具有几何电解液流动路径的电处理器

申请号 CN201611114198.1 申请日 2013-04-23 公开(公告)号 CN107419320B 公开(公告)日 2019-08-13
申请人 应用材料公司; 发明人 兰迪·A·哈里斯; 丹尼尔·J·伍德拉夫; 杰弗里·I·特纳; 格雷戈里·J·威尔逊; 保罗·R·麦克休;
摘要 一种电 镀 处理器包括 电极 板,该电极板具有在通道内形成的连续流动路径。流动路径可视情况为盘绕形流动路径。一或更多个电极 定位 于通道内。 薄膜 板附接于电极板,两者之间具有薄膜。 电解 液高速穿过流动路径,防止气泡粘住薄膜的底表面。流动路径内的任何气泡均挟带在快速移动的电解液中,且从薄膜处带走。或者, 电镀 处理器可具有延伸穿过管状薄膜的电极线,该管状薄膜形成盘绕状或其他形状,视情况包括具有直线段的形状。
权利要求

1.一种电处理器,所述电镀处理器包括:
容器;
薄膜管,所述薄膜管位于所述容器内并且在入口与出口之间延伸,所述薄膜管是由流动段连接的螺旋或同心圆;以及
电极线,所述电极线通过所述薄膜管延伸,
其中阳极电解液配置成送进入所述入口并在所述入口与所述出口之间的所述薄膜管内以恒定的速度流动。
2.如权利要求1所述的电镀处理器,所述薄膜管包括螺旋。
3.如权利要求1所述的电镀处理器,进一步包括头部,所述头部能与所述容器接合,并且所述薄膜管与所述头部之间没有元件,使得在所述薄膜管与所述头部之间提供开放的空间。
4.一种电镀处理器,所述电镀处理器包括:
容器;
头部,所述头部能与所述容器接合;
阴极,所述阴极位于所述头部上;
薄膜管,所述薄膜管位于所述容器内并且在入口与出口之间延伸,所述薄膜管是由流动段连接的螺旋或同心圆;以及
阳极,所述阳极位于所述薄膜管内,
其中阳极电解液配置成泵送进入所述入口并在所述入口与所述出口之间的所述薄膜管内以恒定的速度流动。
5.如权利要求4所述的电镀处理器,所述薄膜管位于阴极电解液腔室内。
6.如权利要求4所述的电镀处理器,所述薄膜管包括螺旋。
7.如权利要求5所述的电镀处理器,进一步包括阴极电解液排出口,所述阴极电解液排出口位于所述阴极电解液腔室内并且位于所述薄膜管之下。

说明书全文

具有几何电解液流动路径的电处理器

[0001] 本申请是申请日为2013年4月23日、申请号为201380023050.5、发明名称为“具有几何电解液流动路径的电镀处理器”的发明专利申请的分案申请。
[0002] 本发明所属的技术领域涉及用于电化学处理半导体材料晶片和类似基板的腔室、系统和方法,所述晶片和类似基板具有集成于工作件内和/或工作件上的微尺度装置。
[0003] 发明背景
[0004] 微电子装置一般制造于晶片或类似基板上和/或晶片或类似基板内。在典型的制造工艺中,电镀处理器于基板上施加一或多层导电材料,该导电材料通常为金属。之后,基板通常经受蚀刻和/或抛光程序(例如,平坦化)以去除一部分沉积的导电层,形成触点和/或导电线路。封装应用中的电镀可经由光刻胶或类似形式的掩模执行。在电镀之后,可去除掩模,随后金属回流以生产、再分布层、支柱或其他互连特征。
[0005] 许多电镀处理器具有薄膜,该薄膜在碗或容器内将阳极电解液电镀液体与阴极电解液电镀液体分离。在这些处理器中,电镀液体中的气泡可聚集和粘住底表面薄膜。气泡充当了绝缘体,在处理器中干扰电场,以及导致工作件上不一致的电镀结果。因此,在设计电镀处理器来提供一致的电镀结果中存在工程挑战。

发明内容

[0006] 现已发明一种新的电镀处理器,该电镀处理器很大程度上克服了电镀中气泡相关的变化。此种新电镀处理器包括电极托盘或电极板,该电极托盘或电极板具有在通道内形成的连续流动路径。可视情况盘绕流动路径。一或更多个电极定位于通道内,或者多个独立流动通道可在各个通道内具有独立电极。薄膜板附接于电极板,两者之间具有薄膜。电解液高速穿过流动路径,防止气泡粘住薄膜的底表面。流动路径内的任何气泡均挟带于快速移动的电解液中,且从薄膜处带走。在替代设计中,诸如铂丝的金属电极可定位于管状薄膜内部,具有电解液流过管状薄膜。流动通道可能是曲线形或具有直线段。
[0007] 附图简要说明
[0008] 在附图中,相同附图标记在每一视图中指代相同元件。
[0009] 图1是新的电镀处理器的透视图。
[0010] 图2是图1的处理器去除头部后的透视图,目的在于图示。
[0011] 图3是图1和图2所示处理器的容器的截面图。
[0012] 图4是图1和图2所示处理器的容器的另一截面图。
[0013] 图5是图3和图4所示通道板的顶部透视图。
[0014] 图6是图3和图4所示薄膜板的顶部透视图。
[0015] 图7是使用薄膜管的替代设计的顶部透视图。
[0016] 图8是替代设计的顶部透视图,该替代设计具有形成为线性阵列的电解液流动通道。
[0017] 具体描述
[0018] 现转至附图:如图1和图2所示,电镀处理器包括头部14和基座12。头部升降器16提升和降低头部,以将头部中容纳的工作件移动至基座内的容器或碗18中。容器容纳电镀液。可视情况在接近容器18的顶部处提供搅拌器板24,以搅拌邻近于工作件的电镀液。
[0019] 现还参阅图3和图4,容器18可经由薄膜32分隔成上腔室和下腔室。通道板30提供于容器18的底部处。通道板通常为绝缘体,诸如塑料。通道42可提供于通道板30内,通道42内具有阳极材料52。或者,通道板30可能是金属,所述金属诸如是镀铂,在金属板内机械加工流动通道。薄膜32夹紧于底部通道板30与顶部薄膜板60之间。如图4和图5所示,圆形或盘绕形流动路径40在通道板30的顶表面内形成。特定而言,盘绕形流动路径40经由通道板内盘绕的通道、槽或缝隙42以及通过相应的盘绕形壁44而形成,该盘绕形壁44分离流动路径40的相邻环。
[0020] 如图5所示,流动路径40可能连续且不间断地从邻近于通道板30外缘的入口36延伸至在通道板中心或接近通道板中心的排出口35。大体而言,薄膜32上的夹持在邻近于通道板30的外侧更接近于扣件或螺栓处最高,所述扣件或螺栓将通道板和薄膜板60夹紧抵靠薄膜32。因为流动路径40中的流体压力在入口处最高,在一些设计中定位该入口面向通道板30的外侧更接近于扣件,可提供对薄膜更好的密封。在其他设计中,可视情况变换入口和出口位置,入口邻近于通道板30的外缘。如图4所示,面对面密封件的替代将安装长圆形弹性体,该弹性体将薄膜密封至阳极表面。
[0021] 薄膜板60设计为相对的刚性结构,使得该薄膜板不会因薄膜下的流体压力而偏斜或变形,该流体压力是送阳极电解液穿过螺旋流动路径所需要的。薄膜板60的向上偏斜将在螺旋壁上方和薄膜下方产生渗漏路径,所述渗漏路径将造成螺旋流动路径短路。尽管壁上一些流体渗漏是可容许的(即并未要求完全密封),但壁上的过量流动减少了螺旋路径内的流动速度和降低了挟带及带走气泡的能力。
[0022] 在图5所示的设计中,通道42具有矩形截面,通道高度大于通道宽度。例如,通道高度可以是通道42宽度的两倍。也可使用其他通道形状,诸如正方形和曲线截面通道。通道42的截面也可在入口与出口之间变化。通道壁44的壁厚度也可在环之间变化。
[0023] 仍参阅图5,盘绕形流动路径40可在数学上为真螺旋或螺旋的其他变化。在图5中,流动路径的环是圆形,其中直线段46提供偏移量,使得流动路径的各个环过渡至相邻环。类似地,流动路径也可具有其他形状,诸如扁圆形、椭圆形等等。流动路径40也可由同心圆简单形成,或者更适当的圆形或曲线环形通道,通过任何形状的区段连接。因此,本文使用的术语盘绕或盘绕形共同包括螺旋和任何其他具有渐进膨胀环的路径,与路径形状无关。
[0024] 在图5中,环标记为1至9。对于设计用来电镀直径300mm的工作件的处理器,流动路径可具有5至15个环或7至12个环。设计用来电镀直径450mm的工作件的处理器可按比例具有更多环,即7至22个环或10至18个环。图5所示的具有9个环的流动路径40可具有总长度约3至6米或4至5米。在选择环的数目和流动路径40的总长度以及通道42的截面时,移动阳极电解液穿过流动路径所需的压力可能是限制因素。
[0025] 所示实例中的通道壁44具有大体上平坦的顶部。如图6所示,薄膜板60的底表面上相应的盘绕形板支座62可与通道壁44的形状和位置相匹配。当薄膜板60夹紧到通道板30时(薄膜32在薄膜板与通道板之间),通道壁44的顶表面与盘绕形板支座的底表面对准,该薄膜夹紧于通道壁顶表面与盘绕形板支座底表面之间。盘绕形板支座62可以是通道壁44的镜像,但是通道壁44与盘绕形板支座62不必具有相同的高度。
[0026] 如图3和图4所示,内部或第一阳极50定位于流动路径40的内环中通道42的底面上。第二或外部阳极52定位于流动路径40的外环中通道42的底面上。如图5所示,第一电触点54连接至第一阳极50且第二电触点56单独地连接至第二阳极52。第一阳极与第二阳极彼此并不连接。然而,第一阳极与第二阳极经由电解液电气连接,以便彼此不会完全地电气隔离。第一阳极与第二阳极之间可能存在小缝隙。另一方面,第一阳极和第二阳极两者均位于单一的连续流动路径40中。虽然图示了两个阳极,但在一些设计中,可使用单个阳极,或者可使用三个或更多个阳极。
[0027] 各个阳极的电触点可大致以长度为中心,以帮助确保沿着该阳极的均匀电流。对于在一端螺旋连接的细长阳极,沿着该阳极的电流密度可能因阳极电阻而下降,自身从触点移开。对于非常细和/或非常长的电极,可多次连接至各个阳极,以帮助均匀地分散电流。
[0028] 可提供阳极50和52作为金属平面条带。在惰性阳极设计中,不在电镀期间消耗阳极的情况下,阳极可以是镀铂钛。或者,在活性阳极设计中,消耗阳极的情况下,阳极可以是或其他金属。
[0029] 参阅图6,薄膜板60可具有肋材的外环64、肋材的内环66和中心环68。薄膜板60的底表面上的盘绕形薄膜支座62可附接于肋材。或者,盘绕形薄膜支座62可与薄膜板60的肋材和其他特征一起作为薄膜板的一部分整体形成。肋材环提供具有大开放截面的薄膜板60,使得对容器内电场的影响最小化,同时也提供刚性结构以夹紧和相对于薄膜密封。薄膜板和通道板大体而言是介电材料,诸如聚丙烯或其他塑料。薄膜板60可在内部和外部环形侧壁中具有阴极电解液入口70和72,以在薄膜32直接上方位置引导阴极电解液进入容器。
[0030] 肋材环66可具有特定特征,有助于将电场干扰最小化,这些干扰可能对电镀均匀不利。例如,可减小中间柱和最内部肋材的垂直高度,以便在结构与工作件之间产生较大缝隙。中心区域会尤其受到结构的影响,因为晶片旋转不会帮助平均化此区域内的干扰。在另一实例中,圆形肋材可尽量制细或在结构顶部制造更细,以便帮助将圆形肋材对电场的干扰最小化,因为圆形肋材对晶片的影响也不能通过晶片旋转平均化。
[0031] 在常规的电镀薄膜处理器中,阳极电解液或其他电解液沿着薄膜缓慢移动。此移动允许气泡粘住薄膜和降低电镀效能,尤其是实质上平定向的薄膜。使用惰性阳极趋向于产生大量气泡,因为电解反应发生于惰性阳极的表面上,并释放气。
[0032] 气体自阳极逸出可尤其对需要具有高镀覆速率(以及因此高阳极电流和巨大气体产生量)的工艺造成问题,使得该工艺可迅速结束且可最大化产量。
[0033] 在具有圆形流动路径40的处理器10中,以充分的压力泵送阳极电解液至入口,以便阳极电解液以高速度穿过流动路径。阳极电解液流过通道的速度足以防止气泡粘住薄膜32的底表面。确切而言,气泡挟带在快速移动的液体中,且不能在薄膜上粘住或聚集。因此,工艺中产生的气泡被迅速带出腔室,防止这些气泡部分地或完全地阻塞介于阳极与阴极之间的电气流动路径,有助于提供可靠的工艺。
[0034] 如图7所示,替代设计将使用薄膜管80,该薄膜管80的内部具有线82作为阳极材料。可视情况使用多个薄膜管80。薄膜管80可为盘绕形或其他形状。此方法避免需要薄膜板60,因为不必夹紧平面薄膜。随后,腔室可为电流流动开放更多。此方法也避免相邻通道之间流动渗漏的险。确切而言,流动限于薄膜管内部且被迫遵循管道的路径。图7的设计也可使阴极电解液腔室能够具有更有效的排出,因为在阳极电解液与阴极电解液之间存在平面隔板。管道可存在于阴极电解液内部,因此阴极电解液可从薄膜管高度之下的低点排出。
[0035] 对于恒定面积通道的情况,通过夹紧薄膜至隔板壁44产生的螺旋流动路径可认为类似于螺旋管内部的流动。对于恒定面积通道,通道内和阳极与薄膜上的流动速度在整个通道长度上是恒定和高产量。相反,使用现有常规的处理器,阳极电解液流动可能在接近流动入口处是高速,但是随着流动分散在大量阳极格子上,阳极电解液流动速度耗散,使得流动难以帮助冲走气泡。
[0036] 图1至图6图的盘绕形电解液路径可用于除了图1和图2所示的处理器以外的各种类型的电镀处理器。特定而言,该盘绕形电解液路径可用于任何具有容器和薄膜的电镀处理器。在使用图7的薄膜管的情况下,不需要其他单独薄膜。
[0037] 电解液流动通道不必为螺旋的,不必具有同心环,或者甚至不必包括大量曲线形状。确切而言,如图8所示,通道42可具有阵列或直线段84的其他排列。作为一个实例,通道可形成逐渐增大的四边形阵列或其他几何形状,大体而言与基板的形状相匹配。若需要,曲率过渡部分可使用于直线段84的末端,以减少穿过通道的压力损失。使用直线段的类似设计也可用于如上所述的薄膜管。
[0038] 一种电镀工作件的方法可包括泵送电解液穿过连续流动路径,该流动路径形成于通道内,在入口与出口之间延伸。通道可形成于电极板内,电极板上具有薄膜。若使用薄膜,则薄膜板可附接于电极板,薄膜在电极板与薄膜板中间。
QQ群二维码
意见反馈