液晶显示器

申请号 CN201720169728.6 申请日 2017-02-24 公开(公告)号 CN206470511U 公开(公告)日 2017-09-05
申请人 中华映管股份有限公司; 发明人 张昭仁; 徐志胜; 黄俊益;
摘要 本实用新型公开了一种 液晶 显示器 ,包含由多条扫描线与多条数据线形成的 像素 数列,其中两条相邻的扫描线与两条相邻的数据线之间形成像素单元,像素单元包含电容以及晶体管,晶体管包含控制端、第一端以及第二端。控制端电性连接至多条扫描线的其中一条,第一端电性连接至多条数据线的其中一条,第二端电性连接至电容。多条扫描线的其中一条传送扫描 信号 至控制端而开启晶体管时,多条数据线的其中一条经由晶体管传送数据信号至电容而对电容进行充电。在环境 温度 低于温度 阈值 时,电容的充电率仍大于或等于充电率阈值,并有效地改善在低温环境下的烧屏现象。
权利要求

1.一种液晶显示器,其特征在于,包含由多条扫描线与多条数据线形成的像素数列,其中两条相邻的扫描线与两条相邻的数据线之间形成像素单元,所述像素单元包含:
电容;以及
晶体管,包含:
控制端,电性连接至所述多条扫描线的其中一条;
第一端,电性连接至所述多条数据线的其中一条;以及
第二端,电性连接至所述电容;
其中当所述多条扫描线的其中一条传送扫描信号至所述晶体管的所述控制端而开启所述晶体管时,所述多条数据线的其中一条经由所述晶体管传送数据信号至所述电容而对所述电容进行充电,且所述像素单元在环境温度低于温度阈值时,所述电容的充电率仍大于或等于充电率阈值。
2.根据权利要求1所述的液晶显示器,其特征在于,所述充电率阈值介于90%~99%之间。
3.根据权利要求2所述的液晶显示器,其特征在于,所述充电率阈值为90%。
4.根据权利要求2所述的液晶显示器,其特征在于,所述充电率阈值为98.73%或
98.75%。
5.根据权利要求1所述的液晶显示器,其特征在于,所述温度阈值介于-20℃~-40℃之间。
6.根据权利要求5所述的液晶显示器,其特征在于,所述温度阈值为-30℃。
7.根据权利要求1所述的液晶显示器,其特征在于,所述晶体管的信道宽度对信道长度的比率为40.728/3.5。
8.根据权利要求1所述的液晶显示器,其特征在于,所述液晶显示器在烧屏条件之下,所述液晶显示器上的烙痕的存在时间小于时间阈值,其中所述烧屏条件包含,在所述液晶显示器上显示测试画面并维持所述测试画面一段时间后,转换所述液晶显示器上显示的画面为灰阶画面,并侦测所述烙痕在所述液晶显示器上的所述存在时间。
9.根据权利要求8所述的液晶显示器,其特征在于,所述时间阈值为5分钟。
10.根据权利要求8所述的液晶显示器,其特征在于,所述灰阶画面的灰阶阶调是介于所述液晶显示器的最小灰阶阶调与最大灰阶阶调之间。

说明书全文

液晶显示器

技术领域

[0001] 本实用新型涉及一种液晶显示器,且特别是涉及一种改善低温烧屏的液晶显示器。

背景技术

[0002] 液晶显示器广泛地在电子装置中被使用,例如笔记本电脑、智能型手机、数码相机广告牌型显示器以及高分辨率电视,其中,当显示器持续显示一段长时间的静态画面后,在显示下一画面时会在此画面出现前一个静态画面的影像或轮廓,也就是烧屏现象。
[0003] 一些方法被提出以针对常温环境下的烧屏现象进行改善。然而,在低温环境下,液晶及/或组件的例如电子迁移率、充电率与液晶转动速度等物理特性与常温环境下差异很大,因此常温烧屏状况好的液晶显示器在低温下的烧屏状况通常都比常温差。因此,如何有效地改善在低温环境下的烧屏现象,为本领域待改进的问题之一。实用新型内容
[0004] 本实用新型的目的在于提供一种液晶显示器,其提高在低温环境下的电容充电率,并有效地改善在低温环境下的烧屏现象。
[0005] 为实现上述目的,本实用新型提供一种液晶显示器,包含由多条扫描线与多条数据线形成的像素数列,其中两条相邻的扫描线与两条相邻的数据线之间形成像素单元,像素单元包含电容以及晶体管,晶体管包含控制端、第一端以及第二端。控制端电性连接至多条扫描线的其中一条,第一端电性连接至多条数据线的其中一条,第二端电性连接至电容。多条扫描线的其中一条传送扫描信号至晶体管的控制端而开启晶体管时,多条数据线的其中一条经由晶体管传送数据信号至电容而对电容进行充电,且像素单元于环境温度低于温度阈值时,电容的充电率仍大于或等于充电率阈值。
[0006] 在部分实施例中,其中充电率阈值介于约90%~99%之间。
[0007] 在部分实施例中,其中充电率阈值为90%。
[0008] 在部分实施例中,其中充电率阈值为98.73%或98.75%。
[0009] 在部分实施例中,其中温度阈值介于约-20℃~-40℃之间。
[0010] 在部分实施例中,其中温度阈值为-30℃。
[0011] 在部分实施例中,其中晶体管的信道宽度对信道长度的比率为40.728/3.5。
[0012] 在部分实施例中,其中液晶显示器在烧屏条件之下,液晶显示器上的烙痕的存在时间小于时间阈值,其中烧屏条件包含,在液晶显示器上显示测试画面并维持测试画面一段时间后,转换液晶显示器上显示的画面为灰阶画面,并侦测烙痕在液晶显示器上的存在时间。
[0013] 在部分实施例中,其中时间阈值为5分钟。
[0014] 在部分实施例中,其中灰阶画面的灰阶阶调是介于液晶显示器的最小灰阶阶调与最大灰阶阶调之间。
[0015] 本实用新型上述实施方式与现有技术相比,至少具有以下优点:
[0016] 通过改变像素设计参数、驱动频率及/或栅极正电压,可提高在低温环境下的电容充电率,并有效地改善在低温环境下的烧屏现象。附图说明
[0017] 图1是根据本实用新型的一些实施例所绘示的液晶显示器的示意图。

具体实施方式

[0018] 图1是根据本实用新型的一些实施例所绘示的液晶显示器100的示意图。如图1所示,液晶显示器100包含液晶显示面板110、源极驱动电路120、栅极驱动电路130、多条扫描线S1~SN以及多条数据线D1~DM,N与M为正整数。源极驱动电路120用以通过数据线D1~DM提供数据信号,而栅极驱动电路130用以通过扫描线S1~SN提供扫描信号。为了方便说明,图1仅绘示部分扫描线以及数据线,但本实用新型不以此为限。
[0019] 如图1所绘示,两条相邻的扫描线与两条相邻的数据线之间形成像素单元。液晶显示面板110包含多个像素单元,像素单元被布置在包含多个行与列的二维数列中。为了方便说明,图1仅绘示部分像素单元,但本实用新型不以此为限。
[0020] 如图1所绘示,在本实用新型的一些实施例中,像素单元112包含储存电容CS、液晶电容CL以及晶体管T。在本实用新型的一些实施例中,晶体管T为薄膜晶体管,但本实用新型不以此为限。其中,晶体管T包含控制端、第一端以及第二端。控制端电性连接至扫描线的其中一条,第一端电性连接至多条数据线的其中一条,而第二端电性连接至储存电容CS以及液晶电容CL。储存电容CS以及液晶电容CL又连接至共同电势Vcom。
[0021] 在本实用新型的一些实施例中,当扫描线S1传送扫描信号至晶体管T的控制端而开启晶体管T时,数据线D1经由晶体管T传送数据信号至储存电容CS及/或液晶电容CL而对储存电容CS及/或液晶电容CL进行充电。储存电容CS可储存数据线D1所传输的数据信号中的数据电势,可以稳定液晶电容CL在扫描线S1不提供扫描信号时所储存的数据电势。
[0022] 当液晶显示器100显示持续一段长时间的静态画面后,在显示下一画面时会在此画面出现前一个静态画面的影像或轮廓,也就是烧屏现象。针对烧屏现象,已有一些方法被提出,例如通过控制电路或配向模等方法以改善烧屏现象,然而,这些方法仅是针对环境温度为常温的情况下所提出。但在低温下,液晶及/或组件的例如电子迁移率、充电率与液晶转动速度等物理特性与常温环境下差异很大,因此常温烧屏状况好的液晶显示器在低温下的烧屏状况通常都比常温状况下差。
[0023] 在本实用新型中,当环境温度低于温度阈值时,储存电容CS及/或液晶电容CL的充电率仍大于或等于充电率阈值,以有效地改善液晶显示器100的低温烧屏现象。
[0024] 在本实用新型的一些实施例中,充电率阈值介于约90%~99%之间。在本实用新型的一些实施例中,温度阈值介于约-20℃~-40℃之间。但本实用新型不以此范围为限。
[0025] 在本实用新型的一些实施例中,储存电容CS及/或液晶电容CL的充电率的提高是通过改变像素设计参数、驱动频率及/或栅极正电压来实现,藉以改善液晶显示器100的低温烧屏现象。
[0026] 在本实用新型的一些实施例中,烧屏现象的测试是通过对液晶显示器100实施烧屏条件。烧屏条件包含于液晶显示器100上显示测试画面并维持测试画面一段时间后,转换液晶显示器100上显示的画面为灰阶画面,并侦测烙痕于液晶显示器100上的存在时间。但烧屏现象的测试有各种方法,在此提出的烧屏条件仅作为例示,本实用新型不以此为限。
[0027] 在本实用新型的一些实施例中,灰阶画面的灰阶阶调是介于液晶显示器100的最小灰阶阶调与最大灰阶阶调之间。举例来说,在本实用新型的一些实施例中,灰阶画面可为128灰阶阶调。
[0028] 在本实用新型的一些实施例中,即便液晶显示器100处于环境温度低于温度阈值的状况下,对液晶显示器100实施烧屏现象的测试,液晶显示器100的烙痕的存在时间小于时间阈值,换言的,本实用新型的液晶显示器100的烙痕在很短的时间内就消失了。一般而言,在对液晶显示器100实施烧屏现象的测试的后,烙痕的存在时间小于五分钟为可接受的平。因此,在本实用新型的一些实施例中,可设定时间阈值为5分钟,但不以此为限。
[0029] 在本实用新型的一些实施例中,在低温环境下的储存电容CS及/或液晶电容CL的充电率达到充电率阈值的实现是通过像素单元112中的晶体管T的参数设计。在本实用新型的一些实施例中,晶体管T的信道宽度对信道长度的比率为40.728/3.5。表1所示为测试液晶显示器100在常温时与环境温度低于温度阈值时的充电率与烙痕的存在时间的测试结果:
[0030] 表1
[0031]
[0032] 表1中的机种A为依据本实用新型的一些实施例的液晶显示器100的示范例,其中机种A的晶体管T的信道宽度对信道长度的比率为40.728/3.5。而机种B的液晶显示器100是作为对照用,其中机种B的液晶显示器100与机种A的液晶显示器100使用的彩色滤光片、面板组装以及晶体管T的材料组配都相同,仅像素单元112中的晶体管T的设计参数不同。机种B的晶体管T的信道宽度对信道长度的比率为17.728/3.5。
[0033] 如表1所示,在常温下,机种A的液晶显示器100与机种B的液晶显示器100的充电率均达到99.17%以上,以使机种A的液晶显示器100与机种B的液晶显示器100在以128灰阶阶调进行烙痕测试时烙痕均立即消失。然而,在温度低于温度阈值(例如-30℃)时,仅机种A的液晶显示器100的充电率达到98.75%,相比之下,机种B的液晶显示器100的充电率只能达到84.48%。在以128灰阶阶调进行烙痕测试时,仅机种A的液晶显示器100的烙痕立即消失,相比之下,机种B的液晶显示器100的烙痕10分钟才会消失。由上可知,在低温环境(例如-30℃)中,当充电率达到98.75%以上时,烙痕会立即消失,也就是烙痕的存在时间小于设定的时间阈值(例如5分钟)。根据上述实验结果,本案将充电率阈值设定为98.75%,以使烙痕立即消失。
[0034] 此外,在环境温度低于温度阈值(例如-30℃)时,机种A的充电率可达到至少98.75%。此时无论以何种灰阶阶调的灰阶画面对机种A进行测试,机种A的液晶显示器100的烙痕均立即消失。
[0035] 在本实用新型的一些实施例中,在低温环境下的储存电容CS及/或液晶电容CL的充电率达到充电率阈值的实现是通过提高扫描线S1~SN的栅极正电压。表2所示为测试液晶显示器100在常温时与环境温度低于温度阈值时的充电率与烙痕的存在时间的测试结果:
[0036] 表2
[0037]
[0038] 如表2所示,在常温下,对机种B的液晶显示器100施加不同的栅极正电压,机种B的液晶显示器100的充电率均达到99.17%以上,以使机种B的液晶显示器100在以128灰阶阶调进行烙痕测试时的烙痕均立即消失。然而,在温度低于温度阈值(例如-30℃)时,须对机种B实施28V以上的栅极正电压,以使机种B在低温环境中的充电率达到90%以上,此时,机种B的烙痕存在时间才会小于时间阈值(例如5分钟)。由上可知,在低温环境中,当充电率达到90%以上时,烙痕存在时间会小于时间阈值(例如5分钟)。因此,可设定在低温环境时的充电率阈值为90%,以使烙痕存在时间小于时间阈值(例如5分钟)。
[0039] 除此的外,如表2所示,在温度低于温度阈值(例如-30℃)时,若是对机种B实施36V的栅极正电压时,机种B的液晶显示器100的充电率可达到98.73%以上,使得以128灰阶阶调进行烙痕测试时的烙痕立即消失。此外,若是对机种B实施36V的栅极正电压,无论以何种灰阶阶调的灰阶画面进行测试,机种B的液晶显示器100的烙痕均立即消失。根据上述实验结果,本案将在低温环境时的充电率阈值设定为98.73%,以使烙痕立即消失。
[0040] 在本实用新型的一些实施例中,在低温环境下的储存电容CS及/或液晶电容CL的充电率达到充电率阈值的实现是通过提高扫描线S1~SN的驱动频率。表3所示为测试液晶显示器100在常温时与环境温度低于温度阈值时的充电率与烙痕的存在时间的测试结果:
[0041] 表3
[0042]
[0043]
[0044] 如表3所示,在常温下,对机种B的液晶显示器100施加不同的驱动频率,机种B的液晶显示器100的充电率均达到99.17%以上,以使机种B的液晶显示器100在以128灰阶阶调进行烙痕测试时烙痕均立即消失。然而,在温度低于温度阈值(例如-30℃)时,若是对机种B实施60Hz或50Hz的驱动频率,则机种B的液晶显示器100在以128灰阶阶调进行烙痕测试时,烙痕的存在时间大于设定的时间阈值(例如5分钟)。但若是对机种B实施30Hz以下的驱动频率时,机种B的液晶显示器100的充电率可达到97.01%以上,以使烙痕存在时间小于时间阈值(例如5分钟)。根据上述实验结果,本实用新型将在低温环境时的充电率阈值设定为97.01%,以使烙痕存在时间小于时间阈值(例如5分钟)。
[0045] 除此的外,如表3所示,在温度低于温度阈值(例如-30℃)时,若是对机种B实施20Hz的驱动频率,机种B的液晶显示器100的充电率可达到99.38%,且在以128灰阶阶调进行烙痕测试时烙痕立即消失。此外,在对机种B实施20Hz的驱动频率时,无论以何种灰阶阶调的灰阶画面进行测试,机种B的液晶显示器100的烙痕均立即消失。根据上述实验结果,本案将在低温环境时的充电率阈值设定为99.38%,以使烙痕立即消失。
[0046] 如上所述的时间阈值、充电率阈值以及温度阈值仅作为例示,本实用新型并不以此为限。
[0047] 本实用新型的实施例中的电路与功能可以通过硬件软件或例如微控制器、集成电路(ASIC)以及可编程微控制器等的硬件与软件的组合来实现。
[0048] 本实用新型所述的液晶显示器,通过改变像素设计参数、驱动频率及/或栅极正电压,可提高在低温环境下的电容充电率,使电容充电率在低温环境下达到充电率阈值,并有效地改善在低温环境下的烧屏现象。
[0049] 虽然本实用新型已以实施方式公开如上,然其并非用以限定本实用新型,任何本领域的一般技术人员,在不脱离本实用新型的精神和范围内,当可作各种的更动与润饰,因此本实用新型的保护范围当视权利要求所界定的为准。
QQ群二维码
意见反馈