶胶和铝溶胶中的至少一种的液体无机涂料,其中所述硅酸盐选自硅酸钠、硅酸、硅酸铝、硅酸锂或其混合物。
6.权利要求5的陶瓷颗粒,其中所述无机涂料还包含选自下列的一种或多种:颜料、抑藻剂、杀虫剂、自洁剂、粘度调节剂、助熔剂、阻燃剂、表面张改性剂、抗老化剂。
7.权利要求1的陶瓷颗粒,其还包含采用有机涂料和/或防剂进行二次涂覆得到的附加涂层,其中所述有机涂料为树脂涂料或乳液涂料,所述防水剂为含硅防水剂或含氟防水剂。
8.权利要求1的陶瓷颗粒,其具有0.1%-6%的污染指数DL*。
9.权利要求1的陶瓷颗粒,其中所述陶瓷颗粒以90%以上的覆盖率应用到沥青卷材/板材上,具有70%-85%的太阳光反射率。
10.权利要求1的陶瓷颗粒,其中所述陶瓷颗粒应用到聚泡沫板表层,具有72%-90%的太阳光反射率。
11.制备权利要求1-10中任一项的陶瓷颗粒的方法,其包括下列步骤:
a) 煅烧、粉碎铵伊利石矿石,得到砂芯颗粒;
b) 用无机涂料涂覆所述砂芯颗粒;
c) 煅烧涂覆了无机涂料的砂芯颗粒,得到陶瓷颗粒。
12.权利要求11的方法,其中步骤a)在700-1200℃的温度下进行,步骤c)在800-1200℃的温度下进行。
13.权利要求11的方法,其中所述陶瓷颗粒的污染指数DL*为0.1%-6%。
14. 煅烧的铵伊利石颗粒,其是在700-1200℃的温度下煅烧铵伊利石矿石得到的,并且具有80%至93%的反射率,所述煅烧的铵伊利石颗粒包含硅酸铝晶相和/或莫来石晶相,及非晶相,并且保留了铵伊利石的层状结构,其中由硅酸铝20.07° X射线衍射峰和莫来石
16.44° X射线衍射峰计算得出的晶粒尺寸<35 nm。
15. 权利要求14的煅烧的铵伊利石颗粒,其中所述铵伊利石矿石中铵伊利石的含量为
50 wt%-100 wt%,以铵伊利石矿石的重量为基准。

说明书全文

高反射率陶瓷颗粒及其制备方法

技术领域

[0001] 本发明涉及高反射率的陶瓷颗粒及其制备方法。更具体地,本发明涉及包含砂芯颗粒和至少一层涂层的陶瓷颗粒,其中所述砂芯颗粒包含煅烧铵伊利石,以及制备这样的陶瓷颗粒的方法。

背景技术

[0002] 本说明中引用的专利文献,是为了描述与本发明有关的技术平,其所有公开内容均以引用方式并入本文。
[0003] 2009年美国能源部长朱棣文提出,为解决全球变暖问题,各国应尽可能将建筑物屋顶漆成白色以提高对太阳光的反射率,降低温室效应,达到节能降耗的目的。
[0004] 美国加州颁布建筑法规要求低坡度屋面也要达到70%反射率。在沥青屋面材料表面粘覆高反射率的砂子,是一种非常有效的遮热技术。相较于塑料、金属、有机涂料等反光材料,高反射砂子具有成本低、耐老化的特性,但就市场上大部分白色颗粒,如石英、方解石、煅烧高岭土、合成陶瓷颗粒而言,测定其堆积的颗粒通常具有高的反射率,但是平铺到黑色材料上后,因透光性高,反射率很低,且常常伴有明显的吸油现象,导致砂子变色,使反射率进一步降低。为达到70%的反射率要求,可在颗粒屋面产品上涂反射涂料。不过聚合有机涂料使用年限短,几年后需再次涂刷,这样反复涂覆的成本很高。
[0005] US 8,865,303 B2公开了一种冷屋面系统,其包含反射率为80-92%的高反射煅烧高岭土颗粒,经涂覆聚合有机涂层后应用到屋顶基材上,形成反射率不低于70%的屋面系统。
[0006] JP特开平08-091892提出,使高岭土原料中的高岭土结晶相向莫来相结晶转化扩大时,同时发生阻碍高岭土结晶的板状化和降低白度的问题。为解决此问题,经过调节粉碎粒度、造粒或成形的手段,调整煅烧温度(1500-1700℃)等,使部分残留高岭土结晶呈板状形态,这样不仅能够提升粒子界面的反射率和白度,同时使之增加不透明性,提高整体的反射率。但此方法需要粉碎、造粒、成形的合成工艺,并且煅烧条件要求为1200-1700℃的高温煅烧,此制作工艺流程多、非常复杂,即便实现工业生产,也会有成本过高等问题。
[0007] 因此一直需要反射率高、透明度低、吸油性低的颗粒。

发明内容

[0008] 本发明提供了陶瓷颗粒,其包含砂芯颗粒和涂覆在其上的至少一层涂层,其中所述砂芯颗粒为煅烧后的铵伊利石,所述至少一层涂层为无机涂料涂层,所述陶瓷颗粒的反射率为80%至93%。
[0009] 根据本发明的陶瓷颗粒,其中所述煅烧后的铵伊利石是在700-1200℃的温度下煅烧铵伊利石矿石得到的。
[0010] 根据本发明的陶瓷颗粒,其中所述铵伊利石矿石中铵伊利石的含量为50 wt%-100 wt%,以铵伊利石矿石的重量为基准。
[0011] 根据本发明的陶瓷颗粒,其中,经X射线衍射检测,所述煅烧后的铵伊利石包含晶相和/或莫来石晶相,及非晶相,并且保留了铵伊利石的层状结构。
[0012] 根据本发明的陶瓷颗粒,其中由硅酸铝20.07° X射线衍射峰和莫来石16.44° X射线衍射峰计算得出的晶粒尺寸<35 nm。
[0013] 根据本发明的陶瓷颗粒,其中涂覆了无机涂料涂层的砂芯颗粒是在800-1200℃的温度下煅烧得到的。
[0014] 根据本发明的陶瓷颗粒,其中所述无机涂料为选自硅酸盐、磷酸铝、硅溶胶和铝溶胶中的至少一种的液体无机涂料,其中所述硅酸盐选自硅酸钠、硅酸、硅酸铝、硅酸锂或其混合物。
[0015] 根据本发明的陶瓷颗粒,其中所述无机涂料还包含选自下列的一种或多种:颜料、抑藻剂、杀虫剂、自洁剂、粘度调节剂、助熔剂、阻燃剂、表面张改性剂、抗老化剂。
[0016] 根据本发明的陶瓷颗粒,其还包含采用有机涂料和/或防水剂进行二次涂覆得到的附加涂层,其中所述有机涂料为树脂涂料或乳液涂料,所述防水剂为含硅防水剂或含氟防水剂。
[0017] 根据本发明的陶瓷颗粒,其具有0.1%-6%的污染指数DL*。
[0018] 根据本发明的陶瓷颗粒,其中所述陶瓷颗粒以90%以上的覆盖率应用到沥青卷材/板材上,具有70%-85%的太阳光反射率。
[0019] 根据本发明的陶瓷颗粒,其中所述陶瓷颗粒应用到聚泡沫板表层,具有72%-90%的太阳光反射率。
[0020] 本发明还提供了制备陶瓷颗粒的方法,其包括下列步骤:
[0021] a) 煅烧、粉碎铵伊利石矿石,得到砂芯颗粒;
[0022] b) 用无机涂料涂覆所述砂芯颗粒;
[0023] c) 煅烧涂覆了无机涂料的砂芯颗粒,得到陶瓷颗粒。
[0024] 根据本发明的制备陶瓷颗粒的方法,其中步骤a)在700-1200℃的温度下进行,步骤c)在800-1200℃的温度下进行。
[0025] 根据本发明的制备陶瓷颗粒的方法,其中所述陶瓷颗粒的太阳光反射率为80%-93%。
[0026] 根据本发明的制备陶瓷颗粒的方法,其中所述陶瓷颗粒的污染指数DL*为0.1%-6%。
[0027] 本发明也提供了煅烧的铵伊利石颗粒,其是在700-1200℃的温度下煅烧铵伊利石矿石得到的,并且具有80%至93%的反射率。
[0028] 根据本发明的煅烧的铵伊利石颗粒,其包含硅酸铝晶相和/或莫来石晶相,及非晶相,并且保留了铵伊利石的层状结构。
[0029] 根据本发明的煅烧的铵伊利石颗粒,其中由硅酸铝20.07°X射线衍射峰和莫来石16.44°X射线衍射峰计算得出的晶粒尺寸<35 nm。
[0030] 根据本发明的煅烧的铵伊利石颗粒,其中所述铵伊利石矿石中铵伊利石的含量为50 wt%-100 wt%,以铵伊利石矿石的重量为基准。
附图说明
[0031] 图1是经950℃煅烧后的铵伊利石表面SEM图。
[0032] 图2是铵伊利石矿石的XRD图。
[0033] 图3是经950℃煅烧后的铵伊利石XRD图。
[0034] 图4是陶瓷颗粒的SEM图。

具体实施方式

[0035] 本文中使用以下定义来进一步定义和描述本公开内容。除非在特定情况下另有限定,否则这些定义适用于本说明书中通篇所用的术语。
[0036] 除非另有定义,本文所用的所有技术和科学术语的含义均与本发明所属领域的普通技术人员通常理解的一样。如发生矛盾,则以本说明书,包括本文给出的定义为准。
[0037] 除非另有明确说明,否则在限定的环境下,本文所用的所有百分比、份数、比率等量均由重量限定。
[0038] 当材料、方法或机械装置在本文中用术语“本领域技术人员已知的”、“常规的”或同义词或短语来描述时,所述术语表达了该说明书涵盖了在提交本发明专利申请时为常规的材料、方法和机械装置。还涵盖目前不是常规的但是将在本领域中被认为适于相似目的的材料、方法和机械装置。
[0039] 本发明的陶瓷颗粒包含砂芯颗粒和至少一层涂层,其中所述砂芯颗粒包含煅烧铵伊利石,所述至少一层涂层为无机涂料涂层。得到的陶瓷颗粒本身具有很高的太阳光反射率,低透明性和低吸油性,在户外具有极高的耐久性,并且成本低。特别适合做屋面沥青瓦或卷材使用。
[0040] 砂芯颗粒
[0041] 在本发明中,砂芯颗粒为铵伊利石矿石经过700-1200℃、750-1150℃、800-1100℃、850-1050℃或900-1000℃煅烧,然后粉碎得到的;也可先将铵伊利石矿石粉碎至合适粒度,然后在700-1200℃、750-1150℃、800-1100℃、850-1050℃或900-1000℃煅烧。煅烧后的铵伊利石矿石(煅烧铵伊利石)保留矿石的层状结构(参见例如图1),包含硅酸铝(Aluminum Silicate)晶相和/或莫来石(Mullite)晶相,以及非晶相。
[0042] 铵伊利石矿石是一种含有NH4+的硅酸盐母类粘土矿物,其主要矿物成分是铵伊利石【(NH4)Al2(Si3Al)O10(OH)2】(参见例如图2)。铵伊利石由Higashi于1982年在日本爱媛(Ehime)县砥部町(Tobe)小涌谷(Ohgidani)的瓷石沉积物中首次发现,并被批准作为新矿物,这一新矿物以产地命名为Tobelite (参见Higashi S. Tobelite, a new ammonium dicotahedral minca. Mineralogical Journal, 1982, 3:138-146.),又称为铵伊利石(Ammonium Illite)(参见:郑启明,刘钦甫,申琦等. 山西晋城和阳泉地区石炭系太原组铵伊利石矿物特征及成因. 古地理学报, 2011, 13(5): 501-508.)。
[0043] 在本发明中,采用X射线衍射(XRD)检测砂芯颗粒,参见例如图3。由XRD图中硅酸铝20.07°衍射峰和莫来石16.44°衍射峰计算(Scherrer公式)的晶粒大小<35 nm,优选<25 nm。
[0044] 以炭、天然气、重油等为燃料的梭式窑、隧道窑回转窑、垂直竖窑、辊道窑或倒焰窑均可用于煅烧本发明的砂芯颗粒。原矿煅烧后可使用一般的颚式破碎机、辊式破碎机或锤式破碎机进行破碎,然后通过筛分装置调整其粒度分布。
[0045] 为了使砂芯颗粒适用于屋面材料,将其粉碎成粒径为0.1-3.5 mm,优选0.3-2.3 mm的颗粒。
[0046] 本发明使用的铵伊利石矿石包含50 wt%-100 wt%,优选60 wt%-100 wt%,更优选70 wt%-100%,更加优选80 wt%-100 wt%,最优选90 wt%-100 wt%的铵伊利石。
[0047] 本发明所用的矿石在中国、日本和欧洲等地有被开发用于陶瓷、窑业领域的实例,但将其用于高反射材料的实例尚未见诸报道。本发明人惊讶地发现,该矿石的特殊结构使其特别适用于高反射材料。
[0048] 与现有技术中莫来石系颗粒的煅烧相比,本发明的煅烧方法更经济。可选1100℃以下,最好低于1000℃的煅烧温度,使得成本显著降低。煅烧后颗粒中有色元素(如等)含量低,晶粒尺寸小,保留矿石的层状结构,得到高白度、多界面的体系,颗粒具有高反射率、低透光性的特征。颗粒的太阳光反射率最高可达93%。
[0049] 但是,这样的砂芯颗粒直接用于沥青基底的板材和卷材时,会吸油,导致颗粒变色,降低颗粒的反射率。为了适合作为沥青基屋面材料如沥青瓦或屋面卷材,还需要对颗粒进行表面处理
[0050] 砂芯的表面处理
[0051] 在本发明中,通过用无机涂料(特别是硅酸盐)涂覆所述砂芯颗粒,然后煅烧涂覆了无机涂料的砂芯颗粒,得到具有高反射率和低吸油性的特别适用于沥青基屋面材料的陶瓷颗粒。所得陶瓷颗粒的太阳光反射率为80%-93%,污染指数DL*为0.1%-6%。
[0052] 在现有技术中,无机涂料涂覆工艺一直着眼于低温烘干或在硅酸盐软化温度之下进行,例如参见USP 1,898,345、USP 3,255,031、USP 8,790,778等,这些专利文献的公开内容均以引用方式并入本文。而本发明颠覆了这种模式,创造性地对涂覆无机涂料的砂芯颗粒进行高温瓷化,不仅大幅降低了砂芯颗粒的吸油性,提高了砂芯颗粒的抗污性能,而且还进一步提高了涂覆的砂芯颗粒的反射率,同时一次性解决了金属离子的析出问题,提高了颗粒的耐候性。
[0053] 在本发明中,所述无机涂料为选自硅酸盐化合物、磷酸铝、硅溶胶和铝溶胶中的至少一种。
[0054] 在本发明中,所述砂芯颗粒涂覆有1-20 wt%的无机涂料,所述重量百分比为涂料重量/砂芯重量。
[0055] 在本发明中,涂覆了无机涂料的砂芯颗粒在800-1200℃、850-1150℃、900-1100℃或950-1050℃煅烧,使涂层达到瓷化温度,形成不溶涂层。优选地,用硅酸盐涂覆砂芯颗粒表层,然后在800-1200℃、850-1150℃、900-1100℃或950-1050℃的高温下瓷化涂层,形成稳定的低吸油、防水、耐久性表面。可以通过检测表面可溶碱性离子的碱值确定涂层的稳定性。检测方式采用美国沥青屋面生产协会颗粒测试手册(Test method per Asphalt Roofing Manufacturer Association Granule Test Mannual)。碱值小于3,优选小于1,更优选小于0.5。
[0056] 在本发明实施方案中,表面处理后的陶瓷颗粒的太阳光反射率达80%、83%、86%、88%或90%以上,最高达93%。
[0057] 在本发明实施方案中,表面处理后的陶瓷颗粒具有低吸油性,不用其它材料进行二次处理的情况下,用在含沥青板/卷材屋面上的污染指数DL*小于6%、5%、4%或3%,最优选低至0.1%。不受任何理论的限制,根据本发明方法制备的陶瓷颗粒,在保持高反射率的前提下,比现有技术的颗粒具有显著更低的吸油性,是因为涂覆了无机涂料(特别是硅酸盐)的砂芯颗粒,经过本发明的特定煅烧温度,在颗粒表面形成一层致密的涂层(例如如图4所示),降低了颗粒的表面能。
[0058] 用于本发明的无机涂料优选为硅酸盐化合物,包括易流动的液体金属硅酸盐,如硅酸钠、硅酸锂、硅酸钾、硅酸铝或其混合物。无机涂料也可为其它液体无机涂料,如磷酸铝、硅溶胶等。可以通过典型的涂覆方法,如浸渍涂覆、包衣涂覆、喷涂、帘式淋涂、滚涂或旋转涂,进行涂覆。另外,USP 7,241,500、USP 3,479,201、USP 3,255,031、USP 3,208,571中显示和描述了典型的涂料、表面处理剂及涂覆及表面处理的方法,这些专利文献的公开内容均以引用方式并入本文。
[0059] 需要时,可以添加选自下列的一种或多种的涂料改性剂:颜料、抑藻剂、杀虫剂、自洁剂、粘度调节剂、助熔剂、阻燃剂、表面张力改性剂、抗老化剂。
[0060] 在本发明的实施方式中,可以在硅酸盐涂料中加入高反射细粉颜料以进一步提高颗粒的反射率。高反射细粉颜料包括二和/或氧化锌等。在其它实施方式中,上述涂料还具有除藻效果,可以减少屋顶上寄生苔藓导致颗粒变色。在涂料制备过程中,可以添加无机或有机杀虫剂,或者作为后处理,使颗粒具有灭虫性。也可以添加纳米二氧化钛,使颗粒具有较强的自洁性能。
[0061] 在本发明中,可以在陶瓷颗粒表面加入0-15 wt%特殊性能涂料进行二次表面处理。特殊性能涂料包括树脂类涂料、乳液类涂料,含氟类防水剂、含硅类防水剂,以提高颗粒的抗污性和憎水性能。
[0062] 砂芯颗粒涂层的高温瓷化可采用隧道窑、推板窑、回转窑、辊道窑、梭式窑、竖窑等进行。
[0063] 本发明的陶瓷颗粒具有≥80%的高太阳光反射率、低吸油性及户外的高耐侯性能。颗粒粒度为0.1-3.5 mm,优选0.3-2.3 mm。这样的颗粒适用于屋面材料,可以直接用于以沥青为基材的屋面卷材或沥青瓦工艺。而颗粒的具体应用工艺对本领域技术人员来说都已熟知,例如,可以通过自重供料使颗粒落到滚动的熔融沥青基材上,随后通过挤压将颗粒固定到基材上形成屋顶材料,然后加工成卷材或者沥青瓦。
[0064] 本发明的陶瓷颗粒可用于以水泥、沥青、聚氨酯泡沫层板为基材的屋面材料的表层,大幅增强屋面对太阳光反射率。其应用到沥青卷材/板材上时,具有不低于70%的太阳光反射率,最高可达85%的太阳光反射率;应用到聚氨酯泡沫层板表层上,具有不低于72%的太阳光反射率,最高可达90%的太阳光反射率。
[0065] 本发明的陶瓷颗粒还可用于砂壁状建筑涂料,生成高反射率涂层,同时涂层具有白色颗粒效果。
[0066] 提供以下实施例以便更详细地描述本发明。这些实施例示出了目前设想的用于实施本发明的具体实施方式和优选模式,其旨在举例说明,并不旨在限制本发明。实施例
[0067] 实验中使用的主要材料及其规格和来源如下表1所示。
[0068] 表1 实验中使用的主要材料
[0069]名称 规格 产地/厂家
砂芯颗粒 铵伊利石矿石 中国山西省太原产矿石(太原产矿)
水玻璃 模数1.0-3.5 中国栢科(天津)硅化物技术有限公司
硅溶胶 高纯 中国河北省石家庄双联化工
氧化锌 优质级 中国河北省高邑县永昌锌业有限责任公司
纯丙乳液 BASF 7051 中国北京欣安信达科贸有限公司
防水剂 氟碳防水剂2500 中国厦中思诺化工有限公司
二氧化钛 金红石型 中国河北省廊坊奇彩颜料有限公司
[0070] 本发明所报告的主要性能指标采用如下方法测试。
[0071] 太阳光反射率(SR)的测定
[0072] 用反射仪(型号SRI 1000,美国AZ Technology. Inc.生产)检测样品的反射率。将反射仪调至ABS模式进行测定,读取α值,并取其平均值。太阳光反射率SR=100-α。其中,对于颗粒本身,将50 g颗粒样品放入平口的样品盘中,用直尺把表面压实刮平,在表面随机选取10个点测定;对于沥青板上的颗粒,将足量颗粒均匀地撒在低熔点粘性沥青板上,压平,去除表面未粘附的颗粒,在沥青板表面随机选取10个点测定。
[0073] 污染指数(DL*)的测定
[0074] 将颗粒均匀地撒在沥青板上,压平,去除表面未粘附的颗粒。把粘有颗粒的沥青板放入70℃的烘箱,保持72 h。用CIE色度仪检测放入前后L*的差值,记为DL*,称为污染指数。本发明中采用该污染指数DL*表征颗粒的吸油性能。DL*越小,表示吸油性越低。
[0075] 防水性的测定
[0076] 称取50 g样品,使其自由坠落到平台上,呈圆锥状,用试管底部在圆椎顶压一凹坑,在凹坑中滴入3滴水,水珠消失的时间,记为防水时间,以此表征颗粒的防水性。
[0077] 碱值的测定
[0078] 碱值根据《美国沥青屋面生产协会颗粒测试指南测试方法》测定。
[0079] X射线衍射图谱
[0080] 采用日本理学公司D/MAX2500型号的X射线衍射仪进行测试。
[0081] 实施例1:
[0082] 把6份相同的状铵伊利石矿石放入梭式窑中,分别加热至600℃、700℃、850℃、1050℃、1200℃、1300℃,保温24 h。冷却后使用颚式破碎机和锤式破碎机的组合,把煅烧的铵伊利石矿石粉碎至0.30-2.30 mm,粒度使用圆振筛调整。称取500 g 0.30-2.30 mm的砂粒,放入1 L的盒子中,加入75 g模数为3,固含量为30 wt%的水玻璃溶液,摇晃混合5 min。
取出混合后的物料,干燥,放入刚玉坩锅。把坩锅放入弗炉中,升温至900℃,煅烧1 h。冷却后取适量陶瓷颗粒,分别检测陶瓷颗粒自身及其在沥青板上的SR。测定的性能指标见下表2。
[0083] 表2:铵伊利石矿石的煅烧温度对陶瓷颗粒性能的影响
[0084]样品编号 矿石煅烧温度 颗粒自身的SR DL* 碱值 颗粒在沥青板材上的SR
1 600℃ 68% 5.0% 0.20 57%
2 700℃ 80% 4.0% 0.20 70%
3 850℃ 85% 3.5% 0.20 76%
4 1050℃ 90% 3.0% 0.20 84%
5 1200℃ 92% 3.0% 0.20 83%
6 1300℃ 93% 2.0% 0.20 68%
[0085] 由上表2可见,铵伊利石矿石的煅烧温度太高或太低时,不利于得到本发明陶瓷颗粒所具有的有益性能,特别是用于沥青板时。
[0086] 实施例2:
[0087] 将10 cm-30 cm的块状铵伊利石矿石放入梭式窑,加热至950℃,保温24 h。冷却后使用颚式破碎机和锤式破碎机的组合,把煅烧的铵伊利石粉碎至0.18-0.50 mm,粒度使用圆振筛调整。称取500 g 0.18-0.50 mm的砂粒,放入1 L的盒子中,加入75 g模数为3,固含量为30 wt%的水玻璃溶液,摇晃混合5 min。取出混合后的物料,干燥,分成四份,放入不同刚玉坩锅。用马弗炉分成四个批次煅烧,温度分别为400℃、800℃、1200℃、1300℃,煅烧时间均为1 h。冷却后取适量陶瓷颗粒,分别检测陶瓷颗粒自身及其在沥青板上的SR。测定的性能指标见下表3。
[0088] 表3:涂层的煅烧温度对陶瓷颗粒性能的影响
[0089]样品编号 涂层煅烧温度 颗粒自身的SR DL* 碱值 颗粒在沥青板材上的SR
7 400℃ 75% 10% 20.00 60%
8 800℃ 82% 3% 0.20 73%
9 1200℃ 92% 2% 0.05 80%
10 1300℃ 93% 2% 0.05 67%
[0090] 由上表3可见,涂层的煅烧温度太高或太低时,不利于得到本发明陶瓷颗粒所具有的有益性能,特别是用于沥青板时。
[0091] 实施例3:
[0092] 将10 cm-30 cm块状铵伊利石矿石放入梭式窑,加热至900℃,保温24 h。冷却后使用颚式破碎机和锤式破碎机的组合,把煅烧的铵伊利石粉碎至0.30-2.30 mm,粒度使用圆振筛调整。称取500 g 0.30-2.30 mm的砂粒,放入1 L的盒子中,加入80 g模数为3,固含量为33 wt%的水玻璃溶液,水玻璃溶液中含有5 wt%ZnO和5 wt%TiO2,摇晃混合5 min。取出混合后的物料,干燥,放入刚玉坩锅,把坩锅放入电炉中,升温至1000℃,煅烧1 h。冷却后把物料放入500 ml的盒子中,加入4 wt%德国思诺2500氟碳防水剂,摇晃混合5 min,取出晾干。得到白色不透明的高反射率抗菌防水的陶瓷颗粒,其性能指标见表4。
[0093] 表4:高反射率抗菌防水陶瓷颗粒的性能指标
[0094]性能 颗粒自身的SR DL* 碱值 颗粒在沥青板材上的SR 防水时间
数值 92% 1% 0.10 83% 24 h
QQ群二维码
意见反馈