包括有机气凝胶的真空绝缘板

申请号 CN201480077932.4 申请日 2014-02-12 公开(公告)号 CN106163808B 公开(公告)日 2019-07-05
申请人 哈钦森公司; 发明人 N.普帕帕西格尼奥; B.斯沃博达; C.休伊利特; C.多米尼亚克;
摘要 本 发明 涉及 真空 绝缘板(1),其包括:‑其中压 力 低于 大气压 的气密封闭的 覆盖 物(3),‑放置在所述覆盖物(3)内部的由有机气凝胶制成的芯材料(5),所述有机气凝胶基于至少部分地由多羟基苯R和甲 醛 F得到的 树脂 ;其中所述有机气凝胶为包括至少一种 水 溶性阳离子型聚 电解 质的 聚合物 单 块 有机凝胶,或者所述有机气凝胶为包括所述至少一种 水溶性 阳离子型聚 电解质 P的 热解 产物的多孔 碳 单块形式的所述凝胶的热解物;所述有机气凝胶在大气压下具有10‑40mW.m‑1.K‑1的比导热率。
权利要求

1.真空绝缘板(1),其包括:
- 其中压低于大气压的气密封闭的覆盖物(3),
- 放置在所述覆盖物(3)内部的由有机气凝胶制成的芯材料(5),
特征在于所述有机气凝胶基于至少部分地由多羟基苯R和甲F得到的树脂
所述有机气凝胶为包括至少一种溶性阳离子型聚电解质P的聚合物有机凝胶,或者所述有机气凝胶为包括所述至少一种水溶性阳离子型聚电解质P的热解产物的多孔单块形式的所述凝胶的热解物;
-1 -1
所述有机气凝胶在大气压下呈现出10-40mW.m .K 的比导热率。
2.如权利要求1中所述的真空绝缘板(1),特征在于所述至少一种水溶性阳离子型聚电解质P为选自如下的有机聚合物:季铵盐、聚(氯化乙烯基吡啶 )、聚乙烯亚胺、聚乙烯基吡啶、聚(烯丙基胺盐酸盐)、聚(氯化甲基丙烯酸三甲基基乙基酯)、聚(丙烯酰胺-共-氯化二甲基铵)以及它们的混合物。
3.如权利要求2中所述的真空绝缘板(1),特征在于所述至少一种水溶性阳离子型聚电解质P为包括由选自聚(卤化二烯丙基二甲基铵)的季铵得到的单元的盐。
4.如权利要求1-3之一中所述的真空绝缘板(1),特征在于所述有机气凝胶包括多羟基苯R和甲醛F在水性溶剂W中在催化剂和溶解在所述水性溶剂中的所述至少一种水溶性阳离子型聚电解质P的存在下的聚合反应的产物。
5.如权利要求4中所述的真空绝缘板(1),特征在于所述聚合反应的产物按照0.2%-2%的质量分数包括所述至少一种水溶性阳离子型聚电解质P。
6.如权利要求4中所述的真空绝缘板(1),特征在于所述聚合反应的产物按照2%-10%的相对于所述多羟基苯R和甲醛F的P/(R+F)重量比包括所述至少一种水溶性阳离子型聚电解质P。
7.如权利要求4中所述的真空绝缘板(1),特征在于所述聚合反应的产物按照0.3%-2%的相对于所述多羟基苯R、甲醛F和水性溶剂W的P/(R+F+W)重量比包括所述至少一种水溶性阳离子型聚电解质P。
8.如权利要求1-3之一中所述的真空绝缘板(1),特征在于所述有机气凝胶呈现:
- 400 m²/g-1200 m²/g的比表面,和/或
- 0.1 cm3/g-3 cm3/g的孔体积,和/或
- 3 nm-30 nm的平均孔径,和/或
- 0.01-0.4的密度
9.如权利要求1-3之一中所述的真空绝缘板(1),特征在于所述覆盖物(3)内的压力为
0.1-500毫巴。
10.如权利要求1-3之一中所述的真空绝缘板(1),特征在于所述覆盖物(3)是由具有
20-500 μm的厚度的膜制造的。
11.如权利要求1-3之一中所述的真空绝缘板(1),特征在于所述覆盖物(3)包括至少一个由制成的层。
12.如权利要求1-3之一中所述的真空绝缘板(1),特征在于所述覆盖物(3)包括至少一个由聚合物制成的层。
13.如权利要求12中所述的真空绝缘板(1),特征在于所述至少一个由聚合物制成的层是由以下聚合物之一制造的:高密度或低密度聚乙烯、有机树脂、聚氨酯、乙烯/乙烯醇共聚物、聚对苯二甲酸乙二醇酯或者聚酰胺。
14.如权利要求1-3之一中所述的真空绝缘板(1),特征在于所述覆盖物(3)由多层膜制成,所述多层膜在其内表面上包括至少一个由聚合物材料制成的层。
15.如权利要求13中所述的真空绝缘板(1),特征在于形成所述覆盖物(3)的多层膜包括以下层:
- 聚乙烯/聚丙烯酸类/铝/聚对苯二甲酸乙二醇酯,或者
- 聚乙烯/铝/聚对苯二甲酸乙二醇酯,或者还有
- 聚乙烯/铝/聚乙烯/铝/聚乙烯。
16.如权利要求3中所述的真空绝缘板(1),特征在于所述至少一种水溶性阳离子型聚电解质P为聚(氯化二烯丙基二甲基铵)或聚(溴化二烯丙基二甲基铵)。
17.用于制造如权利要求1中所述的真空绝缘板(1)的工艺,特征在于其包括以下阶段:
- 根据以下阶段制备作为芯材料(5)的有机气凝胶:
a)将多羟基苯R和甲醛F在水性溶剂W中在催化剂和溶解在所述水性溶剂W中的至少一种水溶性阳离子型聚电解质P的存在下聚合,
b)使a)中获得的溶液凝胶化,
c)将b)中获得的凝胶干燥以获得聚合物单块有机凝胶,
- 将所述有机气凝胶放置在覆盖物(3)中,
- 使所述覆盖物(3)内的压力降低并且将所述覆盖物(3)气密封闭。
18.如权利要求17中所述的制造工艺,特征在于所述有机气凝胶的制备阶段包括将c)中获得的经干燥的凝胶热解以获得多孔碳的另外的阶段。
19.如权利要求17和18任一项中所述的制造工艺,特征在于阶段a)是通过如下使用所述至少一种水溶性阳离子型聚电解质P而进行的:
- 按照0.2%-2%的在组合物中的质量分数,和/或
- 按照2%-10%的相对于所述多羟基苯R和甲醛F的P/(R+F)重量比,和/或
- 按照0.3%-2%的相对于所述多羟基苯R、甲醛F和水性溶剂W的P/(R+F+W)重量比。
20.如权利要求17-18之一中所述的制造工艺,特征在于:
- 阶段a)是在环境温度下通过如下而进行的:将所述多羟基苯R和所述至少一种水溶性阳离子型聚电解质P溶解在所述水性溶剂W中,然后向所获得的溶液添加所述甲醛F和所述酸性或性催化剂,和
- 阶段b)是通过将所述溶液在烘箱中固化而进行的。
21.如权利要求17-18之一中所述的制造工艺,特征在于阶段c)是通过如下而进行的:
用空气干燥以获得呈现如下性质的所述聚合物单块有机凝胶:
- 400 m²/g-1200 m²/g的比表面,和/或
- 0.1 cm3/g-3 cm3/g的孔体积,和/或
- 3 nm-30 nm的平均孔径,和/或
- 0.01-0.4的密度。
22.如权利要求17-18之一中所述的制造工艺,特征在于所述覆盖物(3)的封闭是通过热封进行的。
23.如权利要求20中所述的制造工艺,特征在于所述水性溶剂W由水构成。
24.如权利要求21中所述的制造工艺,特征在于所述用空气干燥为用空气在炉子中干燥。

说明书全文

包括有机气凝胶的真空绝缘板

[0001] 本发明涉及热绝缘(保温,heat insulation)的领域并且更具体地,涉及包括由有机气凝胶制成的芯材料的低热导率真空绝缘板(保温板,insulation board)。
[0002] 在热绝缘领域中,已知将真空绝缘板用于例如建筑领域中以使房屋绝缘。通常,这些真空绝缘板包括其中产生真空并且其中插入有芯材料的气密封闭的覆盖物(包封物,covering)。
[0003] 真空绝缘板内使用的芯材料为低热导率绝缘材料例如玻璃、或者微孔绝缘材料例如凝胶。真空绝缘板内的真空通过使芯材料的微孔内的空气变稀薄而使真空绝缘板的热导率成比例地进一步降低成为可能。
[0004] 不过,为了实现1-20mW.m-1.K-1的热导率值,必须在覆盖物内实现极低的压。在所述覆盖物内的这样的低压力平导致在覆盖物上高的应力并且后者可由于微泄露而具有再次升高的内部压力并且因此具有升高的热导率。该解决方案因此不是随着时间流逝而永久性的。
[0005] 针对该技术问题的已知解决方案是使用气凝胶型纳孔绝缘材料(整,monolithic)作为芯材料,如国际申请WO2007001354A2中所示的。如该国际申请中所呈现的绝缘板对于覆盖物内约0.4-10毫巴的压力可具有5-10mW.m-1.K-1的热导率值。
[0006] 然而,现有技术中使用的气凝胶为具有高的生产成本并且难以制造的气凝胶,因为它们需要漫长且昂贵的用超临界CO2干燥的阶段。
[0007] 因此,本发明的目的之一是至少部分地克服现有技术的缺点并且提供包括由气凝胶制成的芯材料、具有低的成本价格、其热导率1-20mW.m-1.K-1的真空绝缘板。
[0008] 因此本发明涉及真空绝缘板,其包括:
[0009] -其中压力低于大气压的气密封闭的覆盖物,
[0010] -放置在所述覆盖物内部的由有机气凝胶制成的芯材料,
[0011] 所述有机气凝胶基于至少部分地由多羟基苯R和甲F得到的树脂
[0012] 所述有机气凝胶为包括至少一种水溶性阳离子型聚电解质的聚合物单块有机凝胶,
[0013] 或者所述有机气凝胶为包括所述至少一种水溶性阳离子型聚电解质P的热解产物的多孔单块形式的所述凝胶的热解物;
[0014] 所述有机气凝胶在大气压下呈现出10-40mW.m-1.K-1的比导热率。
[0015] 根据本发明的一方面,所述至少一种水溶性阳离子型聚电解质P为选自如下的有机聚合物:季铵盐、聚(氯化乙烯基吡啶 )、聚乙烯亚胺、聚乙烯基吡啶、聚(烯丙基胺盐酸盐)、聚(氯化甲基丙烯酸三甲基基乙基酯)、聚(丙烯酰胺-共-氯化二甲基铵)以及它们的混合物。
[0016] 根据本发明的另一方面,所述至少一种水溶性阳离子型聚电解质P为包括由选自聚(卤化二烯丙基二甲基铵)的季铵得到的单元的盐并且优选为聚(氯化二烯丙基二甲基铵)或聚(溴化二烯丙基二甲基铵)。
[0017] 根据本发明的另一方面,所述有机气凝胶包括多羟基苯R和甲醛F在水性溶剂W中在催化剂和溶解在所述水性溶剂中的所述至少一种水溶性阳离子型聚电解质P的存在下的聚合反应的产物。
[0018] 根据本发明的另一方面,所述聚合反应的产物按照0.2%-2%的质量分数包括所述至少一种水溶性阳离子型聚电解质P。
[0019] 根据本发明的另一方面,所述聚合反应的产物按照2%-10%的相对于所述多羟基苯R和甲醛F的P/(R+F)重量比包括所述至少一种水溶性阳离子型聚电解质P。
[0020] 根据本发明的另一方面,所述聚合反应的产物按照0.3%-2%的相对于所述多羟基苯R、甲醛F和水性溶剂W的P/(R+F+W)重量比包括所述至少一种水溶性阳离子型聚电解质P。
[0021] 根据本发明的另一方面,所述有机气凝胶呈现:
[0022] -400m2/g-1200m2/g的比表面,和/或
[0023] -0.1cm3/g-3cm3/g的孔体积,和/或
[0024] -3nm-30nm的平均孔径,和/或
[0025] -0.01-0.4的密度
[0026] 根据本发明的另一方面,所述覆盖物内的压力为0.1-500毫巴。
[0027] 根据本发明的另一方面,所述覆盖物由具有20-500μm的厚度的膜制造。
[0028] 根据本发明的另一方面,所述覆盖物包括至少一个由制成的层。
[0029] 根据本发明的另一方面,所述覆盖物包括至少一个由聚合物制成的层。
[0030] 根据本发明的另一方面,所述至少一个由聚合物制成的层是由以下聚合物之一制造的:高密度或低密度聚乙烯、有机硅树脂、聚氨酯、乙烯/乙烯醇共聚物、聚对苯二甲酸乙二醇酯或聚酰胺。
[0031] 根据本发明的另一方面,所述覆盖物由多层膜制成,所述多层膜在其内表面上包括至少一个由聚合物材料制成的层。
[0032] 根据本发明的另一方面,形成所述覆盖物的多层膜包括以下层:
[0033] -聚乙烯/聚丙烯酸类/铝/聚对苯二甲酸乙二醇酯,或者
[0034] -聚乙烯/铝/聚对苯二甲酸乙二醇酯,或者还有
[0035] -聚乙烯/铝/聚乙烯/铝/聚乙烯。
[0036] 本发明还涉及用于制造真空绝缘板的工艺,其包括以下阶段:
[0037] -根据以下阶段制备作为芯材料的有机气凝胶:
[0038] a)多羟基苯R和甲醛F在水性溶剂W中在催化剂和溶解在所述水性溶剂W中的至少一种水溶性阳离子型聚电解质P的存在下聚合,
[0039] b)使a)中获得的溶液凝胶化,
[0040] c)将b)中获得的凝胶干燥以获得所述聚合物单块有机凝胶,
[0041] -将所述有机气凝胶放置在覆盖物中,
[0042] -降低所述覆盖物内的压力并且将所述覆盖物气密密封。
[0043] 根据按照本发明的制备工艺的一个方面,所述有机气凝胶的制备阶段包括将c)中获得的经干燥的凝胶热解以获得多孔碳的另外的阶段。
[0044] 根据按照本发明的制备工艺的另一方面,阶段a)是通过如下使用所述至少一种水溶性阳离子型聚电解质P而进行的:
[0045] -按照0.2%-2%的在组合物中的质量分数,和/或
[0046] -按照2%-10%的相对于所述多羟基苯R和甲醛F的P/(R+F)重量比,和/或[0047] -按照0.3%-2%的相对于所述多羟基苯R、甲醛F和水性溶剂W的P/(R+F+W)重量比。
[0048] 根据按照本发明的制备工艺的另一方面:
[0049] -阶段a)是在环境温度下通过如下而进行的:将所述多羟基苯R和所述至少一种水溶性阳离子型聚电解质P溶解在优选地由水构成的所述水性溶剂W中,然后向所获得的溶液添加所述甲醛F和所述酸性或性催化剂,和
[0050] -阶段b)是通过将所述溶液在烘箱中固化而进行的。
[0051] 根据按照本发明的制备工艺的另一方面,阶段c)是通过如下而进行的:用空气、例如在炉子中干燥以获得呈现如下的所述聚合物单块有机凝胶
[0052] -400m2/g-1200m2/g的比表面,和/或
[0053] -0.1cm3/g-3cm3/g的孔体积,和/或
[0054] -3nm-30nm的平均孔径,和/或
[0055] -0.01-0.4的密度。
[0056] 根据按照本发明的制备工艺的一个方面,所述覆盖物的封闭是通过热封而进行的。
[0057] 在阅读作为说明性和非限制性实例给出的以下描述、以及附图时,本发明的其它特性和优点将变得更清楚明显,其中:
[0058] -图1显示真空绝缘板的透视示意图,
[0059] -图2显示真空绝缘板的剖视示意图,
[0060] -图3显示比较空气和气凝胶的热导率随压力变化而变化的图,和
[0061] -图4显示比较不同孔隙率的芯材料热导率随压力变化而变化的图。
[0062] 不同附图中的相同部件具有相同的附图标记。
[0063] 如图1(示出绝缘板1的透视图)中以及图2(示出图1的绝缘板1的剖视图)中所示,该板包括其中压力低于大气压的气密封闭的覆盖物3。由有机气凝胶材料制成的绝缘的芯材料5放置在所述覆盖物3内部。
[0064] 所述有机气凝胶可特别地为热超绝缘的多孔碳单块(即,具有小于或等于40mW.m-1.K-1的热导率)形式的所述凝胶的聚合物单块有机凝胶或者热解物。
[0065] 真空绝缘板1通常是以具有如下的尺寸和厚度的板的形式为条件的:所述尺寸和厚度可随着它意图用于的用途(例如在海上油田或者建筑工业中的热绝缘中的应用)而变化。对于2-30mm的厚度,该尺寸可例如为300×300mm。
[0066] 该有机气凝胶是通过申请人公司刚刚惊讶地发现的如下事实获得的:在水相中向多羟基苯和甲醛型的树脂前体添加由水溶性阳离子型聚电解质构成的特定家族的添加剂可获得这样的单块凝胶或者它的热解物:其同时呈现出高的比表面、非常低的密度和高的孔体积,同时能够在不通过溶剂交换和不通过超临界流体干燥的情况下管理(使用,处置,manage)。
[0067] 为此,所述有机气凝胶基于至少部分地由多羟基苯R和甲醛F得到的树脂,使得其包括至少一种水溶性阳离子型聚电解质P。
[0068] 应注意,引入该阳离子型聚电解质的该气凝胶可有利地通过如下而获得:使用炉子干燥,其与通过超临界CO2干燥相比,实施起来简单得多并且对凝胶生产成本损害较小。这是因为,申请人公司已经发现,该添加剂使得在该炉子干燥之后获得的凝胶得以保持高孔隙率以及赋予其以与高的比表面和高的孔体积组合的非常低的密度成为可能。
[0069] 术语"凝胶"理解为指的是,在已知方式中,自发地或者在催化剂的作用下通过胶体溶液的絮凝和凝结而形成的胶体材料和液体的混合物。
[0070] 术语"水溶性聚合物"理解为指的是可在不加入添加剂(特别是表面活性剂)的情况下溶解在水中的聚合物,其不同于水分散性聚合物,所述水分散性聚合物能够在其与水混合时形成分散体。
[0071] 所述有机气凝胶还可包括所述多羟基苯R和甲醛F在水性溶剂W中在酸性或碱性催化剂和溶解在该溶剂中的所述至少一种阳离子型聚电解质P的存在下的聚合反应的产物。
[0072] 有利地,所述聚合反应的产物可:
[0073] -按照0.2%-2%、和优选地0.3%-1%的大幅减少的质量分数包括所述至少一种阳离子型聚电解质P,和/或
[0074] -按照2%-10%和优选地3%-7%的相对于所述多羟基苯R和甲醛F的P/(R+F)重量比包括所述至少一种阳离子型聚电解质P,和/或
[0075] -按照0.3%-2%和优选地0.4%-1.5%的相对于所述多羟基苯R、甲醛F和水性溶剂W的P/(R+F+W)重量比包括所述至少一种阳离子型聚电解质P。
[0076] 所述至少一种聚电解质可为能完全溶解于水中并且具有低的离子强度的任何阳离子型聚电解质。
[0077] 优选地,其为选自如下的有机聚合物:季铵盐、聚(氯化乙烯基吡啶 )、聚乙烯亚胺、聚乙烯基吡啶、聚(烯丙基胺盐酸盐)、聚(氯化甲基丙烯酸三甲基氨基乙基酯)、聚(丙烯酰胺-共-氯化二甲基铵)以及它们的混合物。
[0078] 还更优选地,所述至少一种水溶性阳离子型聚电解质为包括由选自聚(卤化二烯丙基二甲基铵)的季铵得到的单元的盐并且优选为聚(氯化二烯丙基二甲基铵)或聚(溴化二烯丙基二甲基铵)。
[0079] 在可用于本发明中的所述树脂的前体聚合物中,可提及由至少一种多羟基苯型单体和至少一种甲醛单体的缩聚得到的聚合物。该聚合反应可涉及超过两种不同的单体,另外的单体是或者不是多羟基苯型的。可使用的多羟基苯优选为二-或者三羟基苯和有利地为间苯二酚(1,3-二羟基苯),或者间苯二酚与选自邻苯二酚、对苯二酚或间苯三酚的另外的化合物的混合物。
[0080] 多羟基苯R和甲醛F可例如按照0.2-1的R/F摩尔比使用。
[0081] 所述有机气凝胶可有利地呈现出400m2/g-1200m2/g的比表面、和/或0.1cm3/g-3cm3/g的孔体积、和/或3nm-30nm的平均孔径、和/或0.01-0.4的密度。
[0082] 有利地,所述有机气凝胶在大气压下可呈现出10mW.m-1.K-1-40mW.m-1.K-1和例如-1 -112-35mW.m .K 的热导率。
[0083] 对于其而言,所述覆盖物3由具有20-500μm、优选约100μm厚度的单层或多层膜制造。该低的厚度使得限制通过该覆盖物3的添加而引起的真空绝缘板1的热导率的增加成为可能。
[0084] 所述膜优选地包括至少一个由铝或例如选自高密度或低密度聚乙烯、有机硅树脂、聚氨酯、乙烯/乙烯醇共聚物、聚对苯二甲酸乙二醇酯或者聚酰胺的聚合物制成的层,这赋予其以低的对水的渗透性。水是良好的热导体;如果水分进入所述覆盖物3,则这会使其热导率增加并且会使其绝缘性能降低。所述至少一个由铝或聚合物制成的层还赋予所述覆盖物3以低的对空气的渗透性,这使真空绝缘板1的绝缘性能随着时间流逝的更好保持成为可能。这是因为,它们的渗透性使得保持在所述覆盖物3内的低压力且因此芯材料5低的热导率成为可能。
[0085] 该由铝或聚合物制成的层必须尽可能薄以防止所述覆盖物3的热导率的增加,因为铝具有237W.m-1.K-1的高的热导率。
[0086] 所述覆盖物3也可由这样的多层膜制造:所述多层膜在其内表面上包括至少一个由聚合物材料制成的层。该由聚合物材料制成的层使得通过热封而将所述覆盖物3气密密封成为可能。
[0087] 所述覆盖物3可特别地由这样的单层或多层膜制造:其自身折叠,其三个面围绕芯材料5固定(例如通过热封)以形成气密性的覆盖物3。
[0088] 形成所述覆盖物的多层膜3可例如包括以下层:
[0089] -聚乙烯/聚丙烯酸类/铝/聚对苯二甲酸乙二醇酯,或者
[0090] -聚乙烯/铝/聚对苯二甲酸乙二醇酯,或者此外
[0091] -聚乙烯/铝/聚乙烯/铝/聚乙烯。
[0092] 图3表示显示空气和如上所述的有机气凝胶的热导率随着压力变化而变化的图。因此可看到,压力越低,热导率也越低,无论这是对于空气还是有机气凝胶,情况均是如此。
然而,在注视图3时,还注意到,与单独的空气的热导率相比,随着压力的降低,有机气凝胶的热导率更快速地降低。
[0093] 因此,在真空绝缘板1内,让由有机气凝胶制成的芯材料5存在于气密密封的覆盖物3之内且其内的压力为0.1-10毫巴是有利的。在该压力下,绝缘板1的热导率为1-20mW.m-1.K-1。
[0094] 就其而言,图4表示显示对于具有不同平均孔径的多孔材料,热导率随着压力的变化而变化的图。具有指数分布(轮廓,profile)的曲线A对应于具有小于100nm的平均孔径的材料即如上所述的有机气凝胶的随压力变化的热导率的变化。具有S形轮廓的曲线B就其而言对应于具有10μm的平均孔径的材料例如本领域中常用的微孔二氧化硅凝胶1的随压力变化的热导率的变化。
[0095] 然后注意到,对于0.1-500毫巴的压力,所述有机气凝胶的热导率低于所述微孔二氧化硅凝胶的热导率。为了用微孔二氧化硅凝胶实现相当的热导率,压力甚至必需是更低的。
[0096] 由于该原因,与具有由微孔二氧化硅凝胶制成的芯材料5的真空绝缘板相比,具有由有机气凝胶的芯材料5制成的真空绝缘板1具有出色的持久性并且其可随时间流逝而保持这些绝缘特性。这是因为,随着时间流逝,所述覆盖物3内的压力由于所述覆盖物3的材料2
的渗透性(即使是最小的)(约0.3gm/m/天)和微泄露而将具有增加的趋势。因此,在由二氧化硅凝胶制成的芯材料5的情况下,压力的增加(即使是最小的)使真空绝缘板1的热导率更快地增加。在由有机气凝胶制成的芯材料5的情况下,为了使热导率显著增加,所述覆盖物3内的压力的更大增加是必要的。
[0097] 本发明还涉及用于制造真空绝缘板1的工艺,其包括以下阶段:
[0098] A)作为芯材料5的有机气凝胶的制备
[0099] 该制备特别地包括以下阶段:
[0100] a)使多羟基苯R和甲醛F在水性溶剂W中在催化剂和溶解在所述水性溶剂W中的至少一种阳离子型聚电解质P的存在下聚合,以获得基于所述树脂的溶液,
[0101] b)使a)中获得的溶液凝胶化以获得所述树脂的凝胶,
[0102] c)将b)中获得的凝胶干燥以获得所述聚合物单块有机凝胶。
[0103] 于是获得聚合物单块有机凝胶形式的气凝胶.
[0104] 所述有机气凝胶的制备还可包括将c)中获得的经干燥的凝胶热解以获得多孔碳的另外的阶段d)。
[0105] 有利地并且如上所示,阶段a)可通过如下使用所述至少一种聚电解质P而进行:按照0.2%-2%的在组合物中的质量分数、和/或按照2%-10%的P/(R+F)重量比、和/或按照在0.3%-2%的P/(R+F)重量比。
[0106] 还有利地:
[0107] -阶段a)可在环境温度下通过如下而进行:将所述多羟基苯R和所述至少一种阳离子型聚电解质P溶解在优选地由水构成的所述水性溶剂中,然后向所获得的溶液添加所述甲醛F和可为酸性或碱性的所述催化剂,然后
[0108] -可通过将所述溶液在烘箱中固化而进行阶段b)。
[0109] 作为可在阶段a)中使用的催化剂,可提及例如酸性催化剂,例如盐酸、硫酸硝酸、乙酸、磷酸、三氟乙酸、三氟甲磺酸、高氯酸、草酸甲苯磺酸、二氯乙酸或者甲酸的水溶液,或者碱性催化剂,例如碳酸钠、碳酸氢钠、碳酸、碳酸铵、碳酸锂、氢氧化铵、氢氧化钾和氢氧化钠。
[0110] 在阶段a)中例如可使用0.001-0.3的多羟基苯对水的R/W重量比。
[0111] 优选地,阶段c)是通过如下进行的:用空气干燥(例如在炉子中),而没有溶剂交换或者没有通过超临界流体干燥,以获得所述聚合物单块有机凝胶,其(根据合成条件并且特别是pH)呈现出400m2/g-1200m2/g的比表面、和/或0.1cm3/g-3cm3/g的孔体积、和/或3nm-30nm的平均孔径、和/或0.01-0.4的密度。
[0112] 应注意,根据本发明的该水相制备工艺因此使得可获得根据合成条件变化的受控的多孔结构。因此可获得低密度的仅仅纳孔(即,具有小于50nm的孔径)的结构或者同时存在纳孔和大孔(即,具有大于50nm的孔径)的结构。
[0113] 在阅读通过说明且没有隐含限制所给出的本发明的若干可实施实施例的以下描述时,其它特性、优点和细节将显现。
[0114] 根据本发明的有机气凝胶的制备的实施例:
[0115] 以下实施例说明用如下起始反应物制备的两种"对照"单块有机凝胶G0和G0'以及根据本发明的五种单块有机凝胶G1-G5和对应的"对照"多孔碳C0和C0'以及根据本发明的多孔碳C1-C5的制备:
[0116] -来自Acros Organics的间苯二酚(R),98%纯度,
[0117] -来自Acros Organics的甲醛(F),37%纯度,
[0118] -由如下构成的催化剂(C):对于G1-G4凝胶,盐酸;和钠对于G5凝胶,碳酸,和[0119] -用于G1-G5凝胶的聚(氯化二烯丙基二甲基铵)(P),35%纯度(为在水中的溶液形式W)。
[0120] 这些G0、G0'和G1-G5凝胶是如下制备的:
[0121] 在第一步骤中,将间苯二酚R和聚电解质P(G0和G0'凝胶例外)在包含水的容器中溶解。然后,在完全溶解之后,添加甲醛F。将所获得的聚合物溶液用催化剂C调节至合适的pH,规定这些操作均在环境温度(约22℃)下进行。在第二步骤中,将所获得的溶液倒在模具中,随后将所述模具在烘箱中在90℃下放置24h以进行凝胶化。
[0122] 随后将所述凝胶如下干燥:
[0123] -在85℃、具有90%的水分含量的湿室中干燥17小时,以获得G0'、G2、G4和G5凝胶,或
[0124] -在三氟乙酸浴中溶剂交换3天,然后在无水乙醇浴中溶剂交换4天之后用超临界CO2干燥,以获得G0、G1和G3气凝胶。
[0125] 最后,将G0、G0'和G1-G5有机凝胶在氮气下在800℃的温度热解以获得C0、C0'和C1-C5多孔单块碳。
[0126] 在下表1中:
[0127] -R/F为间苯二酚对甲醛的摩尔比,
[0128] -R/W为间苯二酚对水的摩尔比,
[0129] -P表示聚电解质的质量分数,
[0130] -P/(R+F)为聚电解质对间苯二酚-甲醛前体的重量比,
[0131] -P/(R+F+W)为聚电解质对已经添加有水的间苯二酚-甲醛前体的重量比,和[0132] -CO2sc表示使用超临界CO2干燥,其与可根据本发明使用的炉子干燥形成对照。
[0133] G0、G2和G4凝胶的热导率(参见表2)以及C0、C2和C4多孔碳的热导率(参见表3)是用 传导率计根据热丝法在22℃测量的,并且G4凝胶和对应的C4多孔碳的在三点压缩方面和在拉伸方面的机械性质是用MTS拉伸/压缩测试机根据标准ASTM C165-07测量的,与"对照"二氧化硅气凝胶G0”的那些比较(参见表4)。
[0134] 对于各C0、C0'和C1-C5多孔碳,使用来自Micromeritics的 3020设备测量比表面、孔体积和平均孔径(表2)。
[0135] 表1:
[0136]反应物的量/工艺 G0 G0' G1 G2 G3 G4 G5
R/F 0.5 0.5 0.5 0.5 0.5 0.5 0.5
R/W 0.03 0.03 0.03 0.03 0.03 0.03 0.20
P 0 0 0.4% 0.4% 0.4% 0.4% -
P/(R+F) 0 0 0.0626 0.0626 0.0640 0.0640 0.0379
P/(R+F+W) 0 0 0.0044 0.0044 0.0070 0.0070 0.0127
pH 3 3 3 3 1 1 6.13
干燥方法 CO2sc 炉子 CO2sc 炉子 CO2sc 炉子 炉子
[0137] 表2:
[0138]
[0139] 表3:
[0140]
[0141] C0和C0'"对照"多孔碳与本发明C1-C5的那些的比较清楚地显示,阳离子型聚电解质P的添加使得对于所获得的低密度,即使用炉子干燥也可保持纳米结构(参见C2、C4和C5多孔碳的比表面、孔体积和平均孔径值,其与C0的那些的量级相同),而在不使用该聚电解质的情况下,使用通过超临界CO2的干燥对于保持C0多孔碳的该纳米结构是必要的。
[0142] 在这些条件下,根据本发明的G1-G5凝胶和C1-C5纳米结构化的碳的密度始终小于或等于0.4。
[0143] 通过将pH调节至1,这些结果还显示,可获得具有低得多的密度(小于或等于0.06)的单块材料(参见本发明的G3和G4凝胶以及C3和C4碳)。
[0144] 最后,对于本发明的G5凝胶和对应的碳C5获得的结果显示,所述合成还可在较低酸性和甚至略微碱性的介质(pH>6)中进行。
[0145] 表4:
[0146]
[0147] *根据M.A.Aegerter等,"Aerogel  Handbook",Advances in Sol-Gel DerivedMaterials and Technologies,chap.22。
[0148] 该表4显示,根据本发明的凝胶和多孔碳呈现出这样的机械性质:其与已知的二氧化硅气凝胶的那些相比非常显著地得到改善。
[0149] B)真空绝缘板1的形成
[0150] 真空绝缘板1的该形成具体地是通过将所述有机气凝胶放置在覆盖物3中而进行的。所述覆盖物3可通过如下的多层膜形成:多层膜自身折叠,其两个面已经(例如通过热封)而彼此结合,留下一个面是开放的,经由该面可引入所述有机气凝胶。
[0151] 随后,使所述覆盖物内3的压力降低(例如通过真空),并且将所述覆盖物3气密封闭(例如通过热封)。该通过热封的封闭可经受约180℃的热。所述覆盖物3也可通过本领域技术人员已知的其它手段例如通过焊接(soldering)(在其中由金属膜制成的所述覆盖物3的各个面接触的情况下)、或者通过胶粘剂结合、红外或者超声熔接(welding)等而封闭。
[0152] 因此,清楚地显示,根据本发明的真空绝缘板1由于引入特定有机气凝胶作为芯材料5而使得如下成为可能:这些热导率特性随时间流逝的更好持久性,由于该特定有机气凝胶不需要超临界干燥阶段的事实,这满足合理的生产成本的情况。
QQ群二维码
意见反馈