Document Document Title
US09794595B2 Derivation of end of sequence NAL unit information for multi-layer bitstreams
An apparatus for coding video information according to certain aspects includes a memory and a processor. The memory is configured to store video information associated with one or more layers. The processor is configured to code a current access unit (AU) in a bitstream including a plurality of layers, the plurality of layers including a reference layer and at least one corresponding enhancement layer. The processor is further configured to code a first end of sequence (EOS) network abstraction layer (NAL) unit associated with the reference layer in the current AU, the first EOS NAL unit having the same layer identifier (ID) as the reference layer. The processor is also configured to code a second EOS NAL unit associated with the enhancement layer in the current AU, the second EOS NAL unit having the same layer ID as the enhancement layer.
US09794594B2 Method and apparatus for encoding/decoding images
Disclosed are a method and apparatus for encoding/decoding images. The image-decoding method comprises the steps of: receiving a bit stream including information regarding an NAL unit type; and checking whether or not the NAL unit in the bit stream is a reference picture based on said information regarding an NAL unit type and decoding the NAL unit. The information regarding an NAL unit type indicates whether the NAL unit is a reference reading picture or not a reference reading picture.
US09794591B2 Coding and decoding of transform skipped blocks
Video encoder and decoder and methods therein for transform skipped encoding and decoding of blocks of pixels. The methods comprise a modified use of an existing context model associated with transform coefficients, for deriving contexts for a bitmask indicating which residual values (i.e., not transform coefficients), in a transform skipped residual block, that are greater than one. The methods are applicable to video coding schemes such as HEVC.
US09794590B2 Method and apparatus for encoding a motion vector, and method and apparatus for encoding/decoding image using same
An apparatus of predicting a current motion vector of a current block in a current frame for predictively decoding the current motion vector, the apparatus includes: a prediction candidate selector to select one or more motion vector prediction candidates from among blocks in the current frame and a block in a reference frame other than the current frame to determine a predicted motion vector corresponding to the current motion vector; and a predicted motion vector determiner to determine the predicted motion vector among the one or more motion vector prediction candidates, wherein the prediction candidate selector comprises: means for deriving one or more first motion vector prediction candidates from motion vectors of one or more blocks adjacent to the current block in the current frame, and means for deriving a second motion vector prediction candidate from a motion vector of the block located in the reference frame.
US09794589B2 Method and device for processing a video sequence
An embodiment of the invention relates to a method for processing the pixel amplitude of at least one block image pixel contained in a video sequence, the method comprising the steps of: constructing an individual motion trajectory comprising motion-shifted versions of said block image pixel over a multiplicity of neighboring frames; and combining the pixel amplitudes of the motion-shifted versions of said block image pixel along the individual motion trajectory using a weighting function, to form a processed pixel amplitude of said image pixel.
US09794588B2 Image processing system with optical flow recovery mechanism and method of operation thereof
An image processing system, and a method of operation thereof, includes: an edge motion generation unit for detecting edges in a first image frame and a second image frame stored by a storage device or a memory and for generating edge motion vectors between the first image frame and the second image frame based on the edges; a motion vector list generation unit for extracting dominant motion vectors from a group of the edge motion vectors and for generating a motion vector list based on the dominant motion vectors; an image segmentation unit for generating a segmentation of the first image frame; an initial motion generation unit for generating initial motion vectors based on the segmentation and the motion vector list; and a smooth motion generation unit for generating smooth motion vectors based on the initial motion vectors and for generating a dense optical flow field by combining the smooth motion vectors.
US09794587B2 Image encoding method and image decoding method
According to one embodiment, an image encoding method includes selecting a motion reference block from an already-encoded pixel block. The method includes selecting an available block including different motion information from the motion reference block, and selecting a selection block from the available block. The method includes generating a predicted image of the encoding target block using motion information of the selection block. The method includes encoding a prediction error between the predicted image and an original image. The method includes encoding selection information identifying the selection block by referring to a code table decided according to a number of the available block.
US09794581B2 Image processing device and image processing method, program, and imaging apparatus
Provided is an image processing device including: a division unit that divides pictures of image data into multiple arrangements; multiple coding units, each of which codes pictures in the mutually-different arrangements that result from the division by the division unit and generates a stream; and a composition unit that composites the streams in the arrangements, which are generated by the multiple coding units, in which the coding unit generates header information on the stream in such a manner that a stream which results from the compositing by the composition unit becomes normal.
US09794579B2 Decoded picture buffer operations for video coding
A method of decoding video data comprising partitioning a decoded picture buffer (DPB) into a plurality of sub-DPBs, receiving at least one indication of a sub-DPB size for the plurality of sub-DPBs for one or more operation points of a multi-layer video coding process, and allocating memory space for the plurality of sub-DPBs based on the at least one indication.
US09794575B2 Apparatuses and methods for optimizing rate-distortion costs in video encoding
Apparatuses and methods for optimizing rate-distortion costs of a signal are disclosed. An apparatus may include an encoder. The encoder may be configured to receive a video signal and provide a residual indicative of a difference between the video signal and a reconstructed video signal. The encoder may further be configured to perform a transform on the residual to provide a plurality of transform coefficients and rate-distortion optimize the plurality of transform coefficients in accordance with an HEVC state transition scheme to provide a rate-distortion optimized plurality of quantized coefficients. The encoder may further be configured to encode the plurality of quantized coefficients in accordance with context-adaptive binary arithmetic coding.
US09794573B2 Method and system for selectively breaking prediction in video coding
Described are techniques in video coding and/or decoding that allow for selectively breaking prediction and/or in loop filtering across segment boundaries between different segments of a video picture. A high layer syntax element, such as a parameter set or a slice header, may contain one or more indications signalling to an encoder and/or decoder whether an associated prediction or loop filtering tool may be applied across the segment boundary. In response to such one or more indications, the encoder and/or decoder may then control the prediction or loop filtering tool accordingly.
US09794567B2 Variable length coding method and variable length decoding method
A variable length coding method is comprised of: a coefficient value scanning step in which an RL sequence generation unit, a reordering unit, and a binarization unit scan coefficient values within a block in a predetermined scanning order starting at a higher-frequency component toward a lower-frequency component; and an arithmetic coding step in which an arithmetic coding unit and a table storage unit perform arithmetic coding on the absolute values of the coefficient values according to the scanning order used in the coefficient value scanning step, by switching between probability tables for use, wherein, in the arithmetic coding step, a probability table to be used is switched to another probability table in one direction, when the arithmetic-coded absolute values of the coefficient values include an absolute value exceeding a predetermined threshold value.
US09794559B2 Video decoding methods and video encoding methods
A system for decoding a video bitstream includes receiving a reference picture set associated with a frame including a set of reference picture identifiers. The reference picture set identifies one or more reference pictures to be used for inter-prediction of the frame based upon its associated least significant bits of a picture order count based upon the reference picture identifiers. The one or more reference pictures is a second or greater previous frame to the frame having the matching reference picture identifier.
US09794557B2 Method and apparatus of simplified luma-based chroma intra prediction
A method and apparatus for chroma intra prediction is based on reconstructed luma pixels and chroma pixels, where the chroma intra prediction is based on a linear model of derived co-located current luma pixels of the current luma block scaled by a scaling factor. The scaling factor comprises a product term of a division factor and a scaled covariance-like value associated with neighboring reconstructed luma and chroma pixels of a current block. The division factor is related to a first data range divided with rounding by a scaled variance-like value associated with the neighboring reconstructed luma pixels of the current block. The scaled covariance-like value, the first data range, or both of the scaled covariance-like value and the first data range are dependent on the internal bit depth, with which the chroma signal is processed during video coding process, according to an embodiment of the present invention.
US09794555B2 Adaptive sampling filter process for scalable video coding
A sampling filter process for scalable video coding provides correction for phase shift occurring during downsampling. The process uses video data obtained from an encoder or decoder process of a base layer (BL) in a multi-layer system using adaptive phase shifting based on downsampling to improve quality. Examples of a multi-layers are MPEG-4 Advanced Video Coding (AVC) and High Efficiency Video Coding (HEVC). The re-sampled BL data can be used in higher layers in a scalable video coding system. For example, the re-sampled or upsampled data can be used as a basis for prediction of the higher resolution video data.
US09794551B1 Light uniformity testing
Systems and methods for testing a light emitting device are described. A processing device receives a receiving an image of a beam of light substantially free of parallax distortion and determines one or more uniformity metrics of the beam of light based on the received image.
US09794547B2 Autostereoscopic image output device
An autostereoscopic image output device includes an image panel having an array of image pixels defining an image, the image pixels being arranged in rows and columns. An array of parallel lenticular elements is positioned over the image panel, the lenticular elements having optical focal axes that are slanted at an angle (φ) to the image pixel columns. The image output device is operable in first and second modes, with the image panel and lenticular element array rotated by 90 degrees between the modes, thereby providing a landscape mode of operation and a portrait mode of operation, the slant angle φ in the landscape mode satisfies 1≧φ≧½.
US09794541B2 Video capture system control using virtual cameras for augmented reality
There is provided a system and method for integrating a virtual rendering system and a video capture system using flexible camera control to provide an augmented reality. There is provided a method for integrating a virtual rendering system and a video capture system for outputting a composite render to a display, the method comprising obtaining, from the virtual rendering system, a virtual camera configuration of a virtual camera in a virtual environment, programming the video capture system using the virtual camera configuration to correspondingly control a robotic camera in a real environment, capturing a video capture feed using the robotic camera, obtaining a virtually rendered feed using the virtual camera, rendering the composite render by processing the feeds, and outputting the composite render to the display.
US09794538B2 Color adjustment apparatus, image display apparatus, and color adjustment method
Color of a color image may be adjusted by a color adjustment apparatus, image display apparatus, and color adjustment method to enable easier distinction between objects shown in the image. A parameter defines a range of saturation to be adjusted within saturation before color adjustment and a range of change of the saturation after color adjustment compared to the saturation before color adjustment. The color adjustment apparatus calculates the saturation from an image signal, calculates the saturation after color adjustment according to the saturation before color adjustment such that the saturation in the range determined by the parameter increases/decreases by an amount determined by the parameter, and generates an image signal from the saturation after color change. By determining the parameter such that the saturation difference between prescribed colors is greater after color adjustment, the difference in color between a plurality of objects shown in the image is increased.
US09794536B2 Projector, and method of controlling projector
A projector includes a main body including a projection unit which projects an image, a movement detecting unit which detects movement of the main body, and an imaging unit which captures an image of a screen. Furthermore, the projector includes a correction control unit which performs trapezoidal distortion correction on the basis of an image-capturing result, and a second processing unit which performs a second process, which is different from the trapezoidal distortion correction, on the basis of the image-capturing result. In a case where it is determined that the main body is moving on the basis of a detection result, an imaging control unit allows the correction control unit to perform the trapezoidal distortion correction, and in a case where it is determined that the main body is stopped, the imaging control unit allows a manipulation detecting unit to perform a manipulation detecting process.
US09794532B2 Projector control apparatus, projector system, and projector control method
A projector control apparatus that causes plural projectors to collectively project an image by individually projecting a different one of segment images into which the image is divided, the apparatus including: a spatial distribution information obtaining unit which obtains information indicating a distribution of one or more viewers that view the image in a space where the projectors are mounted; a mode selecting unit which selects, using the information indicating the distribution of the one or more viewers, one of modes including (i) a first mode in which a width of a projection area is a first width and (ii) a second mode in which the width of the projection area is a second width larger than the first width; and a projector control unit which changes arrangement of the segment images by controlling each of projection directions according to the mode selected.
US09794529B2 Method for acquiring image and electronic device thereof
An apparatus and a method for acquiring an image in an electronic device are provided. The method includes acquiring a first image using an image sensor that comprises a plurality of first pixels having a first exposure and a plurality of second pixels having a second exposure, determining a reference exposure value based on image information, adjusting at least one of the first exposure or the second exposure based on the reference exposure value, and acquiring a second image using the image sensor based on exposure control.
US09794527B1 Content capture
A computing device configured to dynamically capture and store experience data received the by the computing device. An example method involves: (a) receiving first experience data that indicates at least one environmental condition; (b) selecting a capture mode from a plurality of capture modes based on the at least one environmental condition, where the capture mode defines a manner of capturing experience data; and (c) causing the computing device to operate in the selected capture mode, where operating in the selected capture mode includes capturing second experience data in the manner defined by the capture mode. The method may optionally additionally involve: (d) after entering the capture mode, receiving third experience data; (e) determining that the capture mode should be exited based on at least the received third experience data; and (f) based on the determination that the capture mode should be exited, exiting the capture mode such that at least one type of experience data is not captured.
US09794526B2 Non-disruptive monitor system
A monitoring unit system is provided having a parent unit whose speaker is muted when a wrist unit is activated, where the wrist unit vibrates, the parent unit or wrist unit lights up, the wrist unit continues to alert until a mute button is pressed, or if a predetermined time elapses, alerts the parent unit, and having a low battery trigger, a fail-safe wrist unit and parent unit out of range trigger, a page button for the wrist unit and parent unit, a mute feature on the baby unit, and a cry duration or volume threshold trigger.
US09794523B2 Electronic patient sitter management system and method for implementing
An electronic sitter management system coupled to patient surveillance network having a plurality of video cameras, each camera transmitting a stream of surveillance video of a respective patient room. The sitter management system includes at least one sitter management device and a plurality of sitter devices. Each device being assigned a plurality of patient rooms and capable of receiving a plurality of streams of surveillance video for the corresponding plurality of patient rooms and simultaneously displaying a plurality of video images of the corresponding plurality of patient rooms. Each device is also capable of transmitting sitter device availability information to the sitter management device. The sitter management device being capable of recognizing a sitter device being unavailable and reassigning the plurality of patient rooms previously assigned to the unavailable device to other of the plurality of sitter devices that are available.
US09794519B2 Positioning apparatus and positioning method regarding a position of mobile object
The present invention provides a positioning apparatus which enables output of accurate position information related to a mobile object. The positioning apparatus, which is mounted in a mobile object, stores therein, in a mutually correlated manner, a first image feature at a first spot where a mobile object exists, approximate position information related to the mobile object at the first spot, position information related to a second spot on which the mobile object is predicted to move, and a second feature at the second spot; selects a plurality of the second features on the basis of the approximate position information; calculates a plurality of relative position information between the first spot and the respective second spots corresponding to the plurality of second features; determines consistency among the plurality of relative position information; and outputs determinate position information related to the mobile object.
US09794513B2 Video conference method, terminal, and system
A video conference method, includes: during a conference, a first terminal operates a first application; performs first video processing on a video signal acquired by the first terminal and a video signal received from other terminals participating in the video conference, and displays the processed video signal; when the first terminal detects that one or more other applications on the first terminal are opened, the first terminal simultaneously operates the first application and other applications on the first terminal; and performs second video processing and third video processing on the video signal acquired by the first terminal, the video signal received from the other terminal participating in the video conference and an interface image(s) of the other applications on the first terminal, displays a video signal after the second video processing and transmits a video signal after the third video processing to the other terminal participating in the video conference.
US09794512B2 Apparatus and method for simultaneous live recording through and projecting live video images onto an interactive touch screen
A system and method for point to point video enable communication and the provisioning of at least one commodity. The communication between two remote devices may include both video and audio and may be activated by use of at least one touch screen associated with a device for provisioning the at least one commodity, such as, for example, a vending machine.
US09794502B2 Image capturing apparatus
An image capturing apparatus comprises an image sensor in which a plurality of pixels are arranged two-dimensionally, and a control unit configured to control a band gap of the pixels of the image sensor, wherein the control unit, in a case where defective pixel detection processing is performed on the image sensor, controls the band gap so as to be smaller than in a case where normal image capture is performed.
US09794498B2 Multi-camera array with housing
Multiple cameras are arranged in an array at a pitch, roll, and yaw that allow the cameras to have adjacent fields of view such that each camera is pointed inward relative to the array. The read window of an image sensor of each camera in a multi-camera array can be adjusted to minimize the overlap between adjacent fields of view, to maximize the correlation within the overlapping portions of the fields of view, and to correct for manufacturing and assembly tolerances. Images from cameras in a multi-camera array with adjacent fields of view can be manipulated using low-power warping and cropping techniques, and can be taped together to form a final image.
US09794494B2 Endoscope system and method with pixel gain correction
An endoscope system includes a light source apparatus for emitting narrow band light of green and violet in field sequential lighting, for endoscopic imaging. An image sensor has multiple pixels arranged on an imaging surface, for imaging an object in a body cavity illuminated with the narrow band light, to output a pixel signal. The multiple pixels include first and second pixels. The first pixel has a lower spectral sensitivity than the second pixel. A gain corrector is supplied with the pixel signal by the image sensor, for performing gain correction of multiplying the pixel signal of the first pixel by a gain value, so as to compensate for a difference in the spectral sensitivity of the first pixel from the second pixel. Also, a noise reduction device performs noise reduction of the pixel signal after the gain correction according to the gain value.
US09794493B2 Image capturing apparatus, image capturing method, and control method
There is provided an image capturing apparatus comprising an image capturing unit. A control unit controls the image capturing unit to capture a first image having exposure unevenness caused by flicker in a light source. A detection unit detects a timing at which there is a low change in a light amount caused by the flicker, based on the exposure unevenness in the first image. An accepting unit accepts an image capturing instruction. The control unit controls the image capturing unit to capture a second image at the detected timing in response to the image capturing instruction.
US09794490B2 Time of flight camera system with a data channel
A light speed camera system, with a camera module, which has a light speed photo sensor, preferably based on mixed photo detection, having at least one reception pixel, and with an illumination module which has an illumination light source, wherein the illumination module and the camera module each have a transmission circuit which is formed in such a way that a first signal as a differential signal and a second signal as a modulated basic voltage can be transmitted between the camera module and illumination module via a differential signal line is provided.
US09794486B2 Optical image stabilizer and camera module including the same
An optical image stabilizer including an angular velocity calculator configured to receive an angular velocity signal from an angular velocity sensor and output a corrected angular velocity signal and an angular position signal; a state detector configured to calculate an autocorrelation value according to the corrected angular velocity signal, compare the autocorrelation value with a threshold value to determine a stopped state or a moving state of a camera module, and output a corrected angular position signal and control coefficients; and a lens controller configured to control a lens module according to the corrected angular position signal and the control coefficients.
US09794481B2 Image capturing device and activation method therefor
An image capturing device includes a first controller operable to control image capturing; an operation section including a switch; a detector operable to detect a change to an image capturing mode and to send a signal representing the change; a second controller operable to monitor and process the sent signal, the second controller having a power consumption less than that of the first controller; and a power supply operable to supply power to the first controller, the second controller, and a functional section of the device. When the second controller receives the signal sent from the detecting section in a power saving state in which power is supplied from the power supply to the second controller, the power saving state is changed to a power supplying state capable of image capturing by supplying power from the power supply to portions of the device including the first controller.
US09794479B2 Panoramic camera with multiple image sensors using timed shutters
The present invention relates to the field of panoramic still and motion photography. In a first embodiment, a camera apparatus for panoramic photography includes a first image sensor positioned to capture a first image. The first image sensor has a rolling-shutter readout arranged in portrait orientation. The camera apparatus also includes second image sensor positioned to capture a second image. The second image sensor has a rolling-shutter readout arranged in portrait orientation. Finally, the camera apparatus includes a controller configured to signal the second image sensor to start capturing the second image before the first image sensor finishes capturing the first image. At least a portion of the first image is in front of the second image relative to a forward direction of the camera apparatus.
US09794476B2 Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
Imager arrays, array camera modules, and array cameras in accordance with embodiments of the invention utilize pixel apertures to control the amount of aliasing present in captured images of a scene. One embodiment includes a plurality of focal planes, control circuitry configured to control the capture of image information by the pixels within the focal planes, and sampling circuitry configured to convert pixel outputs into digital pixel data. In addition, the pixels in the plurality of focal planes include a pixel stack including a microlens and an active area, where light incident on the surface of the microlens is focused onto the active area by the microlens and the active area samples the incident light to capture image information, and the pixel stack defines a pixel area and includes a pixel aperture, where the size of the pixel apertures is smaller than the pixel area.
US09794473B2 Imaging device, imaging device body, and lens barrel
A distance-information acquisition unit acquires information about a distance to a subject in each focus detection region by setting a plurality of focus detection regions in an imaging region. A depth-of-field calculating unit calculates the depth of field for one major subject (principal object) on the basis of the information about a distance to the major subject, which is selected from a plurality of subjects, and a diaphragm value, which is corrected on the basis of optical characteristics of an APD filter. An insertion/retreat control unit determines whether or not a subject other than the major subject is present outside the depth of field on the basis of the information about the distance and inserts the APD filter onto the light path in a case in which the subject other than the major subject is present outside the depth of field.
US09794470B2 Photographing apparatus and interchangeable lens control method
A photographing apparatus comprising: a focus adjustment lens which is provided within a lens barrel containing a photographing lens and is movable in an optical axis direction; a ring member disposed rotatably with respect to the lens barrel in an angle range from a first end point to a second end point; a storage unit to store a first relationship between a rotation angle of the ring member and a distance, and a second relationship between a position of the focus adjustment lens in the optical axis direction and the distance; and a control unit to calculate a distance corresponding to a rotation angle of the ring member according to a rotation angle of the ring member and the first relationship, and to set a position of the focus adjustment lens in the optical axis direction according to the distance and the second relationship.
US09794469B2 Image signal processor with image replacement and mobile computing device including the same
A system, comprising: an image sensor including: a first pixel including a first photoelectric conversion element of a first phase group and configured to have a first exposure and the second photoelectric conversion element of a second phase group and configured to have a second exposure; and a second pixel including a third photoelectric conversion element of the first phase group and configured to have the second exposure and a fourth photoelectric conversion element of the second phase group and configured to have the first exposure; and an image signal processor coupled to the image sensor and configured to: receive a first image from the image sensor; receive a second image from the image sensor; and configured to output an image based on at least one of the first image and the second image; wherein the first exposure is longer than the second exposure.
US09794466B2 Lens unit, image pickup apparatus, and methods of controlling lens unit and image pickup apparatus
A lens unit L100 is removably mounted on an image pickup apparatus generating control information used for a vibration control that vibrates a correction lens L105 and moves a vibration center of the correction lens L105, includes an image pickup optical system including a magnification varying lens L102 and the correction lens L105, a storage unit storing first information indicating a relation between positions of the magnification varying lens L102 and the correction lens L105, and a lens controller performing a predetermined control in which the correction lens L105 moves in accordance with the movement of the magnification varying lens L102, and the lens controller sends information relating to the magnification varying operation to the image pickup apparatus, and overlaps the vibration control of the correction lens L105 based on the control information in accordance with the information relating to the magnification varying operation with the predetermined control.
US09794465B2 Image pickup apparatus and control method thereof
A network camera includes a pan driving unit and a tilt driving unit for changing a shooting direction of an imaging unit. A detection unit detects rotation angles of movable units to be driven by the pan driving unit and the tilt driving unit. A pan/tilt control unit corrects a target position of the movable unit according to a correction value according to the detected rotation angle and controls each of the driving units using a value after the correction. In addition, when masked image drawing for processing an image is performed so that a partial image of a predetermined position is not visible in the image captured by an imaging unit, an image processing unit performs a process of correcting a rotation angle detected by the detection unit according to the correction value and drawing a masked image at a mask drawing position after the correction.
US09794462B2 Illumination system with side-emitting illumination, targeting, and confirmation
Embodiments are disclosed of a lighting apparatus including a fixture adapted to accommodate a camera having imaging optics that define an optical axis, wherein the fixture includes an open end through which the imaging optics can capture an image. One or more side-emitting illumination light sources are positioned adjacent to the open end, the plurality of side-emitting light sources positioned to direct light toward a plane intersected by the optical axis. Other embodiments are disclosed and claimed.
US09794459B1 Mobile terminal
A mobile terminal includes a terminal body, and a camera module provided on one side of the terminal body and including a lens assembly exposed outwardly in at least a portion thereof, an iris provided on an inner side of the lens assembly to adjust an amount of incident light, and an actuator moving the lens assembly and the iris, wherein the lens assembly includes a first lens assembly provided on a front side of the iris and exposed to the outside and a second lens assembly provided on a rear side of the iris and determining a magnification together with the first lens assembly, the actuator includes a moving member disposed on a rear side of the second lens assembly, a housing accommodating the moving member, and a driving unit provided between the moving member and the housing.
US09794458B2 Camera system, camera body, and communication method for acquiring lens information
A camera system, a camera body, and a communication method capable of satisfactorily acquiring lens information necessary for image processing or the like for a frame of a video from an interchangeable lens are provided. Three-wire serial communication is performed in which a request signal is transmitted to the interchangeable lens in synchronization with a synchronization signal (VSYNC) of an imaging element in a video recording mode, and a response signal is received from the interchangeable lens. In a communication mode in the video recording mode, the number of transmissions of a first request signal relating to acquisition of lens information such as a focus position, a diaphragm value, and a zoom position is limited. Accordingly, communication other than communication relating to acquisition of lens information can be performed in a period of one frame.
US09794451B2 Cloud server, control equipment and method for audio and video synchronization
A method in control equipment for synchronizing audio and video acquires an identifier of playback equipment. Information as to audio and video formats for the playback equipment is acquired playback and a first time delay data corresponding to the audio data and video data from the cloud server is set according to the identifier, the audio format information and the video format information. A first delay time between the audio data and video data according to the first time delay data acquired from the cloud server is set for the implementation of audio and video synchronization.
US09794444B2 Embedding data in a printed output
A method of embedding data in a printed output having at least two-dimensions is described in which content data for the printed output and data to be embedded in the printed output are obtained. An input property value for a content element from the content data is determined. This is used to determine an output value for a probabilistic distribution of a set of output material compositions for a spatial element of the printed output, corresponding to the content element, based on the data to be embedded and the input property value.
US09794443B2 Proximity-based user interface system and method for multifunction devices
A document processing system and method includes a display, and an embedded controller that includes a BLUETOOTH low energy network interface that is configured for communications with mobile computing devices. When a mobile computing device of a user approaches to within a threshold distance of the document processing system, the user can be presented with directions to the document processing system or service related information about the document processing system. With the mobile computing device is within close proximity of the document processing system, the embedded controller sends the user interface of the document processing system to the mobile computing device for display to the user. The distance between the mobile computing device and the document processing system can be approximated using the received signal strength indicator (RSSI) of BLUETOOTH low energy communications received from the mobile computing device by the document processing system.
US09794442B2 Communication apparatus, control method, and storage medium
A communication apparatus determines whether to stop data reception during interpretation of the data according to a situation.
US09794441B2 Electronic device using composition information of picture and shooting method using the same
An electronic device is provided. The electronic device includes a camera module, a memory configured to store reference composition information, and a camera control module configured to collect real-time composition information through the camera module. The camera control module compares the stored reference composition information and the real-time composition information to indicate to a user whether the stored reference composition information and the real-time composition information are consistent with each other.
US09794440B2 Image forming apparatus that operates in normal mode and power saving mode, control method therefor, and storage medium
An image forming apparatus which is capable of quickly switching the power mode of the image forming apparatus from the power saving mode to the normal mode. The image forming apparatus includes a printer engine and operates in a normal mode and a power saving mode, the image forming apparatus further includes a main system, a sub system communicably connected with the main system, and an engine controller communicably connected with the sub system and configured to control the printer engine. When the image forming apparatus returns from the power saving mode to the normal mode, the sub system completes start-up of software necessary for communication between the sub system and the engine controller before starting software necessary for communication between the main system and the sub system is completed, and transmits, to the engine controller, device information of the image forming apparatus acquired from the main system.
US09794436B2 Label preparation device
A label preparation device includes: an editing target switching unit which switches an editing target label among a plurality of labels arranged in particular order, in response to an operation on a keyboard; and an editing screen display unit which displays an editing screen including a preview image of the editing target label. If there is a label immediately preceding the editing target label in the order, the editing screen display unit displays a left arrow object on a forward end side of the preview image. If there is a label immediately following the editing target label in the order, the editing screen display unit displays a right arrow object on a rear end side of the preview image.
US09794434B2 Image forming apparatus including a preview display unit and non-transitory computer-readable storage medium storing image forming program
Provided are an image forming apparatus capable of setting a printing size of a margin by using a preview displayed in an enlarged manner, and a non-transitory computer-readable storage medium. When a pinch-in operation performed with respect to a particular region at a left end in a whole page preview displayed on a display section has been accepted, an MFP displays a left end preview in an enlarged manner to be larger in size than the particular region at the left end in the whole page preview. When a left-to-right swipe operation performed with respect to the displayed left end preview has been accepted, the MFP sets a size specified by the swipe operation as a printing size of a margin of a page as a target of the preview, and displays a whole page preview and a left end preview, both reflecting a margin having the set size.
US09794433B1 System and method for remote monitoring of document processing devices
A system and method for servicing of devices includes a processor, associated memory and a user interface including a display. A display generator generates images on the display. The memory stores device data for each of a plurality of serviceable devices. Device data for each device includes a unique device identifier and associated device status data. The display generator is displays an image including a device data list on the display. The user interface receives filter data from an associated user and the processor generates a subset of the device data in accordance with received filter data. The processor generates a label corresponding to the subset and stores the label in the memory. The processor further receives a device inquiry from the associated user via the user interface, and the display generator generates a labeled display image including the label responsive to a received device inquiry.
US09794432B2 Image forming system including image forming apparatus and portable terminal
Provided is a system that easily retrieves out various data from an image forming apparatus using a portable terminal and uses the various data. The image forming system of the present disclosure is an image forming system including an image forming apparatus that performs image formation and a portable terminal. The image forming apparatus has a non-contact IC tag. The portable terminal includes a selection part that receives selection of a maintenance screen to perform maintenance of the image forming apparatus from plural maintenance screens, a display part that displays the selected maintenance screen, a near field communication part that performs near field communication with the IC tag when the portable terminal comes close to the IC tag, and a control part that performs data communication with the image forming apparatus through the near field communication part.
US09794429B2 Server apparatus storing print data, printing apparatus, and printing system for checking processing status on a print data list
A server apparatus includes a first receiving unit configured to receive print data transmitted from a client apparatus, a storage unit configured to store the print data of which reception has finished by the first receiving unit, and a second receiving unit configured to receive, from a printing apparatus, a request of print data, and a transmission unit configured to, in response to the request received by the second receiving unit, transmit a list of print data to the printing apparatus, the list of print data including identification information of the print data stored in the storage unit and identification information of print data of which reception has been started but has not finished by the first reception unit yet.
US09794428B2 Distributed sensing and video capture system and apparatus
Systems and apparatus for sensing and video capture include at least one camera with an optical sensor that captures video image data of a first sampling rate. An auxiliary sensor captures auxiliary data at a second sample rate. A processor is communicatively connected to the optical sensor and auxiliary sensor. The processor transmits video image data captured at the first sample rate auxiliary sensor data captured at the second sampling rate across a data connection to a centralized computer that receives the video image data and the auxiliary sensor data and operate to present the video image data and the auxiliary sensor data on a graphical display.
US09794426B2 Mobile terminal, control method for mobile terminal, and storage medium for communicating with an image processing apparatus
A mobile terminal that communicates with an image processing apparatus including a scanning function includes a display unit that displays a screen, a first instruction unit that, when the display unit displays a specific screen corresponding to the scanning function, instructs the image processing apparatus to activate a specific application corresponding to the scanning function, and a second instruction unit that, when the mobile terminal receives an instruction to perform the scanning function, instructs the image processing apparatus to perform the scanning function.
US09794424B2 Apparatus which causes a device to print an image after communication with the device via a short distance wireless communication
An apparatus includes a communication unit which communicates with a communication device, and can write data received from the communication device in a memory. The apparatus receives an operation request to the apparatus from the communication device, and stores the received operation request in the memory. The apparatus has a function of specifying a function corresponding to the operation request of a plurality of functions included in the apparatus in a state in which the operation request is stored in the memory. When the function is specified, and is not activated, the apparatus activates the function, and controls the activated function.
US09794421B2 Method, system and apparatus for adaptive quota determination for shared resources
A method of adapting quotas for a shared resource in a network includes: retrieving, at a charging server, a usage level and a time period for each of a plurality of communication sessions associated with the shared resource, the communication sessions corresponding to respective client devices connected to the network; determining, at the charging server, whether the shared resource can support each of the communication sessions for the corresponding retrieved usage level and time period; when the determination is negative, determining a common reduced time period for each of the communication sessions at the charging server; and at the charging server, when the reduced time period exceeds a predefined threshold, allocating quotas to each of the communication sessions from the shared resource based on the usage levels and the reduced time period.
US09794420B2 Policy decision method, charging device, and system
A policy and charging rules function (PCRF) device includes a memory storage comprising instructions, at least one network interface, and at least one processor coupled to the memory and to the at least one network interface. The instructions are executed by the at least one processor to receive a policy request of a first user sent by a gateway device; determine, according to the policy request, that the first user needs to use a counter of a second user; acquire a current status of the counter of the second user using a session of the second user established between the PCRF device and a charging system; and generate a control policy of the first user according to the current status of the counter of the second user and send the control policy to the gateway device.
US09794419B2 Method and system for transition of applications to a second cellular data networking interface for a virtual SIM service
A method at a user equipment to facilitate splitting of data billing between at least two parties, the method assigning a first subset of application to a first forwarding information base (“FIB”) on the user equipment; associating the first FIB with a first cellular data interface; activating the splitting of data billing on the user equipment; and replacing the association in the first FIB to the first cellular interface with an association between a second cellular data interface and the first FIB.
US09794412B2 System for routing interactions using bio-performance attributes of persons as dynamic input
A system for routing an interaction has a queue for staging the interaction, a router running a routing strategy for routing the interaction, and a number of object models maintained for a number of agents, the object models defining one or more agent skills, the values of the object models dynamically affected by real-time bio-metrics of the agents obtained through ongoing monitoring of voice and input actions of the agents. The routing strategy routes the interaction based on comparison of the dynamically-affected skill values of the agents, as evidenced in the object models.
US09794409B2 Adaptive system with call center and trusted network
According to one aspect, a computer system comprises a processor, memory, and an interface to an electronic communication network. The memory holds instructions that when executed by the processor cause the computer system to maintain in electronic storage personal profiles of a number of clients of a service. At least one of the personal profiles includes identification of one or more entities authorized by the respective client to receive information about the client. The instructions further cause the system to produce a log associated with the client including information about the client. The information included in the log is filtered so that not all available information about the client is included in the log. The log is further made accessible via the electronic communication network to at least some of the one or more entities authorized by the client to receive information about the client.
US09794408B2 Routing of communications
Methods, systems, and products enable a healthcare facility or server to process incoming communications. When a communication is received, the time and a recipient's address may be compared to a schedule of procedures. The recipient's address may be associated with a patient or with medical personnel, such as a physician or nurse. If the time and/or the recipient's address correspond to an entry in the schedule of procedures, then an alternate destination may be chosen for the communication.
US09794405B2 Dynamic modification of automated communication systems
A dynamically updated script for an interactive communication is generated during an interactive communication. The interactive communication is monitored over a communication network using a computer with a processor and memory for input during the interactive communication. When an input incompatible with an original script for the interactive communication is detected for the interactive communication, a dynamically updated script different from the script is generated in accordance with a type of the incompatible input.
US09794397B2 Watch type mobile terminal and method for controlling the same
A watch type mobile terminal configured to be wearable on a wrist and a control method thereof are provided. The watch type mobile terminal includes a display unit configured to display screen information, a terminal body configured to allow the display unit to be installed therein and disposed on the wrist, a sensing unit configured to sense a position in which the mobile terminal is worn, and a controller configured to allocate a particular region of the display unit, as a control region for receiving a control command based on the sensing result, and process a user's touch input applied to the control region, as a control command for controlling an operation of the mobile terminal.
US09794391B2 Mobile terminal and pendant connected therewith
A pendant for use with a mobile terminal, including: a pendant body containing an antenna; and a pendant cord connected with the pendant body, the pendant cord enclosing a cable connected to the antenna for transmitting and receiving radio frequency signals.
US09794389B2 Hands-free bluetooth car system
A hands-free Bluetooth system is described. The Bluetooth system comprises a base unit and a controller unit. The controller includes a built-in speaker, a built-in microphone and a control button configured to receive an action from a user and transmit a signal which corresponds to the action to the base unit. The controller unit automatically pairs through Bluetooth to the base unit and directs audio signals received from the base unit to the built-in speaker. The base unit pairs through Bluetooth to a smartphone. The base connects to an audio system through an audio connection. Upon receiving a signal for an incoming call through the smartphone, the base unit tests whether it is connected to the speaker of the audio system. If it is connected, the base unit directs the incoming call to the audio system. However, if it is not connected, the base unit directs the incoming call to the controller.
US09794387B1 Automatically establishing a communication session associated with an event
A method for automatically making a telephone call associated with an event may include accessing, at a telephone, event data. The event data may include a date associated with an event, a time associated with the event, and a telephone number associated with the event. The method may also include presenting, on a display associated with the telephone, an event reminder on the date associated with the event and at the time associated with the event. The method may also include, in response to detecting an off-hook condition at the telephone while the event reminder remains presented on the display associated with the telephone, automatically calling, from the telephone, the telephone number associated with the event.
US09794381B2 Terminal cover body and terminal
The present invention embodiment provides a terminal cover body and a terminal, said terminal cover body being used for covering the device body of the terminal and encapsulating electronic components on the device body. The terminal cover body comprises: a casing body, wherein a slide-groove is provided in the casing body and a slide-block is provided in the slide groove; a lock engagement component which comes into contact with the slide-block; pushing the slide-block causes the lock engagement component to move between a first state and a second state, wherein, in the first state the lock engagement component is engaged with the device body and the casing body is tightly connected to the device body; in the second state, the lock engagement component is detached from the device body and the casing body can be separated from the device body.
US09794379B2 High-efficiency service chaining with agentless service nodes
An example method for distributed service chaining is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain. The packet is provided to a virtual Ethernet module (VEM) connected to an agentless service node (SN) providing an edge service such as a server load balancer (SLB). The VEM associates a service path identifier corresponding to the service chain with a local identifier such as a virtual local area network (VLAN). The agentless SN returns the packet to the VEM for forwarding on the VLAN. Because the VLAN corresponds exactly to the service path and service chain, the packet is forwarded directly to the next node in the service chain. This can enable agentless SNs to efficiently provide a service chain for network traffic.
US09794374B2 System and method for identifying and displaying application card objects based on contextual data corresponding to application function identifiers
A server includes a network communication device, a storage device, and a processing device. The processing device executes computer-readable instructions that, when executed by the processing device, cause the processing device to: receive contextual data from a client computing device via the network communication device, the contextual data indicates a first application view displayed on the client computing device; identify a first application function ID that identifies a first application function corresponding with the first application view; determine a first user intent ID that corresponds with the first application function ID; determine a second user intent ID that transitions from the first user intent ID; identify a second application function ID that corresponds with the second user intent ID; retrieve a card object corresponding with the second application function ID from the storage device; and transmit the card object to the client computing device via the network communication device.
US09794370B2 Systems and methods for distributed network-aware service placement
Exemplary methods for distributed multi-component network-aware service placement in a resource pool include utilizing a hierarchy of agents associated with computing resources of a cloud architecture. An agent in the hierarchy can merge solution encodings to find cover sets indicating feasible placement solutions that can cover an entire application placement request. The agent can partition the components across its children nodes such that global network traffic is minimized. An application graph is generated with components as vertices and edges indicating connections between the components and having associated weights indicating a data transfer rate between the components. The edges can be sorted, and each cover set can be processed by repeatedly assigning unassigned pairs of components having higher data transfer rates to a common assignment set. If multiple placement solutions are found, determined placement costs for each can be used to identify the preferred placement.
US09794369B2 Active web page consolidator
A method for allowing a user to select any portion or all of one or more webpages for display at a user accessible interface screen and a system for updating the selected portions so that the user is kept up-to-date on changes taking place on the selected webpage URL's without navigating to them. This method of allowing user selected webpage aggregation onto one or more user accessible pages gives the user the ability to read and overview a multitude of information sources quickly at one location.
US09794368B2 Apparatus and method for managing subscriber profile in wireless communication system
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Subscriber profile management in a wireless communication system is disclosed. A method for operating a user device, the method comprises: determining a state change of a direct connection with another device; and controlling a state of a profile including the same subscriber identification number as a subscriber identification number assigned to the other device, according to the state change of the direct connection.
US09794366B1 Persistent-memory management
Data can be stored in a persistent-memory device, rather than a hard drive, of a computing device. A copy of the data can also be stored in another persistent-memory device of a remote computing device. For example, a central processing unit (of the computing device) can perform a first write operation to cause a file to be stored in the persistent-memory device. A memory controller can perform a second write operation to cause another memory controller of the remote computing device to store a copy of the file in the other persistent-memory device of the remote computing device.
US09794365B2 Re-establishing push notification channels via user identifiers
Embodiments enable recovery of push notification channels via session information associated with user identifiers. A proxy service creates session information describing push notification channels (e.g., subscriptions) for a user and associates the session information with a user identifier. The session information is stored in a cloud service or other storage area separate from the proxy service. After failure of a user computing device or the proxy service, the session information is obtained via the user identifiers and the push notification channels are re-created with the session information. In some embodiments, the proxy service enables delivery of the same notification to multiple computing devices associated with the user identifier.
US09794362B2 Portal push method and network equipment
Disclosed is a portal push method, which comprises: a broadband remote access server (BRAS) equipment acquiring a website identification list, after the BRAS equipment receives a hypertext transport protocol (HTTP) request message sent by a user terminal. The BRAS equipment determines whether to send portal pages to the user terminal according to whether the identification of a target website visited by the user client has a matched item in the list. The embodiments of the present disclosure further provide a corresponding BRAS equipment. The technical solutions of the embodiments of the present disclosure can reduce push times of invalid portals and improve portal push success rate.
US09794361B2 Network user usage profiling
Methods, systems, devices, and software are disclosed for generating a network usage profile. Certain embodiments of the network usage profile include a devices-by-node profile, indicating the set of customer devices available for use in communicating with a customer-side network node located at a customer side of an access network over a period of time, where some of the customer devices are not in operative communication with the customer-side network node during a portion of that time. Other embodiments associate the network usage profile with customer information to generate device-by-customer profiles. Still other embodiments associate the network usage profile with network traffic information to generate traffic-by-device profiles. Even other embodiments associate the multiple sources and types of information to generate traffic-by-customer profiles and/or traffic-by-device-by-customer profiles. Any of the profiles may then be accessed by one or more parties for use in affecting various network services, including targeting content delivery.
US09794359B1 Implicit contacts in an online social network
In one embodiment, a method includes accessing a social graph including a number of nodes and a number of edges connecting the nodes. Each of the edges between two of the nodes represent a single degree of separation between them. The nodes include a first node corresponding to a first user associated with an online social network and a number of second nodes that each correspond to a concept or a second user associated with the online social network. The method also includes generating a user-list containing references to a number of second users. A contact-score for each second user may be calculated based on interactions between the first user and second user on the online social network, or interactions not on the online social network but accessed by the online social network. A user-list is generated containing references to second users with contact-scores above a threshold contact-score.
US09794351B2 Distributed management with embedded agents in enterprise apps
Distributed mobile device management including a plurality of management agents is disclosed. Management-related information may be retrieved from a storage location accessible to a plurality of management agents. The management-related information may have been provided to the storage location from a management agent associated with a managed application. And at least one operation may be performed based at least in part on the management-related information.
US09794348B2 Using voice commands from a mobile device to remotely access and control a computer
A method of using voice commands from a mobile device to remotely access and control a computer. The method includes receiving audio data from the mobile device at the computer. The audio data is decoded into a command. A software program that the command was provided for is determined. At least one process is executed at the computer in response to the command. Output data is generated at the computer in response to executing at least one process at the computer. The output data is transmitted to the mobile device.
US09794344B2 Handling of data transfer in a LAN-free environment
There is disclosed a method, system and computer readable medium for transferring data in a LAN-free environment, in particular for a tape backup or restore operation. Data of a client partition of a first server is sent to a partition of a LAN-free server through the Local Area Network (LAN). The data sent is then converted from TCP/IP protocol to Fiber Channel protocol. The converted data is sent to a Storage Area Network (SAN) through a Fiber Channel card and finally to a tape library. An advantage is thus to mutualize and virtualize resources, in particular Fiber Channel cards. Storage Area Network tape drives are shared using such host bus adapter cards. Certain embodiments avoid the reconfiguration of Storage Area Network tape drives when the client partition moves to a new hardware.
US09794343B2 Reconfigurable cloud computing
A method, system, and computer-readable storage medium for using a reconfigurable computing system are disclosed. For example, one method involves identifying a first application to be executed, configuring a computing node in a first configuration, and executing, according to a first workflow, at least a portion of a first application and at least another portion of the first application. The method also involves identifying a second application to be executed, configuring the computing node in a second configuration, and executing, according to a second workflow, at least a portion of a second application and at least another portion of the second application.
US09794342B2 Storage system and control method for storage system
A virtual storage apparatus based on a plurality of storage apparatuses including a first storage apparatus and a second storage apparatus is provided to a host computer. A first logical unit of the first storage apparatus and a second logical unit of the second storage apparatus are provided to the host computer in a form of a virtual logical unit. The first storage apparatus is configured to return a response to an inquiry about port statuses from the host computer designating the virtual logical unit, the response indicating that the status of the first port is a status as indicated by the first port management information and the second storage apparatus is unavailable to respond to the inquiry about port statuses. The second storage apparatus is configured to return no response to the inquiry.
US09794333B2 Workload and defect management systems and methods
Disclosed herein are methods and systems for workload and defect management. According to an aspect, a method includes communicating, to a first computing device, an identifier associated with a second computing device. The method also includes receiving, from the first computing device, maintenance information associated with the identifier. Further, the method also includes implementing a workload management policy at the second computing device based on the maintenance information.
US09794332B2 Method and apparatus for load balancing in network based telephony application
Techniques are disclosed for load balancing in networks such as those networks handling telephony applications. By way of example, such techniques direct requests associated with calls to servers in a system comprised of a network routing calls between a plurality of callers and at least one receiver wherein a load balancer sends requests associated with calls to a plurality of servers as follows. A request associated with a call, a caller, or a receiver is received, depending on the particular load balancing technique. A server is selected to receive the request. A subsequent request is received. A determination is made whether or not the subsequent request is associated with the call, the caller, or the receiver, depending on the particular load balancing technique. The subsequent request is sent to the server based on determining that the subsequent request is associated with the call, the caller, or the receiver, again depending on the particular load balancing technique.
US09794330B2 Server, server management system and server management method
A server, a server management system and a server management method are disclosed. The server comprises a field replaceable unit (FRU) memory and a baseboard management controller (BMC). The FRU memory stores an FRU data. The BMC receives an FRU access command from a remote management computer via an intelligent platform management interface (IPMI). The FRU access command comprises an FRU identification (ID). The BMC determines whether the FRU ID belongs to the FRU memory. If the FRU ID does not belong to the FRU memory, the BMC accesses a custom file according to the FRU ID. The custom file is different from the FRU data.
US09794329B2 Cloud application with secure local access
A framework for cloud applications with fast secured local access is described herein. In accordance with one aspect, a cloud application (App) on an application server on a cloud is provided. The cloud application includes a dispatcher having location information of a local resource on a local server required by the App. The dispatcher may be loaded onto an end-user device in response to a user accessing the cloud application from a browser on the end-user device on a local network. A request for the local resource may be issued to the local server by the dispatcher on the end-user device. A result of the request may be received from the local server by the dispatcher on the end-user device, and displayed on the browser.
US09794328B1 Securing content using pipelines
A transcoding service is described that is capable of transcoding or otherwise processing content, such as video, audio or multimedia content, by utilizing one or more pipelines. A pipeline can enable a user to submit transcoding jobs (or other processing jobs) into an available pipeline, where a transcoding service (or other such service) assigns one or more computing resources to process the jobs received to each pipeline. The transcoding service and the pipelines can be provided by at least one service provider (e.g., a cloud computing provider) or other such entity to a plurality of customers. A service provider can also provide the computing resources (e.g., servers, virtual machines, etc.) used to process the transcoding jobs from the pipelines.
US09794327B2 Method and system for communication between machine to machine M2M service provider networks
Machine-to-Machine (M2M) communication has been described for communication in a single network in among others publications from the European Telecommunications Standards Institute (ETSI). The publications describe a single network with defined entities, a resource structure and protocols. According to the invention, a solution is described for communication between entities residing in different M2M networks. Entities or applications residing in a first M2M network requiring information of an entity in another second M2M network submit a request with a target ID pointing to the entity in the second M2M network. The request is forwarded to the network node of the first network. The network node of the first network checks whether the target ID matches with an entity of a second network that according to a Domain Name Server (DNS) lookup has an address of a second network node of the second M2M network. On a match the request is routed towards the retrieved second network node of the second M2M network. The second network node routes the request further towards the second entity according to registration information stored in its resources. On reception of the request the second entity processes the request and returns a reply via the path created by the previous steps.
US09794321B2 System, method and a tag for mapping tagged objects to context-aware applications
There is provide a computing system configured to receive an object identifier and contextual information from an end-user, to compute the object identifier and contextual information based on pre-defined set of rules, to map said object identifier and contextual information to an entry point associated with a specific computer application among a plurality of applications, and to provide access to said specific computer application to said end-user. There is also provided a method to do the same, and a tag for use with a physical object, the tag comprising a redirection identifier embodying a unique identifier of the object and an HTTP address of a server permitting to redirect or provide access to the user to a specific computer application about the object.
US09794320B2 Method and apparatus for providing web service in wireless communication system
In a wireless communication system, a mobile terminal providing a web service receives information about a web page for a web service from a mobile terminal, receives at least one embedded object included in the web page from a web server, sets a Discontinuous Reception (DRX) interval for the mobile terminal based on a size of the at least one embedded object, transmits information about the set DRX interval to the mobile terminal, and transmits the at least one embedded object to the mobile terminal at a time the set DRX interval ends.
US09794319B2 Modular transcoding pipeline
A modular transcoder software system for transcoding a multimedia message includes a collection of software modules and objects for the dynamic construction of a series of complex, related or unrelated operations in the form of a transcoding pipeline. The transcoding pipeline provides a hierarchy of operations, such that they can be organized and optimized with the aim of being able to execute the entire hierarchy in a single pass. Additionally, external plugins can customize the mechanism of building the pipeline by altering, adding to, or removing construction knowledge.
US09794318B2 Video distribution system including progressive playback
A receiver driven approach for playback of remote content is described. One embodiment includes obtaining information concerning the content of the media file from the remote server, identifying a starting location within the media sequence, identifying byte ranges of the media file corresponding to media required to play the media sequence from the starting location, requesting the byte ranges required to play the media sequence from the starting location, buffering received bytes of information pending commencement of playback, playing back the buffered bytes of information, receiving a user instruction, identifying byte ranges of the media file corresponding to media required to play the media sequence in accordance with the user instruction, flushing previous byte range requests, and requesting the byte ranges required to play the media in accordance with the user instruction.
US09794313B2 Methods and systems to facilitate synchronization of multiple media streams
A method can include receiving, at a given node, a continuous stream of input media from a media source. A value can be computed as a function of each of a plurality of data blocks of the continuous stream of input media received by the given node. The method can also include receiving, at the given node, values computed for a plurality of data blocks of the continuous stream received by another node. A set of the received values from the other node can be correlated with a set of the computed values for the given node to determine an offset between the blocks of the continuous stream of input media that are received by the given node and the blocks of the continuous stream of input media that are received by the other node.
US09794312B2 Method and device for providing streaming content
A method and apparatus for an adaptive Hypertext Transfer Protocol (HTTP) streaming service using metadata of content are provided. The metadata of the content may be efficiently divided for a purpose of use of a terminal based on general media information or specific media information, and may be transmitted to the terminal. A group may include one or more representations of content. The metadata may include a group element, and the group element may provide a summary of attributes of one or more representations included in the group.
US09794308B2 Systems and methods for handling interruptions in receiving media content due to a change in wireless frequency channel
To address a service interruption while a procedure to change to a dynamic frequency selection (DFS) wireless frequency channel is being performed, a service interruption message is displayed to the user or some other action is taken while a wireless access point changes to the DFS wireless frequency channel. Another action to address the service interruption may be the media content client playing buffered media content stored in a buffer on the media content client to avoid an appearance to the user of an interruption in service. Also, in some embodiments, buffered video is received from the receiving device after the interruption in service has ended so that the media content client may resume playing, and the user may continue to view, the video program from the point where the user left off when the DFS change process and service interruption had started.
US09794305B2 Consistent messaging with replication
A messaging entity configured in a memory of first node of a plurality communicatively coupled nodes is disclosed. The nodes are included in a distributed computing system. The messaging entity is configured to operate as a secondary messaging entity in a messaging server for the plurality communicatively coupled nodes. The messaging entity is communicatively couple to a primary messaging entity configured in a memory of a second node of the plurality of nodes. The primary messaging entity is configured to store a message; store a copy of the message.
US09794301B1 Telephone session initiation system
A method is presented that allows for coordination between parties wanting to communicate. The method serves to replace the current ‘synchronous’ method of phone session initiation (which allows random people to interrupt one's flow) with a system that allows both parties to indicate when they are ready and willing to communicate with particular parties. Instead of a first party directly calling a second party, both indicate readiness to talk to each other by means of (for instance) status indicators on a smartphone, thereby eliminating the obtrusive nature of the time-limited phone ring. The method also includes an apparatus that determines which is the optimal party to actually place the call such that overall expenses may be minimized.
US09794300B2 Method and system for reducing message passing for contention detection in distributed SIP server environments
A method, a system, and a computer program product are provided for reducing message passing for contention detection in distributed SIP server environments. The method is implemented in a computer infrastructure having computer executable code tangibly embodied on a computer readable storage medium having programming instructions operable to determine that a first site is waiting for a first object locked by a second site. The programming instructions are further operable to determine that a third site is waiting for a second object locked by the first site, and to send a first probe to the second site to determine whether the second site is waiting. A second probe is received and indicates that a site is waiting for an object locked by the first site. The second probe further indicates a deadlock in a distributed server environment to be resolved.
US09794295B2 Security policy editor
A shared computing infrastructure has associated therewith a portal application through which users access the infrastructure and provision one or more services, such as content storage and delivery. The portal comprises a security policy editor, a web-based configuration tool that is intended for use by customers to generate and apply security policies to their media content. The security policy editor provides the user the ability to create and manage security policies, to assign policies so created to desired media content and/or player components, and to view information regarding all of the customer's current policy assignments. The editor provides a unified interface to configure all media security services that are available to the CDN customer from a single interface, and to enable the configured security features to be promptly propagated and enforced throughout the overlay network infrastructure. The editor advantageously enables security features to be configured independently of a delivery configuration.
US09794290B2 Quantitative security improvement system based on crowdsourcing
The efficacy of security products and practices is quantified, based on monitored activities and conditions on multiple computers over time. A set of metrics is defined, specifying what criteria concerning computer security systems are to be quantified. Telemetry data concerning the defined metrics are collected from multiple computers, such as the customer base of a security product vendor. Security configuration information such as the deployments and settings of security systems on computing devices is monitored. This monitored information tracks what security products are deployed on which machines, and how these products are configured and used. Collected telemetry is correlated with monitored configuration information, enabling determination of what security product deployments and settings are in place when specific security incidents, operations and other types of actions occur. The determined correlations are amalgamated, amalgamated correlation information is analyzed, and the efficacy of specific security products and configurations is quantified.
US09794287B1 Implementing cloud based malware container protection
A method, and a system are provided for implementing cloud based malware container protection. A container is provisioned for a user. The container is monitored, and when an abnormal activity is detected based upon historical metric data, a unikernel is provisioned and a user application is migrated to the unikernel while inspection occurs.
US09794282B1 Server with queuing layer mechanism for changing treatment of client connections
According to certain non-limiting embodiments disclosed herein, the functionality of a server is extended with a mechanism for identifying connections with clients that have exhibited attack characteristics (for example, characteristics indicating a DoS attack), and for transitioning internal ownership of those connections such that server resources consumed by the connection are reduced, while keeping the connection open. The connection thus moves from a state of relatively high resource use to a state of relatively low server resource use. According to certain non-limiting embodiments disclosed herein, the functionality of a server is extended by enabling the server to determine that any of a client and a connection exhibits one or more attack characteristics (e.g., based on at least one of client attributes, connection attributes, and client behavior during the connection, or otherwise). As a result of the determination, the server changes its treatment of the connection.
US09794280B2 Verifying templates for dynamically generated web pages
A system and method for detecting encoding errors in a template used to generate a Web page. The template is analyzed using static analysis in a source code format, without rendering the Web page. A report can be generated including details on the detected errors and provide options on how to address the errors.
US09794278B1 Network-based whitelisting approach for critical systems
A method for modeling or monitoring a control system is provided. The method includes deriving a plurality of message prototypes from a plurality of messages of the control system, the plurality of messages gathered from the control system during operation of the control system. The method includes deriving relationships among the plurality of message prototypes and constructing a model of the control system, based upon the derived message prototypes and the derived relationships among the plurality of message prototypes, wherein at least one method operation is executed through a processor.
US09794277B2 Monitoring traffic in a computer network
A computer-implemented method, computerized apparatus and computer program product for monitoring traffic in a computer network. The computer network comprises a plurality of devices configured to apply a transformation function on a target port identifier of a requested transmission by an application program executing thereon and direct the transmission to a different target port per the scrambled identifier thereby obtained. The transformation function depends on at least one parameter shared among the plurality of devices and applying thereof is conditioned on the application program requesting transmission being listed in a list of authorized application programs. Attempts to access invalid ports as defined by the transformation function are identified and an action for mitigating a security threat ascribed thereto is provided.
US09794275B1 Lightweight replicas for securing cloud-based services
Methods, computer program products, computer systems, and the like, which provide security in cloud-based services using lightweight replicas, are disclosed. The methods, computer program products, computer systems, and the like include detecting an intrusion into an application server, dynamically provisioning a replica application server in a server system in response to the detecting the intrusion, and transitioning a datastream from the application server to the replica application server, where the application server is provisioned in the server system, the intrusion is an attack on the application server, and the attack is conducted via a datastream between a first computing system and the application server. The replica application server is a replica of at least a portion of the application server.
US09794274B2 Information processing apparatus, information processing method, and computer readable medium
An attack detection apparatus (6) collects packets a transmission source or a transmission destination of which is a protection target apparatus (5), and generates packet information by setting an entry for each collected packet and describing attribute data of the packet together with occurrence time of the packet for each entry. Further, the attack detection apparatus (6) stores definition information which defines an extraction time width and an extraction condition for each category of attack. When a security apparatus (4) detects a packet which corresponds to any category, the attack detection apparatus (6) selects the extraction time width and the extraction condition of a category of a detection packet detected as a selection extraction time width and a selection extraction condition, specifies an extraction time range which starts from the occurrence time of the detection packet and whose width is equal to the selection extraction time width, extracts from the packet information an entry the occurrence time of which is included in the extraction time range and the attribute data of which coincides with the selection extraction condition, and determines presence or absence of an attack to the protection target apparatus (5) based on an extraction result.
US09794273B2 Monitoring control system
In order to deal with security threat in a monitoring control system having a plurality of networks different in security level, the monitoring control system performs unidirectional physical communication between a monitoring control device connected to a network with a higher security level and a monitoring device connected to a network with a lower security level via a sender and a receiver, thereby securing safety of the network with the higher security level.
US09794269B2 Method and system for validating rights to digital content using a digital token
A computer implemented method for generating a receipt. The method includes, accessing a universal digital fingerprint associated with an item of content, wherein the fingerprint is invariant across one or more formats of the item of content. The method includes accessing an identification value by the processor. The method includes generating a digital token by cryptographically binding the digital fingerprint and the identification value, wherein the digital token is invariant across the one or more formats of the item of content. The method further includes associating the digital token with at least one right to the item of content.
US09794268B2 Privacy policy management method for a user device
An arrangement for enabling users to set and modify privacy policies is described. User attributes and existing privacy policies are used to determine the similarity between users. On this basis, the nearest-neighbors to a particular user are determined. When a user is required or wishes to provide or modify a policy, the policies of those nearest neighbors are used to recommend a privacy policy to the user.
US09794266B2 Using multiple credentials for access and traffic differentiation
The disclosure relates in some aspects to establishing connectivity with a network using a first set of credentials and determining whether additional connectivity needs to be established (e.g., using a second set of credentials) to communicate data. The disclosure relates in some aspects to the use of multiple credentials for access and service connectivity. For example, traffic generated by a device may be authorized based on a different set of credentials than the set of credentials used to access the network (e.g., to connect to an LTE network for a PDN connection). In this way, traffic belonging to a specific service or application can be charged and policed based on service specific needs. The disclosure thus relates in some aspects to the use of access credentials and service credentials. These different types of credentials can be used to enable traffic differentiation and policing based on the credentials in use.
US09794264B2 Privacy controlled network media sharing
A Privacy Controlled Social Network including a first device that shares content with a second device through at least one network, where content is “encoded” or “locked” at the first device by applying a locking code. In embodiments, the locked content that is shared may include media that is locked by applying the locking code at the first device. The locked content may be shared with the second device and include a message or caption that is not locked and viewable by the recipient user of the second device. The locked content may be unlocked by providing the appropriate code to a user interface to unlock the content for the user of the second device. A lock/unlock scheme using input related to a display of an item associated with the content to lock/unlock the content may utilize gestures on a touch screen displaying the item as the lock/unlock code.
US09794261B2 Method and apparatus for controlling access to a server
A method for use in a Digital Living Network Alliance (DLNA) server, for controlling access to the DLNA server, includes: receiving an access request sent from a DLNA client to access the DLNA server; obtaining a media access control (MAC) address used by the DLNA client; detecting whether the MAC address exists in a preset blacklist; and denying access of the DLNA client, if the MAC address exists in the preset blacklist.
US09794256B2 System and method for advanced control tools for administrators in a cloud-based service
A cloud-based platform (e.g., cloud-based collaboration and/or storage platform/service) is described that provides advanced control tools for administrators of an enterprise account. The advanced control tools permit the administrator to set mobile security settings for mobile devices running applications that allow a user to access enterprise data in the cloud-based platform; activity notification archiving; support for multiple email domains; automation processes; and policies. The settings selected by the administrator are applied enterprise-wide within the cloud-based platform.
US09794255B2 Communication terminal and communication processing method
A processor stores authentication information managed by a native environment of the communication terminal in a first storage region of the storage device. The processor stores authentication information of an application to be executed on a Web application execution environment of the communication terminal in a second storage region of the storage device. The processor performs a control to write the authentication information stored in the first storage region to the second storage region when authentication information used by the application is not stored in the second storage region and is stored in the first storage region.
US09794254B2 System and method for protecting specified data combinations
A method in one example implementation includes extracting a plurality of data elements from a record of a data file, tokenizing the data elements into tokens, and storing the tokens in a first tuple of a registration list. The method further includes selecting one of the tokens as a token key for the first tuple, where the token is selected because it occurs less frequently in the registration list than each of the other tokens in the first tuple. In specific embodiments, at least one data element is an expression element having a character pattern matching a predefined expression pattern that represents at least two words and a separator between the words. In other embodiments, at least one data element is a word defined by a character pattern of one or more consecutive essential characters. Other specific embodiments include determining an end of the record by recognizing a predefined delimiter.
US09794253B2 Device security utilizing continually changing QR codes
A method provides device access security via use of periodically changing Quick Response (QR) codes. The method includes: generating (706) a first authentication QR code and assigning (708) the generated QR code as the current authentication mechanism for accessing the device. Contemporaneously with the generation of the QR code, at least one QR code validity parameter is established (710) to define when access to the device can be provided to a second device that provides the correct authentication QR code along with the access request. The method includes, in response to a pre-defined trigger (712) of the QR code validity parameter: generating (704) a new authentication QR code, different from a previously generated authentication QR code; assigning (708) the new authentication QR code as the current authentication mechanism for accessing the device; and enabling access to the first device to only second devices that provide the current authentication QR code.
US09794250B2 On-demand service security system and method for managing a risk of access as a condition of permitting access to the on-demand service
In accordance with embodiments, there are provided mechanisms and methods for managing a risk of access to an on-demand service as a condition of permitting access to the on-demand service. These mechanisms and methods for providing such management can enable embodiments to help prohibit an unauthorized user from accessing an account of an authorized user when the authorized user inadvertently loses login information. The ability of embodiments to provide such management may lead to an improved security feature for accessing on-demand services.
US09794249B1 Using a digital certificate with multiple cryptosystems
In a general aspect, a digital certificate can be used with multiple cryptography systems (“cryptosystems”). In some cases, the digital certificate includes a public key field, which contains a first public key of an entity. The first public key of the entity is associated with a first cryptosystem. The digital certificate includes a signature value field, which contains a first digital signature of a certificate authority. The first digital signature is associated with the first cryptosystem. The digital certificate includes an extension. The extension contains a second public key of the entity, a second digital signature of the certificate authority or both. The second public key is associated with a second cryptosystem, and the second digital signature is associated with the second cryptosystem.
US09794248B2 Alternative approach to deployment and payment for digital certificates
A method for managing payment of digital certificates includes receiving a request to issue a digital certificate to a subscriber, capturing and saving payment information of the subscriber, performing a first authentication and verification of the subscriber at a first time, and performing at least one additional authentication and verification of the subscriber at least once every authentication period. A long-lived certificate is issued to the subscriber provided the subscriber is authenticated and verified. The long-lived certificate is valid for an expiration period. However, the long-lived certificate is revoked if (1) the additional authentications and verification produce invalid results, or (2) if payment is not received during a payment period. The authentication period is shorter than the expiration period and there are at least a first and a second authentication period within the expiration period. The expiration period is longer than the authentication period.
US09794246B2 Increased communication security
An apparatus may include a communication interface and a security component. The communication interface may be configured to receive a Constrained Application Protocol (CoAP) message including authentication data. The security component may be configured to perform message validation based on the authentication data.
US09794243B2 Systems and methods for location-based device security
A device may collect environmental information surrounding the device. Based on the collected environmental information, the device may automatically identify a potentially secured location that has lower security risk. When a potentially secured location is identified, the device may prompt the user to setup a security profile having reduced security requirement for the secured location. The device may store and associate the security profile with the secured location. The device may activate the security profile with reduced security requirement when the device is in the secured area. Further, the security profile may require that certain features of the device be disabled when the device is in the secured location.
US09794241B2 System and method for connecting to security device by means of peer-to-peer (P2P) relay demon
A system and method for connecting to a security device by means of a Peer-to-Peer (P2P) relay demon. In the present disclosure, a P2P technology is applied to a technology for connecting to a security device, such as a Network Video Recorder (NVR), Digital Video Recorder (DVR), or Internet Protocol (IP) camera, to thereby communicate with the security device in a safe and convenient way.
US09794238B2 System for key exchange in a content centric network
One embodiment provides a system that facilitates secure communication between computing entities. During operation, the system generates, by a content-consuming device, a first key based on a first consumer-share key and a previously received producer-share key. The system constructs a first interest packet that includes the first consumer-share key and a nonce token which is used as a pre-image of a previously generated first nonce, wherein the first interest has a name that includes a first prefix, and wherein the first nonce is used to establish a session between the content-consuming device and a content-producing device. In response to the nonce token being verified by the content-producing device, the system receives a first content-object packet with a payload that includes a first resumption indicator encrypted based on a second key. The system generates the second key based on a second consumer-share key and the first content-object packet.
US09794234B2 Pairwise pre-shared key generation system
A Key Generation System (KGS) includes a key server, a first network element, and a second network element. The first and second network elements register with the key server and receive first and second KGS key seeds and first and second KGS identifiers, respectively. The first network element transmits the first KGS identifier to the second network element and obtains the second KGS identifier. The first network element computes a shared key based on the first KGS key seed and the second KGS identifier. The second network element receives the first KGS identifier from the first network element and computes the shared key based on the second KGS key seed and the first KGS identifier.
US09794233B2 Systems and methods for application identification
Systems and methods for application identification in accordance with embodiments of the invention are disclosed. In one embodiment, a user device includes a processor and memory configured to store an application, a session manager, an application identifier, and at least one shared library, and the processor is configured by the session manager to communicate the application identifier and the application identifier data to an authentication server and permit the execution of the application in response to authentication of the application by the authentication server.
US09794230B2 Method and system for encrypting multimedia streams
A method and system for encrypting data packets in a multimedia stream are disclosed. Each data packet includes a header portion and a payload portion. In one embodiment, one or more data packets are selected from an incoming multimedia stream. Further, one or more of a header portion and a payload portion are selected within the one or more data packets. Furthermore, one or more regions in the selected one or more of the header portion and the payload portion are encrypted using an encryption algorithm.
US09794225B2 Secure network communications in a mobile device over IPsec
Methods and systems of communicating with secure endpoints included within a secured network from a mobile device external to the secured network is disclosed. The method includes initiating a VPN-based secure connection to a VPN appliance, and initializing a stealth-based service on the mobile device. The method further includes transmitting user credential information from the mobile device to a VDR broker via the VPN appliance, and receiving status information from the VDR broker identifying a VDR associated with the mobile device and providing a connected status. The method also includes communicating with one or more secure endpoints within the secured network via a VPN connection to the VDR via the VPN appliance and through the VDR to the one or more secure endpoints within a community of interest based on the user credential information transmitted to the VDR broker.
US09794221B2 Recovery of a failed registry
A system, method, and computer-readable medium, is described that enables a registry recovery service to retrieve zone files from a target registry, archive the zone files, publish the zone files to a managed DNS server, reconcile ownership of the zone files, and publish the zone files to a provisioning DNS server. The registry recovery service may also implement a WHOIS server for the zone and ownership information and may also implement zone specific features particular to the target registry's TLD. The registry recovery service may also enable DNSSEC extensions on the recovered registry DNS services.
US09794218B2 Persistent network addressing system and method
An improved computer system for maintaining a network connection whereby a local computer stores a persistent address application, which adapts at least one processor to: receive a first request, from a requesting application, to send a first outbound data to a remote computer; and present a local persistent address as the local routable address; and/or a remote persistent address as the remote routable address; wherein the persistent address application utilizes network implementation details. A method for providing persistent network addressing by receiving, at a local computer a first request, from a requesting application, to send a first outbound data to a remote computer; sending the first outbound data to the remote computer; and presenting a local persistent address as the local routable address and/or a remote persistent address as the remote routable address; wherein the persistent address application utilizes network implementation details.
US09794216B2 Request routing in a networked environment
A system, methods, and interfaces for managing request routing functionality associated with resource requests for one or more resources associated with a content provider. The request routing functionality can correspond to the processing of domain name service (“DNS”) requests for resources by computing devices and the resolution of the DNS requests by the identification of a network address of a computing device that will provide the requested resources. Unlike traditional CDN service provider implementation, the processing of resource requests by the service provider is separate from the delivery of the content by the content provider (or on behalf of the content provider).
US09794215B2 Private tunnel network
A processor-based system and method comprising a private tunnel connector operable to receive a network connection request, test the connection request for private network information, generate network connection information in response to the test, and respond to the network connection request with the network connection information. The testing may include accessing a DNS server for private network information, and receiving private domain information from a private domain server. The private tunnel connector is further operable to connect to a private domain server that is coupled to the private network connector through the Internet. The private domain server may include private cloud information such that users may create and access one or more private clouds using tunneling technologies. Domain servers and host machines may employ various encryption schemes to facilitate adding public Internet resources to the private cloud.
US09794213B1 Social interaction data preservation for augmented photos
Embodiments of the present invention provide a method, system and computer program product for social interaction data preservation for augmented photos. In an embodiment of the invention, a method for social interaction data preservation for augmented photos includes selecting for replacement an image posted to a social media site and replacing the selected image in the social media site with a new image. The method also includes determining if the new image is similar to the selected image and preserving a thread of responsive postings for the selected image in the social media site and associating the preserved thread with the new image in the social media site if the new image is determined to be similar to the selected image, but otherwise discarding the thread of responsive postings.
US09794212B2 Ascertaining events in media
Disclosed are various embodiments relating to the identification of events that occur within a media item. A plurality of messages are received from client devices, wherein each of the messages comprises a timestamp indicating a time relative to a media item. The existence of an event in the media item is determined based at least in part on a clustering of at least a subset of the messages received. Points are awarded to a subset of users based at least in part upon the timestamp and the clustering of messages received.
US09794210B1 Priority assignment based on similarity
Priority assignment embodiments are discussed. In one embodiment, a system comprises a comparison component configured to make a first comparison of a first message of a message set against a mission with regard to a similarity of the first message to the mission to produce a first message similarity result and make a second comparison of a second message of the message set against the mission with regard to a similarity of the second message to the mission to produce a second message similarity result. The system also comprises a priority component configured to assign a transfer priority order among the first message and the second message through use of the first message similarity result and the second message similarity result, where the transfer priority order is based, at least in part, on the more similar a message is to the mission the higher priority given to the message.
US09794207B2 Email conversation management system
System and methods of searching conversations are provided. At a computing device having one or more processors and memory storing programs executed by the one or more processors, and responsive to a search query a conversation having two or more messages is identified. Further, there is formatted for display to a user (A) information representing the identified conversation, and (B) a sorted sender list displayed as a single-line item, associated with the identified conversation. The sorted sender list includes (i) a first sender identifier identifying a first sender of a first message in the two or more messages, and (ii) a second sender identifier identifying a second sender of a second message in the two or more messages. The first sender list identifier and the second identifier are sorted.
US09794206B2 Method and apparatus for managing the display of messages of a group chat
A computing device performs a method of managing the display of messages on its screen. After receiving a first user request to open a target communication window on the screen, the computing device opens the target communication window and displays a first set of messages associated with the group chat in the target communication window, which was received by the computing device after last closure of the target communication window and includes a recently-received message. After receiving a second user request to access an earlier-received message after the last closure of the target communication window, the computing device replaces the display of the first set of messages with the display of a second set of messages in the target communication window, which was received by the computing device after the last closure of the target communication window and includes the earlier-received message.
US09794205B2 Modifying rich media components for an interactive email
An interactive email experience is customized to the recipient's interests by modifying rich media components provided by the email based on the recipient's interactions with other rich media components from the email. To facilitate the interactive email experience, rich media components are provided by a marketer for an email campaign with mapping information mapping product features to portions of the rich media components. When an email is sent with links to the rich media components, the recipient's interactions with a rich media component is tracked. Product features are ranked based on the recipient's interactions with various portions corresponding with the various product features. The product feature rankings are then used to modify other rich media components from the email to emphasize portions of the other rich media components corresponding with product features of interest to the recipient.
US09794200B2 Server device, method, and system
The server device stores image information uploaded by any registered user in conjunction with the identification information of the uploading user who uploaded said image information and manages the association between tagged image information that is subjected to tagging and tagged users by performing a tagging operation that associates image information uploaded to the image information storage unit by the uploading user with any registered user in response to a request from the uploading user or other registered users.
US09794193B2 Software defined visibility fabric
A fabric manager includes: a processing unit having a service chain creation module configured to create a service chain by connecting some of a plurality of nodes via virtual links; wherein the some of the plurality of nodes represent respective network components of an auxiliary network configured to obtain packets from a traffic production network; and wherein the service chain is configured to control an order of the network components represented by the some of the plurality of nodes packets are to traverse.
US09794192B2 Method and device for allocating packet switching resource
Embodiments of the present invention provide a method and a device for allocating a packet switching resource, which includes: receiving, by a management plane unit, a service transport request carrying service information, where the service information includes source node information, sink node information, quality of service QoS requirement information, and bandwidth requirement information; determining, by the management plane unit, at least one transport path according to the service information and a preset resource allocation policy, and generating a routing table entry/forwarding table entry according to the at least one transport path; and sending, by the management plane unit, the routing table entry/forwarding table entry to data plane units of packet switching devices of each transport path of the at least one transport path. According to the embodiments, transparent and controllable allocation of a network bandwidth resource is implemented, so that utilization efficiency of a network resource is improved.
US09794191B2 Reduced bandwidth data uploading in data systems
Methods and apparatus for uploading data from a sender to a receiver. A data deduplication technique is described that may reduce the bandwidth used in uploading data from the sender to the receiver. In the technique, the receiver, rather than the sender, maintains a fingerprint dictionary for previously uploaded data. When a sender has additional data to be uploaded, the sender extracts fingerprints for units of the data and sends the fingerprints to the receiver. The receiver checks its fingerprint dictionary to determine the data units to be uploaded and notifies the sender of the identified units, which then sends the identified units of data to the receiver. The technique may, for example, be applied in virtualized data store systems to reduce bandwidth usage in uploading data.
US09794190B2 Managing asset deployment for a shared pool of configurable computing resources
Disclosed aspects include managing asset deployment for a shared pool of configurable computing resources having a set of virtual machines associated with a deployment server. A set of deployment topology data is collected for the shared pool of configurable computing resources. Using the set of deployment topology data, it is determined to establish a dynamic management server communicatively connected with both the deployment server and the set of virtual machines. Based on the set of deployment topology data, the dynamic management server is established communicatively connected with both the deployment server and the set of virtual machines.
US09794189B2 Bandwidth management for content delivery
A service platform for a content delivery network indicates a transmission rate cap to be imposed when streaming data to a data requesting device over an access network. Means are provided for receiving a service request for delivery of data from a requesting device as the result of which the requested data is delivered as a prioritised traffic stream over an access link to the requesting device. The service platform processes the service request to determine one or more performance characteristics of said access link and uses this to determine the maximum transmission rate for the requested data to be streamed at over the access link during its delivery to the requesting device. This information is included in a source address for the requested data which the service platform generates, typically as a URL. The maximum transmission rate set is provided as a prefix to the URL (or in some other meta-data format) to the requesting device, and the content delivery platform is configured to ensure that requests for media assets which are received at the logical or virtual ports associated with the URL pre-fixes are responded to by transmissions limited to the maximum bandwidth cap indicated by the URL pre-fix.
US09794187B1 System, method, and computer program for resource conversion in a network function virtualization (NFV) based communication network
A system, method, and computer program product are provided for resource conversion in network function virtualization based networks. In use, a first resource of a first type is identified in a first hardware unit, the first resource at least potentially having insufficient availability and being associated with a Network Function Virtualization based (NFV-based) communication network. Additionally, a second resource of a second type is identified, the second resource being associated with the first hardware unit, the second resource being identified as sufficiently available. Further, a third resource of the first type is identified, the third resource being associated with a second hardware unit, the second hardware unit being associated with the second resource, the third resource being identified as sufficiently available.
US09794185B2 Bandwidth guarantee and work conservation
According to an example, a method for bandwidth guarantee and work conservation includes determining virtual machine (VM) bandwidth guarantees assigned to VMs in a network including a source VM that communicates with destination VMs. The method further includes assigning minimum bandwidth guarantees to communications between the source VM with the destination VMs by dividing a VM bandwidth guarantee assigned to the source VM between the destination VMs based on active VM-to-VM communications between the source VM and the destination VMs. The method also includes allocating, by a processor, spare bandwidth capacity in the network to a communication between the source VM and a destination VM based on the assigned minimum bandwidth guarantees.
US09794183B2 Interconnect flow control
A communication technique which includes determining, at least in part by comparing data associated with a packet that has been pulled from a received packet queue with a highest sequence number among packets that have been placed in the received packet queue, that the received packet queue has space available to receive a further packet. A receiver with which the received packet queue is associated is sent, based at least in part on the determination, a next packet.
US09794181B2 Dynamic initial congestion window modification
Some embodiments increase throughput across a connection between a host and a client by initializing the congestion window for that connection dynamically using a previously settled value from a prior instance of the connection established between the same or similar endpoints. An initialization agent tracks congestion window values for previously established connections between a host and various clients. For the tracked congestion window values of each monitored connection, the initialization agent stores an address identifying the client endpoint. When establishing a new connection, the initialization agent determines if the new connection is a recurring connection. A new connection is recurring when the new connection client address is similar or related to an address identified for a previous monitored connection. For a recurring connection, the initialization agent initializes the new connection congestion window using a value derived from the tracked congestion window values of the recurring connection.
US09794179B2 Reduced authentication times in constrained computer networks
In one embodiment, a capable node in a low power and lossy network (LLN) may monitor the authentication time for one or more nodes in the LLN. The capable node may dynamically correlate the authentication time with the location of the one or more nodes in the LLN in order to identify one or more authentication-delayed nodes. The node may then select, based on the location of the one or more authentication-delayed nodes, one or more key-delegation nodes to receive one or more network keys so that the key-delegation nodes may perform localized authentication of one or more of the authentication-delayed nodes. The capable node may then distribute the one or more network keys to the one or more key-delegation nodes.
US09794175B2 Transmitting a data packet in a content-centric network
A method of transmitting a data packet from a content provider in a content-centric network CCN includes verifying whether a content request packet requesting a content identical to a content of a content request packet being received from a content requester is present in a pending interest table (PIT), increasing a value of a counter corresponding to the content request packet, comparing the value of the counter to a predetermined threshold value, and transmitting a data packet using a predefined broadcast media access control (MAC) address in response to the content request packet being received and the value of the counter being greater than or equal to the threshold value.
US09794168B2 Scalable continuity test for a group of communication paths
In one embodiment, a method includes generating at a network device, a continuity test packet configured to pass through a set of communication paths terminating at the network device and at least one other network device located at an opposite end of the communication paths, transmitting at the network device the continuity test packet on a first communication path in the set of communication paths, and identifying at the network device a failure in the set of communication paths if the continuity test packet is not received on a last communication path in the set of communication paths. An apparatus and logic are also disclosed herein.
US09794166B2 Method and system for improved routing
Method for use in updating a routing table of a router of a plurality of routers, said routing table comprising the route(s) to be used for at least one destination, wherein update messages with routing information are sent between said plurality of routers, typically BGP routers, wherein the following steps are performed at the router: receiving of an update message containing a path or a withdrawal of a path for a destination; determining if the (withdrawn) path is associated with a path exploration event; deciding on the updating of the routing table taking into account the result of the determination.
US09794165B1 Batched path computation in resource-constrained networks
In some examples, a controller for a network includes a path computation module that determines, for a plurality of LSPs or other flows having a common source, shortest paths of the network from the common source to respective destinations of the plurality of LSPs based at least on a minimum bandwidth. The path computation module further determines, after determining the shortest paths, a shortest path for the LSP of the plurality of LSPs as the shortest path of the shortest paths of the network from the common source to a destination for the LSP. A path provisioning module of the controller, after the path computation module determines the shortest path for the LSP and in response to the path computation modules routing the LSP to the shortest path for the LSP on a network model of the network, installs the LSP to the network as routed to the shortest path.
US09794164B2 Mobile relay network intelligent routing
A method for determining a route for communication across a network in real-time, said method including: collecting a set of network delay information at a caller device; storing the set of network delay information at the caller device; based on a stored set of network delay information at the caller device and the callee device, determining, by the caller device, in cooperation with the callee device, a set of relay server candidates to be used to relay data packets between the caller device and the callee device; and based on calculated round trip times for probing data packets set out and sent back, selecting, by the caller device in cooperation with the callee device, a shortest routing path as an active routing path for use for transporting a first data packet between the caller device and the callee device.
US09794161B2 Methods and systems for non-intrusive debug processing of network frames
Methods and systems are disclosed for non-intrusive debug processing of network frames. For certain embodiments, a frame parser processes frames from a network interface and generates frame metadata. A key generation engine processes each frame and its related metadata to generate a normal key and a debug key. The same key composition rule formats and key generation engine are used to generate the normal key and the debug key to provide non-intrusive debug processing. Frame classification logic compares the normal key to classification tables to determine a frame classification for the received frame. Separate debug comparison logic compares the debug key to debug reference data/masks to generate debug markers for the received frame. The frame classification and the debug markers for each frame are provided to frame marking logic, and a frame processing engine then processes the resulting marked/classified frames.
US09794160B1 System, method, and computer program for testing composite services in a communication network utilizing test data
A system, method, and computer program product are provided for testing composite services in a communication network utilizing test data. In use, test data is sent to a composition of virtual services to test at least a portion of the composition of virtual services, the composition of virtual services including at least one first virtual service and at least one second virtual service chained such that the test data is received by the at least one first virtual service and an output of the at least one first virtual service is input to the at least one second virtual service, and at least a portion of the test data being configured such that at least a portion of the output of the at least one first virtual service is the same as the test data input to the at least one first virtual service. Additionally, a first output is received from the at least one second virtual service, the first output including a result of the output of the at least one first virtual service being input to the at least one second virtual service. Further, the test data is sent as an input to at least one third virtual service, the at least one third virtual service including the same functionality as the at least one second virtual service. In addition, a second output is received from the at least one third virtual service, the second output including a result of the test data being input to the at least one third virtual service including the same functionality as the at least one second virtual service. Moreover, the first output from the at least one second virtual service is compared with the second output from the at least one third virtual service including the same functionality as the at least one second virtual service to test the at least a portion of the composition of virtual services.
US09794159B2 Systems, methods, and computer program products for congestion control of media gateway resources
A method is disclosed for managing a plurality of resources in a media gateway, the method comprising: determining that a utilization of a resource exceeds a first threshold, wherein the resource is one of the plurality of resources; determining a reduction in load to communicate to a media gateway controller (MGC) coupled to the media gateway, wherein the reduction is based on the resource and the first threshold; and sending a message indicating the reduction and the resource to the MGC.
US09794158B2 System event analyzer and outlier visualization
An event analysis system receives events in a time-series from a set of monitored systems and identifies a set of alert threshold values for each of the types of events to identify outliers in the time-series at an evaluated time. Portions of historic event data is selected to identify windows of event data near the evaluated time at a set of seasonally-adjusted times to predict the value of the event type. The alert threshold value may also account for a prediction based on recent, higher-frequency events. Using the alert threshold values for a plurality of event types, the event data is compared with the alert threshold values to determine an alert level for the data. The event data types are also clustered and displayed with the alert levels to provide a visualization of the event data and identify outliers when the new event data is received.
US09794155B2 System and method for coordinating client-side inference of mobile network loading and capacity
A data communication system configured to determine and coordinate loading in a mobile network with plurality of client devices. The system includes a control server coupled the client devices. The control server has a probe control function that transmits a downlink (DL) probe with an updated client probing profile to each client device. The client device has a client probing control engine that gathers network measurement information for transmission to the control server and generates uplink (UL) probes containing the network measurement information including, radio access network (RAN) metrics, DL probe measurements for transmission to the control server based on the client probing profile. The control server receives the UL probes from the client devices and determines the system load based on the measurement information, the control server updates client scheduling information based on the system load and transmits the client scheduling information to the plurality of client devices.
US09794152B2 Systems and methods for performing localized server-side monitoring in a content delivery network
Some embodiments provide systems and methods for performing localized and real-time server-side network performance monitoring. These systems and methods leverage the distributed architecture of a content delivery network (CDN) so as to perform distributed monitoring with each Point-of-Presence of the CDN responsible for monitoring performance to a localized set of end users. These systems and methods also leverage existing traffic flows from a server to a particular end user in order to perform real-time server-side network performance monitoring without the injection of specialized monitoring packets and without active involvement of the end user in deriving the performance measurements. The performance measurements are then used to optimize delivery of existing and future traffic flows to the end user.
US09794150B2 Apparatus and method for content playback utilizing crowd sourced statistics
A server includes a processor and a memory connected to the processor to store instructions executed by the processor to collect playback statistics from network connected content players, perform an evaluation of the playback statistics, and establish a playback configuration for specified content based upon the evaluation of the playback statistics. A request for the playback configuration for the specified content is received from a network connected content player. The playback configuration for the specified content is transferred to the network connected player.
US09794148B1 Node protection for stacked labels
Techniques are described for providing node protection in a Source Packet Routing in Networking (SPRING) network. In some examples, a first network device, responsive to detecting a configuration request to provide node protection to a second network device that is adjacent to the first network device: generate at least one context table; configure at least one forwarding entry that indicates: a primary path between the first network device and a third network device, and a backup path, based at least in part on the at least one context table, between the first network device and the third network device that bypasses the second network device; while the second network device has not failed, forward network packets to the third network device using the primary path; and responsive to determining that the second network device has failed, forward network packets to the third network device using the backup path.
US09794147B2 Network switch, network system, and network control method
A network switch, includes: a port configured to receive a packet from one of a first information processing device and a second information processing device: a processor configured to process the packet, wherein the processor performs operations of: extracting first information which is used for creating a request packet requesting a response of a first virtual machine executed by the first information processing device from the packet which is transmitted by the first virtual machine to a second virtual machine executed by the second information processing device; creating the request packet using the first information; transmitting the request packet to the first virtual machine; and determining an operation state of the first virtual machine based on if a response packet for the request packet is received from the first virtual machine.
US09794145B2 Scheduling predictive models for machine learning systems
In one embodiment, a device in a network monitors performance data for a first predictive model. The first predictive model is used to make proactive decisions in the network. The device maintains a supervisory model based on the monitored performance data for the first predictive model. The device identifies a time period during which the supervisory model predicts that the first predictive model will perform poorly. The device causes a switchover from the first predictive model to a second predictive model at a point in time associated with the time period, in response to identifying the time period.
US09794143B1 Video delivery over IP packet networks
Systems and methods can operate to deliver video information over IP networks on a best-effort basis. Best-effort implies that information is delivered without any guaranteed quality of service. During the encoding of video transport streams into video frames, a decoding time stamp (DTS) can be generated that can be used by a video decoder to determine when to begin decoding the video frame data. Information from one or more video frames can be encapsulated in an IP packet. Using the DTS, video encoding rate and video frame size, a time constraint value can be calculated and can provide an indication of the relative transmission priority for the best-effort IP delivery of IP packets containing encapsulated video information.
US09794142B2 System and method for aggregating and reporting network traffic data
A method for analyzing traffic in a communications network includes sampling data packets at a plurality of network interconnection points, wherein sampling the data packets includes generating a plurality of sampled packet data in one or more standardized formats, converting the sampled packet data from the one or more standardized formats into a neutral format, and aggregating the sampled packet data in the neutral format from the plurality of network interconnection points. A system includes a communications node operable to sample data packets flowing through and generate sample packet data in a specified format, a collector node operable to convert the sampled packet data into a neutral format, the collector node further operable to map IP addresses of the sampled packet data to corresponding prefixes in a routing table; and an aggregator node operable to aggregate neutrally formatted sampled packet data from a plurality of collector nodes.
US09794139B2 Allocating operators of a streaming application to virtual machines based on monitored performance
Performance thresholds are defined for operators in a flow graph for a streaming application. A streams manager deploys the flow graph to one or more virtual machines (VMs). The performance of each portion of the flow graph on each VM is monitored. A VM is selected. When the performance of the portion of the flow graph in the selected VM does not satisfy the defined performance threshold(s), a determination is made regarding whether the portion of the flow graph is underperforming or overperforming. When the portion of the flow graph is underperforming, the portion of the flow graph is split into multiple portions that are implemented on multiple VMs. When the portion of the flow graph is overperforming, a determination is made of whether a neighbor VM is also overperforming. When a neighbor VM is also overperforming, the two VMs may be coalesced into a single VM.
US09794138B2 Computer system, method, and program
Traffic data while the system is in operation is collected for a certain time as a preprocess. Typical patterns are extracted from the collected traffic data. Next, stream programs are created for the individual typical patterns and stored for the future reference. Next, the IDs of alternative tasks for transition among different stream programs are stored. In actual system operation, the system measures traffic data regularly or at any time, compares the resultant patterns with the typical patterns, and selects a stream program corresponding to the closest typical pattern as the next phase. Program shutdown time when shifting from the stream program in the present phase to the next phase can be reduced by gradually shifting empty tasks in the present phase to the next stream program as alternative tasks in consideration of the cost of switching between tasks, the cost of transferring data among resources, and so on.
US09794137B2 Method and apparatus for assigning network resource
A method of assigning network resource between users of a network is disclosed. The method comprises the steps of monitoring a measure of user experience of users accessing a service within the network (step 120), determining a current level of user satisfaction with the service accessed for users within the network (step 130), and distributing network resource between users to minimise the number of users exhibiting a level of user satisfaction that is below a first threshold level (step 140). Also disclosed is a computer program product for carrying out a method of assigning network resource between users of a network and a system (200) configured to assign network resource between users of a network.
US09794131B2 File, command, and airplane data transfer tool
A computing system is configured to simulate one or more onboard aircraft systems. Packets or data is generated at the computing system in a format used by onboard systems and transmitted to an aircraft system under test. Response data may be received from the system under test. Results are provided to users and/or logged to evaluate the performance of the system under test.
US09794130B2 System, apparatus, procedure, and computer program product for planning and simulating an internet protocol network
A procedure for evaluating a network, and a system, apparatus, and computer program that operate in accordance with the procedure. The procedure includes aggregating packet information from one or more sources in a network, and executing a correlation algorithm to determine traffic flow information based on the packet information. The aggregating includes obtaining information from a header of a packet being communicated in the network, in one example embodiment. In another example, the executing includes tracing a traffic flow from a source node to a destination node, and the tracing includes determining, based on the packet information, each link by which the traffic flow is communicated from the source node to the destination node.
US09794128B2 Overlay network movement operations
Embodiments of the invention relate to providing virtual network domain movement operations for overlay networks. One embodiment includes a method that includes determining one or more overlay network attributes (ONAs) for a plurality of virtual networks. The one or more ONAs are associated with the virtual networks. The one or more ONAs are managed as one or more portable entities by one or more of creating ONAs, deleting ONAs, moving ONAs, combining ONAs and dividing ONAs. A movement operation is performed on the one or more virtual networks among one or more servers of one or more overlay networks based on the management of the one or more ONAs.
US09794125B2 Data transfer in mobile networks
The present invention relates to a bandwidth managing unit (200) configured to manage unidirectional data transfers of data to mobile user entities (100) in a mobile communications network (300), the bandwidth managing unit comprising:—a data transfer detecting unit configured to receive data transfer requests of the mobile user entities (100) in the mobile communications network, each data transfer request requesting a unidirectional transfer of data from a content provider,—a network condition determining unit (220) configured to determine data transfer conditions in the mobile communications network (300) for the different data transfers to the corresponding mobile user entities (100),—a data transfer scheduler (270) configured to determine, for each detected data transfer request, a point in time when the requested data transfer should be initiated, taking into account the data transfer conditions in the mobile communications network (300) for the data transfer to the corresponding mobile user entity (100), and configured to initiate the data transfer at the determined point in time.
US09794120B2 Managing network configurations in a server system
A controller in a server system can determine whether to share a network connection of the server system. In response to determining to share the network connection, the controller can disable a dedicated network connection between the controller and a network interface controller (NIC) in the server system, enable a first shared network connection between the controller and a computing module in the server system, and enable a second shared network connection between the computing module and the NIC. In response to determining not to share the network connection, the controller can enable the dedicated network connection between the controller and the NIC.
US09794118B2 Method and apparatus for operating configuration adaptation for interruption of signal transmission
The operating configuration at a node in a wireless communication network, at a neighboring node in the network, and/or at one or more wireless devices supported by the network, is updated based on determining timing information for an impending interruption of a radio link in the network to avoid erroneous operation during the impending interruption, which interruption is associated with an external system. The determination of interruption timing, which may be inferred, e.g., from detecting prior interruptions, or which may be known from information about the external system, and the modification of the operating configuration(s) permits the network to operate with greater stability, control, and accuracy during the interruptions than would be possible if the interruptions were simply treated as intermittent radio link failures.
US09794113B2 Network alert pattern mining
In one embodiment, a device receives a plurality of network alerts over a time frame. A sliding transaction window is used across the time frame to associate each network alert occurring within the transaction window with one or more transactions. A pruning test is applied to subsets of the plurality of network alerts, with the network alerts in a given subset being associated with the same transaction. The pruning test is based in part on the number of co-occurrences of network alerts in a given subset for different transaction windows. The subsets of network alerts are assigned to network alert clusters based on the applied pruning test. The network alerts are then joined within a network alert cluster to identify the largest grouping of network alerts that pass the pruning test. A notification that the identified grouping of network alerts is associated with the same transaction is also provided.
US09794112B2 Method and system for balancing storage data traffic in converged networks
Methods for balancing storage data traffic in a system in which at least one computing device (server) coupled to a converged network accesses at least one storage device coupled (by at least one adapter) to the network, systems configured to perform such methods, and devices configured to implement such methods or for use in such systems. Typically, the system includes servers and adapters, and server agents implemented on the servers and adapter agents implemented on the adapters are configured to detect and respond to imbalances in storage and data traffic in the network, and to redirect the storage data traffic to reduce the imbalances and, thereby to improve the overall network performance (for both data communications and storage traffic). Typically, each agent operates autonomously (except in that an adapter agent may respond to a request or notification from a server agent), and no central computer or manager directs operation of the agents.
US09794110B2 Method and system for simplifying distributed server management
A method and system for managing a large number of servers and their server components distributed throughout a heterogeneous computing environment is provided. In one embodiment, an authenticated user, such as a IT system administrator, can securely and simultaneously control and configure multiple servers, supporting different operating systems, through a “virtual server.” A virtual server is an abstract model representing a collection of actual target servers. To represent multiple physical servers as one virtual server, abstract system calls that extend execution of operating-system-specific system calls to multiple servers, regardless of their supported operating systems, are used. A virtual server is implemented by a virtual server client and a collection of virtual server agents associated with a collection of actual servers.
US09794109B2 Method of maintaining network address translation mapping and client device employing same
A client device and method for maintaining NAT mapping. In one embodiment the client device includes: (1) a network interface circuit operable to transmit a keepalive message on an interval to a NAT gateway and (2) an interval adjust circuit configured to: (2a) increment the interval upon an acknowledgment of the keepalive message and (2b) decrement the interval upon a failure to receive the acknowledgment.
US09794108B2 Communication apparatus, methods, and non-transitory computer-readable media for determining IP addresses for use in different networks
A communication apparatus includes a processor and a memory. The processor executes computer-readable instructions stored in the memory. The instructions instruct the communication apparatus to establish a first network including the communication apparatus and a first device. The instructions instruct the communication apparatus to establish a second network including the communication apparatus and a second device. The instructions instruct the communication apparatus to determine a target IP address. Determining the target IP address includes identifying a particular IP address, which is an IP address of the communication apparatus used in the second type network. Determining the target IP address includes generating the target IP address to be within a particular range using the particular IP address. The particular range is a range of IP addresses that are not available in the second type network. The instructions instruct the communication apparatus to assign the target IP address to the first device.
US09794106B1 Detecting application store ranking spam
A server, which may be configured to manage distribution of content to users, may receive content related information associated with a particular user, and analyze the content related information. Such analysis may comprise comparing parameters in the content related information with corresponding predefined parameters in the server for determining acceptable content related activities, and classifying users based on the analysis of the content related information. The content related information may comprise one or more of content usage related data, content download related metrics, or user session related metrics relating to one or more sessions utilized by users in conjunction with use of content managed via the server.
US09794104B1 Method and apparatus for quadrature signal modulation
Methods and apparatus for facilitating wireless communication using digital Quadrature Amplitude Modulation are disclosed. A mapping module electronic component of a wireless communication device utilizes a signal constellation for quadrature modulating a signal for transmission or quadrature demodulating a received signal. The signal constellation includes multiple constellation symbols and associated bit sequences. Specific signal constellations are disclosed. The signal constellations may be obtained through an optimization procedure which accounts for both phase noise and power amplifier nonlinearity.
US09794103B2 Method and apparatus for multiple antenna communications, and related systems and computer program
A method of detecting sequences of multi-level encoded symbols. The multi-level encoded symbols are mapped and modulated with a modulation scheme having a number of constellation points identified by a sequence of bits arranged in at least a first and a second group. The first group is encoded with a first encoding scheme, and the second group is encoded with a second coding scheme, and the multi-level encoded symbols are transmitted by multiple transmitting sources and received as a received vector by multiple receiving elements.A first set of candidate sequences is selected and a first set of probability information is calculated for the first set of candidate sequences. Then the first group of bits of the symbols are decoded. The decoded bits of the first group are re-encoded and used to select a sub-set of constellation points.A second set of candidate sequences is selected based on this sub-set of constellation points and a second set of probability information is calculated for the second set of candidate sequences. Finally, the second group of bits of the symbols are decoded.
US09794098B2 Multi-user communication in wireless networks
An Access Point (AP) performs a Multi-User (MU) transmission by allocating a plurality of resources of an Up-Link (UL) MU transmission to a first plurality of stations, and by transmitting, using one or more 20 MHz channels, a Down-Link (DL) PHY Layer Convergence Procedure (PLCP) Protocol Data Unit (PPDU). The DL PPDU includes trigger information. The trigger information solicits the first plurality of stations to participate in the UL MU transmission using the allocated resources. All of the allocated resources may be in the one or more 20 MHz channels of the DL PPDU. The allocated resources may include at least one resource in each of the one or more 20 MHz channels of the DL PPDU.
US09794097B2 Methods and devices for interference variance estimation and interference cancellation
An interference variance estimation method includes receiving a composite sample comprising a sample of a first OFDM transmission scheme interfered by out-of-band interference of a second OFDM transmission scheme; determining for each of the resource elements of the first transmission scheme a power estimate of the out-of-band interference; and filtering the power estimates over subcarriers corresponding to a same symbol, wherein weights of the filtering are based on a correlation property of the power estimates with respect to the subcarriers. An interference cancellation method includes: receiving the composite sample; determining a first estimate of the out-of-band interference with respect to non-data bearing subcarriers; determining a second estimate of the out-of-band interference with respect to data bearing subcarriers based on the first estimate; and cancelling the out-of-band interference based on the composite signal and the second estimate.
US09794092B1 Systems and methods for identification and demodulation of complex signal formats
Systems and methods for identification and demodulation of complex signal formats are disclosed. In an example embodiment of the disclosed technology, a method includes identifying the signal's frame (or pattern) length, identifying the various modulation formats that compose the frame, determining the ratio of the various modulation formats in the frame, and determining the actual pattern arrangement in the frame. Further, a method can include comparing the determined arrangement to reference patterns to determine the complex signal format.
US09794091B1 Agile radar detection for wireless communications
A method and apparatus are disclosed for a wireless communication device capable of scanning for radar signals while detecting and/or receiving a wireless communication signal. The wireless communication device may include a plurality of local oscillator synthesizers to allow distinct frequency bands to be used for wireless communication signals and radar detection. In some embodiments, the wireless communication device may include a radar detection physical layer (PHY) circuit to detect the presence of radar signals within a received RF signal. The radar detection PHY may have limited functionality suitable primarily for radar signal analysis and not suitable for processing (decoding) communication signals.
US09794090B2 Transmitter and interference cancellation method
Present application provides embodiments of a transmitter and an interference cancellation method. The transmitter includes: a first digital predistorter (DPD), a power amplifier (PA), and a first processor located on a feedback channel of the transmitter and separately connected to the PA and the first DPD. The first processor performs, according to a feedback cancellation signal, interference cancellation on a signal of the feedback channel, to acquire a first mixed signal, and sends the first mixed signal to the first DPD. The first DPD is configured to perform linear predistortion processing according to a first baseband signal on a first transmit channel and the first mixed signal, to generate a first predistortion signal. The PA is configured to amplify and then transmit a to-be-transmitted signal using an antenna. The to-be-transmitted signal is the first predistortion signal or a signal obtained according to the first predistortion signal.
US09794089B2 Wireline receiver circuitry having collaborative timing recovery
Some embodiments include apparatus and methods having an input to receive an input signal, additional inputs to receive clock signals having different phases to sample the input signal, and a decision feedback equalizer (DFE) having DFE slices. The DFE slices include a number of data comparators to provide data information based on the sampling of the input signal, and a number of phase error comparators to provide phase error information associated with the sampling of the input signal. The number of phase error comparators of the DFE slices is not greater than the number of data comparators of the DFE slices.
US09794088B2 On-chip AC coupled receiver with real-time linear baseline-wander compensation
An on-chip AC coupled receiver with baseline wander compensation. The receiver may be used for either single ended or differential signals. The receiver includes an input terminal to receive an input signal. AC coupling circuitry is between the input terminal and a node and couples the input signal into a coupled signal at the node. A control loop senses low frequency signal content at the node and uses a linear buffer in adjusting the coupled signal at the node based on the low frequency signal content. The operation of the control loop compensates for potential baseline wander in the coupled signal. An input stage to recovers data from the coupled signal at the node.
US09794085B2 Automatic resolution of virtual network instance to VLAN mapping conflicts in dual-homed deployments in a dynamic fabric automation network architecture
In accordance with one example embodiment, there is provided a system configured for virtual local area network (VLAN) blocking on a virtual port channel (vPC) member link to handle discrepant virtual network instance (VNI) to VLAN mappings. In other embodiments, the system can be configured for providing Virtual Switch Interface Discovery Protocol (VDP) and virtual switch enhancements to accommodate discrepant VNI to VLAN mappings. In another example embodiment, an apparatus is provided that includes a processor, and a memory coupled to the processor, where the apparatus is configured such that if a server is connected through a virtual port channel, a VDP is used to notify the server of different VNI to VLAN mappings. In another embodiment, the apparatus can extend a VDP Filter Info Field to carry a set of VLANs mapped to a VNI, keyed by leaf MAC addresses that serve as bridge identifiers.
US09794082B2 Communication device and network controller for online troubleshooting for MBMS in a wireless communication system
A communication device includes a communication interfacing unit and a processor. The processor operable to perform operations includes controlling the communication interfacing unit to transmit a first signal to a network controller according to a user-inputted command; logging first MBSFN measurement results in a first period; and controlling the communication interfacing unit to transmit the logged first MBSFN measurement results to the network controller, so that the network controller adjusts at least one parameter of a network corresponding to a MBSFN transmission of a MBMS signal according to the logged first MBSFN measurement results.
US09794080B2 Method and apparatus for establishing chat group
The present invention provides a method and apparatus for establishing a chat group. The method performed by a server includes: obtaining an identifier of a user of a first client terminal, an identifier of a chat group to be established and a geographic position of the first terminal; beginning to establish a chat group; selecting at least one second client terminal from a predetermined geographic scope; and inviting a user of the at least one second client terminal to the chat group; receiving authentication information input by the user of the second client terminal from the second client terminal; determining whether the authentication information is correct; if the authentication information is correct, adding the user of the second client terminal into the chat group; and sending information of the second user to the first client terminal; finishing establishing the chat group when a preset finish condition is met.
US09794073B2 Information processing system and semiconductor device
According to an embodiment, an information processing system includes a time constant processor and a pattern generator. The time constant processor binarizes values indicating a plurality of unit circuits each including a gate insulating film on the basis of a time to emission indicating a time from when a defect in the gate insulating film captures a carrier in a channel current caused to flow by application of a gate voltage to the unit circuits to when the defect emits the carrier. The pattern generator generates a pattern unique to the unit circuits using the values indicating the respective unit circuits binarized by the time constant processor.
US09794072B2 Certificate exchange mechanism for wireless networking
A wireless communications system comprises a sector controller that includes a wireless transmitter, and a mobile subscriber station that includes a wireless receiver, and a memory. The wireless transmitter continuously transmitting frames. Each frame comprising a control field and the control field comprising a portion of an encryption certificate associated with the sector controller. The wireless receiver receives each frame and extracts the portion of the encryption certificate and stores the portion of an encryption certificate in the memory. The mobile subscriber station combines the portions of the encryption certificate stored in the memory and verifies that a complete encryption certificate has been received. After this the mobile subscriber station transmits its encryption certificate to the sector controller. The encryption certificates are based on an elliptic curve digital signature algorithm.
US09794070B2 Method of ephemeral encrypted communications
Embodiments herein provide, for example, a method that includes, comprising: sending a request, by a first user on a first device, to a server, the request comprising requesting the server open an ephemeral communication session with a second user on a second device; allocating resources, by the server, to begin the ephemeral communication session between the first user and the second user; generating a unique ephemeral communication session identifier by the server and transmitting the unique ephemeral communication session identifier to the first user; transmitting, by the first user, the unique ephemeral communication session identifier to the second user using a second communication channel; connecting, by the second user, to the first user through the ephemeral communication session using the unique ephemeral communication session identifier; and connecting, by the first user, to the second user through the ephemeral communication session using the unique ephemeral communication session identifier. In such a method, connecting, by the second user, to the first user through the ephemeral communication session may include connecting to the server; and connecting, by the first user, to the second user through the ephemeral communication session may include connecting to the server.
US09794069B2 Systems and methods for authenticating and providing anti-counterfeiting features for important documents
A method for authenticating a document comprises obtaining the contents of a document, obtaining biometric characteristics from an individual, forming a message based on the contents of the document and the biometric characteristics of the individual, generating a digital signature based on the message and a key, and writing the digital signature to an Radio Frequency Identification (RFID) tag affixed to the document.
US09794067B2 Method for active content fingerprinting
A method of providing robust and secure fingerprints including, at an enrollment stage, the steps of providing a content x for which a fingerprint is to be provided, assigning an ID number to the content x, providing a secret key k, generating a fingerprint bx based on content x and secret key k, storing the generated fingerprint bx together with the assigned ID in a database, as well as, at an identification stage, the steps of extracting, for a given query content y which might result either from the enrolled content x or an unrelated content x′, an estimate fingerprint by based on content y, and secret key k, producing an estimated I{hacek over (D)} number based on the estimate fingerprint by for identifying the content x using said ID number stored in the database, or else rejecting the query.
US09794063B2 Optimizing use of hardware security modules
Use of cryptographic key-store hardware security modules is optimized in a system having a first scarce high-security key storage device and a second more plentiful low-security key storage device comprising securing a cryptographic key to the higher security level by initially storing the key in the first storage device, then responsive to an event, evaluating the stored key against one or more rules, and subsequent to the evaluation, reclassifying the stored key for relocation, encrypting the reclassified key using a key-encryption key; relocating the reclassified key into the second, lower-security storage device, and storing the key-encryption key in the first storage device.
US09794060B2 Proxy computing system, computing apparatus, capability providing apparatus, proxy computing method, capability providing method, program, and recording medium
A computing apparatus outputs τ1 and τ2 corresponding to a ciphertext x, a capability providing apparatus uses τ1 to correctly compute f(τ1) with a probability greater than a certain probability and sets the result of the computation as z1, uses τ2 to correctly compute f(τ2) with a probability greater than a certain probability and sets the result of the computation as z2, the computing apparatus generates a computation result u=f(x)bx1 from z1, generates a computation result v=f(x)ax2 from z2, and outputs ub′va′ if the computation results u and v satisfy a particular relation, where G and H are groups, f(x) is a function for obtaining an element of the group G for xεH, X1 and X2 are random variables having values in the group G, x1 is a realization of the random variable X1, and x2 is a realization of the random variable X2.
US09794059B2 Lightweight cyber secure bi-directional aircraft communications addressing and reporting system (ACARS) transmission
The present invention generally relates to systems and methods for encrypting data. The disclosed techniques can include tracking a plurality of flight parameter values for a plurality of flight parameters of an aircraft, generating a first cryptographic key from the plurality of flight parameter values, encrypting plaintext using the first cryptographic key to generate a first ciphertext, and sending, from a sender to a receiver, a message comprising the first ciphertext.
US09794056B1 Tone rejection during synchronization in frequency shift keyed modulation systems
A method and apparatus for identifying a search window of carrier-frequency-offset-corrected samples in which a first intermediate signal from a demodulator does not exceed a predetermined threshold, convolving a second intermediate signal from the demodulator within the search window with a predefined pattern to provide a convolution result, determining if an absolute peak of the convolution result exceeds a preamble pattern confirmation threshold, in response to the absolute peak of the convolution result exceeding the preamble confirmation threshold, confirming a preamble pattern detection event to provide a confirmed preamble pattern detection event of a confirmed preamble pattern, and receiving a signal including the confirmed preamble pattern to provide a received digital signal extracted from the signal.
US09794055B2 Distribution of forwarded clock
A source component includes a clock source to generate a clock signal, a plurality of front-end driver circuits to transmit signals to a sink component over a plurality of data lanes of an interconnect, and a clock distribution circuit coupled to the clock source and the plurality of front-end driver circuits. The clock distribution circuit is to distribute a first clock pulse of the clock signal on a first data lane and a second clock pulse of the clock signal on a second data lane. A sink component is to recover the first clock pulse of the clock signal from the first data lane and the second clock pulse of the clock signal from the second data lane, wherein the clock recovery circuit includes clock reconstruction logic to reconstruct the clock signal from the first clock pulse and the second clock pulse.
US09794053B2 Method and system for implementing time division duplex configuration of secondary serving cell, and base station
A method and a system for implementing time division duplex configuration of a secondary serving cell are provided. A primary base station receives time division duplex TDD configuration information of a secondary serving cell and an identity of the secondary serving cell from a secondary base station, where the TDD configuration information of the secondary serving cell is allocated by the secondary base station to the secondary serving cell. The primary base station sends the TDD configuration information of the secondary serving cell and the identity of the secondary serving cell to a terminal, so that the terminal determines an uplink-downlink subframe allocation of the secondary serving cell according to the TDD configuration information.
US09794050B2 Devices configured with jointly aggregated TDD and FDD component carriers
A method of assigning PUCCH transmission timing for a mobile device configured with jointly aggregated TDD and FDD CCs includes determining a UL transmission timing in a first subframe for a corresponding feedback in response to a first DL transmission in a second subframe on a first cell, where the second subframe is k subframes prior to the first subframe; and transmitting the corresponding feedback of the first DL transmission in the first subframe on a second cell according to the first UL transmission timing of the first DL transmission of the first cell; where the first cell is on a TDD CC and the first cell has no PUCCH to transmit the corresponding feedback of the first DL transmission, and the second cell is on an FDD CC and the second cell uses PUCCH to transmit the corresponding feedback of the first DL transmission of the first cell.
US09794048B2 System for transmitting and receiving radio frequency signals carrying complex harmonic modes
A radio communications system includes a transmitter and a receiver. The transmitter generates or receives digital symbols having a given symbol rate associated with a corresponding symbol period; and generates, every S digital symbols generated/received (S>3), a respective multi-mode digital signal, which has a predefined time length shorter than S times the symbol period, which is sampled with a predefined sampling rate higher than the symbol rate, and which carries the S digital symbols by a plurality of orthogonal harmonic modes including a main mode which is a real harmonic mode and carries P of the S digital symbols (P
US09794047B2 Method and apparatus for configuring aggregate maximum bit rate
A system for configuring a UE-AMBR includes a MME to send the UE-AMBR to an eNB covering the serving cell of the UE, the eNB covering the serving cell of the UE establishes a radio access bearer of the UE on at least one secondary cell. The MME sends an AMBR of the UE in the primary eNB covering the serving cell of the UE and an AMBR of the UE in a secondary eNB to the primary eNB. The primary eNB sends the AMBR of the secondary eNB to the corresponding secondary eNB. The technical solutions of the present disclosure can make total rate of all non-GBR services of the UE be not larger than the UE-AMBR when the UE has multiple S1 bearers or one S1 bearer.
US09794042B2 Communication apparatus and retransmission control method
Provided is a wireless communication device. A PHICH reception unit determines whether a received signal in a PHICH region is an ACK signal or a NACK signal. When doing so, the PHICH reception unit does not receive a PHICH in a subframe in which a terminal monitors an E-PDCCH. A control signal reception unit outputs a retransmission prompting signal to a signal allocation unit when the signal outputted from the PHICH reception unit is a NACK signal and when a UL grant was not detected. Meanwhile, when a UL grant was detected, the control signal reception unit outputs the detected UL grant to the signal allocation unit. The signal allocation unit maps the transmission signal in accordance with the retransmission prompting signal and the UL grant and transmits the transmission signal from a wireless transmission unit.
US09794039B2 Method of transmitting reference signal in wireless communication system
A method for transmitting a reference signal by a user equipment (UE) in a wireless communication system. The UE generates an uplink reference signal in a subframe comprising first, second, third, fourth, fifth, sixth and seventh orthogonal frequency division multiplexing (OFDM) symbols in time domain and a plurality of subcarriers in frequency domain. The UE transmits the uplink reference signal to a base station in the third, fourth and fifth OFDM symbols. The transmitted uplink reference signal is hopped in the frequency domain, based on a cell specific hopping parameter.
US09794031B2 Method and apparatus for implementing a data lifespan timer for enhanced dedicated channel transmissions
A wireless communication system, which supports enhanced dedicated channel (E-DCH) data transmissions, includes a wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). The WTRU includes a buffer, a data lifespan timer, a data retransmission counter, a hybrid-automatic repeat request (H-ARQ) process and a controller. The timer establishes a lifespan for at least one data block stored in the buffer. If physical resources have not been allocated for a data block associated with a lifespan timer that is close to expiration, the WTRU sends an urgent channel allocation request. If physical resources have been allocated, the data block is prioritized for transmission with respect to other data blocks. The data block is discarded if the lifespan timer expires or if the WTRU receives feedback information indicating that the data block was successfully received by the Node-B.
US09794027B2 Method and apparatus for generating frames for error correction
A method and apparatus for generating frames to apply error correction to data including a plurality of consecutive data groups are provided. Upon receiving input of an n-th data group consisting of a plurality of priority groups with different priority levels, the number of first code rate frames, which is the number of frames in the n-th data group for which a first code rate is used, is calculated based on the number of first code rate bits calculated based on the ratio of the length of data in an (n−1)-th data group for which the first code rate is used. The number of second code rate frames, which is the number of frames in the n-th data group for which the second code rate is used, is calculated based on the number of second code rate bits calculated based on the number of first code rate bits. Frames for error correction are generated based on the number of first code rate frames and the number of second code rate frames.
US09794026B2 Adaptive data interference cancellation
Real-time selection of interference cancellation schemes based on transmission parameters and amount of resource overlap between the desired payload and the interfering payload. Codeword level interference cancellation may be performed where the signal quality of the interfering signal indicates that the interfering payload will be decoded correctly. When performed, codeword level interference cancellation may be monitored to determine if decoding the interfering payload is converging. Other interference cancellation schemes may be selected based on the signal quality of the interfering signal or non-converging decode of the interfering payload. The number of iterations for iterative decoding in codeword level interference cancellation may be dynamically selected. The decoder output (e.g., soft bits) may be used to perform interference cancellations before the decoder is fully converged. Iterative decoding may be performed in multiple passes and soft decision output form one pass may be used to initialize the decoder for a subsequent pass.
US09794025B2 Systems and methods for communication and verification of data blocks
Disclosed are methods, systems, devices, apparatuses, computer-/processor-readable media, and other implementations for data communication in which data is divided into multiple data blocks, with each of the multiple data blocks including a portion of a respective at least one other of the multiple data blocks to produce multiple corresponding resultant data blocks. Additionally, at least one validation code is generated based on the multiple corresponding resultant data blocks. At least the multiple corresponding resultant data blocks and the at least one validation code are communicated to a remote device.
US09794023B2 Detection of active spreading codes and modulation schemes
A channelization code analyzer for determining active channelization codes includes a despreading unit configured to despread a received signal with a plurality of candidate channelization codes to generate a plurality of despreaded signals. The channelization code analyzer further includes a detector configured to detect from the plurality of despreaded signals a set of despreaded signals modulated with a predetermined first modulation scheme. A channelization code identification unit is configured to identify at least one active channelization code from the plurality of candidate channelization codes based on the detected set of despreaded signals. Further, a radio receiver apparatus, a second moment and fourth moment processing unit and a modulation scheme detector are described.
US09794017B2 SWDM OSAs
In an example embodiment, an N-channel WDM OSA includes active optical devices coupled to a carrier, an optical block, and a MUX or a DEMUX. The optical block may be positioned above the active optical devices and coupled to the carrier. The optical block may include a bottom with lenses formed in the bottom that are aligned with the active optical devices; a first side that extends up from the bottom; a second side that extends up from the bottom and is opposite the first side; a port that extends forward from the bottom and the first and second sides; and an optical block cavity defined by the bottom and the first and second sides that extends rearward from the port. The MUX or DEMUX may be positioned in the optical block cavity in an optical path between the port of the optical block and the active optical devices.
US09794014B2 Method for receiving signal using interference removal scheme and apparatus for same in wireless communication system
The present invention relates to a method by which a terminal receives a downlink signal from a base station in a wireless communication system. In detail, the method includes the steps of: receiving information about resource elements for interference channel estimation from an adjacent base station; estimating the interference channel from the adjacent base station using the resource elements for the interference channel estimation; and applying reception beam forming to avoid the interference channel and receive the downlink signal from the base station, wherein the downlink signal is not mapped to the resource elements for the interference channel estimation.
US09794013B2 Uplink interference management in time division duplex (TDD) network systems
A system is provided. The system includes a plurality of network nodes for operating in a Time Division Duplex, TDD, network. The plurality of network nodes includes at least a network node and a first neighbor network node. The network node includes a node processor and node memory. The node memory contains instructions executable by the node processor. The first network node is configured to detect interference caused by the first neighbor network node in at least one uplink, UL, subframe, and determine a potential reason for the interference caused by the first neighbor network node.
US09794012B2 Coding and multiplexing of control information in a wireless communication system
Techniques for sending control information in a wireless communication system are described. In an aspect, a UE spreads control information across frequency with a DFT and across time with an orthogonal sequence to obtain output data for the control information. In one design, the UE receives codewords for N HARQ processes in N downlink subframes, determines an ACK value for each HARQ process, codes N ACK values for the N HARQ processes to obtain ACK information, generates output data for the ACK information, and sends the output data in one of M uplink subframes. In another aspect, first control information is processed based on a first coding and multiplexing scheme utilizing code division multiplexing in time and frequency domains. Second control information is processed based on a second coding and multiplexing scheme utilizing code division multiplexing in time domain and spreading in frequency domain.
US09794009B1 Method for testing a radio frequency (RF) data packet signal transceiver for proper implicit beamforming operation
Method for testing implicit beamforming operation of a radio frequency (RF) data packet signal transceiver device under test (DUT), including transmitting to the DUT combinations of a multidirectional (e.g., legacy) RF test signal and at least two unidirectional (e.g., beamformed) RF test signals with different signal directivity patterns, and monitoring signal strengths of signals received from the DUT in response to each signal. Signal directivity patterns can be controlled by transmitting multiple phase-controlled RF signals via separate arrays of multiple antenna elements to the DUT within a multipath RF signal environment, such as an electromagnetically shielded enclosure.
US09794008B2 Noise power estimator, receiver and method for noise power estimation
A noise power estimator, comprising: a first subtractor configured to generate at least one first signal by subtracting a reconstructed interference signal from a symbol of a received first time-domain training sequence; a second subtractor configured to generate at least one second signal by subtracting an estimated value for the first time-domain training sequence from one of the at least one first signal; an averaging circuit configured to generate at least one square average value by average the at least part of the at least one second signals; and a detector configured to detect a minimum value among the at least one square average value and output the minimum value as a noise power estimation value.
US09794001B2 Optical receiver with multiple transimpedance amplifiers
A method and system for amplifying small optical currents in an optical receiver front end system may employ multiple transimpendance amplifiers (TIAs) and feedback control loops. For example, the front end system may include a main feedback control loop (having a main TIA) and a replica feedback control loop (having a replica TIA) that, collectively, generate an optimum input common mode level for a differential amplifier operating at high data rates (e.g., speeds up to tens of gigabits per second). The replica TIA may track the noise from the power supply of the optical receiver in the substantially same manner as the main TIA. Therefore, the differential signals produced by the main control loop may not be degraded at the input to the high-speed differential amplifier. The outputs of the high-speed differential amplifier may be symmetric about the common mode level and may be suitable inputs for voltage sampling.
US09793997B2 Tuning device for pluggable optical transceivers
A tuning device for a pluggable XFP and SFP+ and DWDM transceiver devices. Also provided are applications for CWDM XFP, and SFP+ and future form factors as well as DWDM and CWDM SFP. This tuning device is for use with tunable DWDM and CWDM transceivers, and provides the ability to lock the tune of the transceiver to prevent a host device from automatically retuning the transceiver.
US09793996B2 Sub-nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul with MIMO processing
A method implemented by a network device in a wireless system is provided. The method includes obtaining a plurality of electronic signals and selecting a first group of signals and a second group of signals from the plurality of electronic signals, generating phase conjugated copies of signals in the first group of signals, and aggregating the phase conjugated copies and a second group of signals into sub-bands in a frequency domain via frequency-domain multiplexing (FDM), wherein the phase conjugated copies are spectrally inverted in the frequency domain. The method may include converting the aggregated electronic signal to an aggregated optical signal, and transmitting the aggregated optical signal over a fiber link.
US09793991B2 Optically interfaced remote data concentrator
A remote data concentrator includes a front end interface, a plurality of back end interfaces and a control circuit. The front end interface is configured to receive optical energy as input and provide optical data as output to an optical link. The plurality of back end interfaces are configured to connect to a plurality of sensors. Each of the plurality of back end interfaces are configured to provide sensor power to the plurality of sensors and receive sensor data from the plurality of sensors. The control circuit is configured to provide power from the front end interface to the plurality of back end interfaces and to provide the sensor data from the plurality of back end interfaces to the front end interface.
US09793990B2 Worker management device, worker management system, and workwear
A worker management device that manages a worker wearing workwear includes: a main body; a light receiver that is provided on a part of the main body that is exposed when the main body is attached to the workwear, and receives light including predetermined identification information; a controller connected to the light receiver; and a communication unit connected to the controller.
US09793983B2 Mobile communication device and method for adaptive RF front-end tuning
Examples of a system and method for adaptively tuning a radio frequency (RF) front-end are generally described herein. In some examples, the frequency of a transmit signal of RF front-end circuitry is swept in at least a part of the RF transmit band. RF power in a receiver is detected as a function of the RF frequency of the transmit signal to determine a location of at least one tunable notch or other band stop element in the frequency domain. Information from the detected RF power is determined as a function of the RF frequency of the transmit signal. The RF front-end circuitry is adjusted to a selected frequency response using the determined information.
US09793981B2 Mobile terminal and controlling method thereof
A mobile terminal and controlling method thereof are provided, which facilitates a terminal to be used in further consideration of user's convenience. Provided is a method of controlling an operation of a specific mobile terminal by forming a wireless communication group through a short range communication and then synthesizing analyses of motion patterns detected through mobile terminals belonging to the wireless communication group. Accordingly, in performing a function through a motion of each of a plurality of mobile terminals belonging to a single wireless communication group, a function is more accurately activated and accessibility to the function activation is improved, thereby enhancing user's convenience.
US09793980B2 Real-time signal validation method and system
Systems and methods for real-time signal validation are disclosed. In an example embodiment, a subset of terminals in a peer group of satellite terminals is determined. Operational statistics of the satellite terminals in the subset of terminals is measured. Operational statistics of each of the satellite terminals in the subset of terminals is compared to a prior measurement of the same operational statistics. An offset between a current measurement of the operational statistics and the prior measurement of the same operational statistics is determined. An average offset of the current measurement of the operational statistics and the prior measurement of the same operational statistics is determined for the subset of terminals. The average offset for the subset of terminals is merged with a previously determined peer group operational statistic. A signal validation of a terminal is performed using an updated deviation value.
US09793974B2 System for maximizing gain in a repeater
An antenna system includes a donor antenna sub-system, a server antenna sub-system, and a processor to optimize the gain of the repeater in the system. The gain in the antenna system is increased by optimizing the isolation between the donor and/or server antenna sub-systems according to a cost function.
US09793970B2 Method and device for configuring channel state information feedback, method and device for measurement and feedback
Disclosed is a method for configuring a channel state information (CSI) feedback. The method comprises: configuring multiple sets of CIS processes for a terminal, where each CSI process comprises at least information on a channel measurement part and information on an interference measurement, where the information on the channel measurement part comprises one or multiple sets of nonzero power CSI reference signal configuration or indication information, and where the information on the interference measurement part comprises at least one type of information among the following: one or multiple sets of interference measurement resource configuration information or indication information, one or multiple sets of nonzero power CSI reference signal configuration information for use in interference measurement compensation. Also disclosed are a method for measurement and feedback based on the method, and a corresponding device for implementing the method. The present invention implements unified configuration and reception of the CSI feedback for a base station-side and a terminal-side, and is capable of flexibly implementing CSI configuration and feedback.
US09793960B2 NFC apparatus capable to perform a contactless tag reading function
An NFC device may include a first and second controller interfaces, a first communication channel coupled to the first controller interface, and a second communication channel connected to the second controller interface. A secure element may include a secure element interface connected to the first communication channel and encryption/decryption circuitry configured to encrypt data to be sent on the first communication channel for being framed into the encrypted frames and to decrypt encrypted data extracted from the encrypted frames and received from the first communication channel. The secure element may also include management circuitry configured to control the encryption/decryption circuitry for managing the encrypted communication with the NFC controller. A device host may include a host device interface coupled to the second controller interface and control means or circuitry configured to control the management circuitry through non-encrypted commands exchanged on the first and second communication channels.
US09793958B2 Image processing apparatus, method of controlling the same, and storage medium
An image processing apparatus includes an operation panel, a near field communication portion, and a hardware processor. The operation panel is attached to a main body of the image processing apparatus such that a position relative to the main body is variable. The near field communication portion is arranged in the operation panel and carries out near field communication with a terminal by receiving radio waves transmitted from the terminal. The hardware processor is configured to change a communication distance in near field communication with the terminal through the near field communication portion in accordance with a position of the operation panel.
US09793954B2 Magnetic coupling device and methods for use therewith
Aspects of the subject disclosure may include, for example, a coupling device including a receiving portion that receives a radio frequency signal conveying data from a transmitting device. A magnetic coupler magnetically couples the radio frequency signal to a transmission medium as a guided electromagnetic wave that is bound by an outer surface of the transmission medium. Other embodiments are disclosed.
US09793950B2 Method and apparatus to determine electric power network anomalies using a coordinated information exchange among smart meters
A system and method to produce an electric network from estimated line impedance and physical line length among smart meter devices is provided using communication between the smart meters. The smart meters: (1) synchronize time using GPS pps signals, which provide an accurate time stamp; (2) send/receive an identifiable signal through the same phase of electric networks; (3) identify other smart meters on the same phase lines by listening to the information signal on the same phase lines; and (4) calculate time-of-arrival of an identifiable signal from other smart meters. The time of arrival information is used to calculate the line length, which is then used to calculate impedance of a line and topology of the electric network. The system then constructs an electric network by combining geo-spatial information and tree-like usual connection information.
US09793949B1 Methods and systems for secure and efficient flexible frequency hopping access
Secure and efficient methods and systems of providing multiple access interference constraints for frequency hopped spread spectrum communications are presented. The methods and systems leverage a cryptographic keystream generator and iterative indexing into shuffled lists to generate a constrained collision-free frequency hopping sequence. This flexible frequency hopping access (FFHA) can support varying hop frequency and bandwidth resources including secure operation for applications where the number of channels (hopping sequences) exceeds the number of hop frequency resources available.
US09793946B2 Rake receiver and receiving method thereof
A disclosure of the present specification provides a rake receiver. The rake receiver may comprise: an oscillator; a radio frequency integrated circuit (RFIC) for processing analog signals, which are received after experiencing multipath propagation, according to a sampling clock generated by the oscillator and a carrier frequency clock; a rake processing unit for allocating fingers for each path to signals output from the RFIC, and then performing decoding, wherein the rake processing unit outputs information on a timing position through time tracking, a power metric sampled on-time, and the difference between a power metric at a half chip early-time and a power metric at a half chip late-time; and an auto frequency controller (AFC) for calculating a beta (β) value for adjusting the sampling clock of the oscillator according to the ratio of the difference between the power metric at the half chip early-time and the power metric at the half chip late-time to the power metric sampled on-time.
US09793945B2 Determination of channel condition indication
A method is provided of a wireless communication device operating in connection with a cellular communication system providing a serving cell and one or more interfering cells. A signal is received comprising symbols of the serving cell transmitted in a downlink channel and symbols of the one or more interfering cells and a first function of a signal-to-interference ratio of the received signal is calculated. One or more of the interfering cells are selected as dominant interfering cells based on a respective average power of reference symbols of the one or more interfering cells in the received signal, an average power of demodulated symbols of the serving cell in the received signal and a respective average power of demodulated symbols of each of the dominant interfering cells in the received signal are determined. A metric value is calculated based on the average power of demodulated symbols of the serving cell and on the respective average power of demodulated symbols of each of the dominant interfering cells, a channel condition indication is determined based on the metric value and the first function of the signal-to-interference ratio of the received signal, and the channel condition indication is transmitted to the cellular communication system, thereby providing downlink channel condition information to a network node. A method of creating a look-up table for mapping the first function and the metric value to the channel condition indication is also disclosed along with computer program products, arrangements and wireless communication devices corresponding to the methods.
US09793944B2 System and apparatus for decoding tree-based messages
A system and techniques for decoding a message received over a communication channel comprises a receiver for receiving an encoded message. A sorting module is configured to organize candidate messages into a number of bins, sort the candidate messages within each bin, and output a group of candidate messages, the group comprising a number of most likely candidate messages from each message bin. A traceback module is configured to receive the most likely candidate message, and to walk through the tree of candidate messages to generate a decoded message.
US09793943B2 Duplexer-less transceiver and communication apparatus
A duplexer-less transceiver arrangement is disclosed. The transceiver comprises a receiver configured for frequency-division duplex communication with a communication network; a transmitter configured for frequency-division duplex communication with the communication network; an antenna port for connecting to an antenna; a balancing impedance circuit arranged to provide an adaptive impedance arranged to mimic the impedance at the antenna port; and an impedance network differentially connecting the receiver, transmitter, antenna port and balancing impedance circuit, wherein the impedance network includes a cross-connection.
US09793942B1 Systems and methods for a switchless radio front end
A radio circuit, comprises an antenna; a differential power amplifier, comprising differential transmit inputs and differential transmit outputs, configured to amplify differential transmit signals received via the differential transmit inputs and output the amplified differential transmit signals via the differential transmit outputs; a differential low noise amplifier, comprising differential receive inputs and differential receive outputs, configured to receive differential receive signals via the differential receive inputs and output amplified differential receive signals via the differential receive outputs; and a transformer comprising a primary winding and a secondary winding, the primary winding coupled with the differential transmit outputs of the power amplifier and the differential receive inputs of the low noise amplifier and the secondary winding coupled with the antenna.
US09793940B2 Cover for mobile device
A cover for a mobile device includes a cover body to be mounted on the mobile device, an operation portion provided on the cover body and capable of receiving an external operation, a transmission portion which transmits an operation signal for remotely operating a vehicle-mounted device when the operation portion receives the operation, a determination portion which determines whether or not the mobile device is in a specific state, and a restricting device which executes a process for restricting the remote operation when the determination portion determines that the mobile device is in the specific state.
US09793938B2 Intermediate-frequency analogue-to-digital conversion device
Provided is an intermediate-frequency analog-to-digital conversion device, including: a gain attenuation module, a gain amplification module, a filter and an analog-to-digital conversion module. The gain attenuation module is configured to perform attenuation processing on a received intermediate-frequency signal. The gain amplification module is connected to the gain attenuation module, and configured to perform amplification processing on a signal that is output from the gain attenuation module. The filter is a variable filter, connected to the gain amplification module, and configured to perform filter processing on a signal that is amplified by a gain amplifier. The analog-to-digital conversion module is connected to the filter, and configured to convert a signal that is filtered by the filter into a digital signal. The technical solution solves the technical problem in the related art and achieves the technical effect of improving the universality of the intermediate-frequency analog-to-digital conversion device.
US09793937B2 Apparatus and method for filtering wireless signals
An apparatus and method are described for filtering wireless signals. For example, one embodiment of the invention comprises: one or more radios to receive a plurality of wireless signals within a defined spectrum; an energy detection and filtering module to filter received wireless signals based on a detected energy level of the received wireless signals and in accordance with a set of energy-based filtering parameters, the energy detection and filtering module to output energy-filtered wireless signals; and a signal characteristic analysis and filtering module to analyze and filter the energy-filtered wireless signals based on characteristics of the received wireless signals in accordance with a set of signal analysis filtering parameters to output energy-and-characteristic filtered wireless signals.
US09793935B2 Multi-mixer system and method for reducing interference within multi-mixer system
A multi-mixer system includes an amplifier module and a plurality of channels. The amplifier module is arranged for receiving signals from an antenna or antenna arrays to generate a plurality of radio frequency (RF) input signals. The plurality of channels are coupled to the amplifier module, wherein the plurality of channels receive the RF input signals, respectively, and each of the channels includes a mixer for mixing one of the RF input signals with a local oscillating signal to generate a mixed signal. In addition, at least one of the channels includes an interference reduction circuit positioned between the amplifier module and the mixer.
US09793932B2 Systems and methods for a predistortion linearizer with frequency compensation
An analog predistortion linearizer system with dynamic frequency compensation for automatically adjusting predistortion characteristics based on a detected frequency includes a frequency detector configured to generate at least one frequency detection signal in response to receiving an amplifier drive signal, the frequency detection signal including a frequency indicator that indicates the frequency of the amplifier drive signal. Moreover, the system also includes a controller communicatively coupled to the frequency detector and configured to generate a predistorter control signal in response to receiving the frequency detection signal from the frequency detector, and a predistorter communicatively coupled to i) the frequency detector and ii) the controller, the predistorter configured to generate a predistorted amplifier drive signal based on at least the predistorter control signal.
US09793931B2 Method and apparatus for detecting transmitters for a white space device
The invention relates to a wireless home gateway apparatus and methods of wirelessly delivering audio and/or video programs between a home gateway and a client and mitigating interference thereon. Specifically, the present invention relates to transmitting an audio/video program on two white space channels and alternately stopping transmission on one of said channels to search for external transmissions on the white space channel. The present invention permits the wireless home gateway to continuously transmit an audio/video program to a client while periodically searching for transmitters on each of the white space channels.
US09793929B2 Data packing for compression-enabled storage systems
A computer-implemented method, according to one embodiment, includes: repeating the following sequence at least until a page stripe of a memory cache has at least a predetermined amount of data stored therein: finding an open codeword having an amount of available space which is greater than or equal to a size of a compressed logical page, and storing the compressed logical page in the open codeword having the amount of available space which is greater than or equal to a size of the compressed logical page. Other systems, methods, and computer program products are described in additional embodiments.
US09793927B2 Storage systems with adaptive erasure code generation
Apparatuses, methods and storage medium associated with generating erasure codes for data to be stored in a storage system. In embodiments, a method may include launching, by storage system, a plurality of instances of an erasure code generation module, based at least in part on hardware configuration of the storage system. Additionally, the method may further include setting, by the storage system, operational parameters of the plurality of instances of the erasure code generation module, based at least in part on current system load of the storage system. Further, the method may include operating, by the storage system, the plurality of instances of the erasure code generation module to generate erasure codes for data to be stored in the storage system, in accordance with the operational parameters set. Other embodiments may be described and claimed.
US09793925B2 Data processing device and data processing method
In a transmitting device, in interchanging to interchange a code bit of an LDPC code in which a code length is 16200 bits and an encoding rate is 8/15 with a symbol bit of a symbol corresponding to any of 8 signal points defined by 8PSK, when 3 bits of code bits stored in three units of storages having a storage capacity of 16200/3 bits and read bit by bit from the units of storages are allocated to one symbol, a bit b0, a bit b1, and a bit b2 are interchanged with a bit y1, a bit y0, and a bit y2, respectively. A position of the interchanged code bit obtained from data transmitted from the transmitting device is returned to an original position. The present technology is applicable to a case of transmitting data using an LDPC code, for example.
US09793924B1 Method and system for estimating an expectation of forward error correction decoder convergence
A forward error correction decoder and method of decoding a codeword is provided. The decoder comprises a convergence processor for estimating an expectation of codeword convergence. The convergence processor is configured to calculate a first value of a figure of merit; calculate a second value of the figure of merit; combine the second value of the figure of merit and the first value of the figure of merit to produce a progress value; compare the progress value of the decoding to a progress threshold; and increase a maximum number of iterations of the decoder if the progress value is greater than the progress threshold. The maximum number of iterations may be initially set to a low number beneficial for power consumption and raw throughput. Increasing the maximum number of iterations devotes additional resources to a particular codeword and is beneficial for error rate performance.
US09793920B1 Computer-readable recording medium, encoding device, and encoding method
The encoding device 100 extracts, when encoding a target file by using a static dictionary unit 121 and a dynamic dictionary unit 122, a registered word included in an external dictionary unit 221 from among words registered in the dynamic dictionary unit 122, in which the external dictionary associates a specific word group and a code group with each other; and registers, in the dynamic dictionary unit 122, a code of the registered word in the external dictionary unit 221 and a dynamic code assigned dynamically in association with each other.
US09793916B2 Level shifter, digital-to-analog converter, and buffer amplifier, and source driver and electronic device including the same
A level shifter, a digital-to-analog converter (DAC), and a buffer amplifier, and a source driver and an electronic device including the same are provided. The source driver includes a level shifter configured to receive digital bits and provide a level-shifted output signal; a DAC including a resistor string configured to provide a plurality of gradation voltages formed by an upper limit voltage and a lower limit voltage being received through one end and the other end, and an N-type metal oxide semiconductor (NMOS) switch and a P-type MOS (PMOS) switch configured to be controlled by the level-shifted output signal and output a gradation voltage corresponding to the level-shifted output signal; and an amplifier configured to amplify a signal provided by the digital-to-analog converter, and the lower limit voltage is provided to a body electrode of the NMOS switch.
US09793914B2 Analog-to-digital converter, electronic device, and method of controlling analog-to-digital converter
An analog signal is accurately converted into a digital signal. An oscillator generates an oscillation signal having a cycle that depends on a signal level of an input analog signal. A current bit generation unit generates, as a current bit, a bit indicating a value of the oscillation signal at each of a plurality of timings within the cycle. A delay unit delays each current bit over a predetermined period and supplies the delayed current bit as a delayed bit. A determination unit determines whether a change amount of a phase of the oscillation signal changed within the predetermined period is greater than a half cycle of the cycle. An output unit generates and outputs data indicating a period in which respective values of the current bit and the delayed bit form a specific combination when the change amount is not greater than the half cycle, and generates and outputs data indicating a period in which the respective values of the current bit and the delayed bit are the same or form the specific combination when the change amount is greater than the half cycle.
US09793913B2 Single-flux-quantum probabilistic digitizer
A probabilistic digitizer for extracting information from a Josephson comparator is disclosed. The digitizer uses statistical methods to aggregate over a set of comparator readouts, effectively increasing the sensitivity of the comparator even when an input signal falls within the comparator's gray zone. Among other uses, such a digitizer may be used to discriminate between states of a qubit.
US09793912B1 Analog-to-digital conversion circuitry with real-time adjusted gain and resolution
Analog-to-digital conversion circuitry for generating a digital output signal is disclosed comprising a sample-and-hold circuit comprising an adjustable sample capacitor for coupling to an analog input signal during a sample phase, and an analog-to-digital converter (ADC) coupled to an output of the sample-and-hold circuit during a hold phase. In order to compensate in real-time for an increase in an amplitude of the input signal, a capacitance of the sample capacitor is decreased by an attenuation factor, and an output of the ADC is multiplied by an inverse of the attenuation factor to generate the digital output signal.
US09793911B2 Semiconductor device including analog to digital conversion circuit
An object of the present invention is to shorten time required for detecting disconnection in an input terminal of an A/D conversion circuit. A semiconductor device includes a first input channel that couples a first input terminal and an A/D conversion unit to each other, a second input channel that couples a second input terminal and the A/D conversion unit to each other, and a control circuit unit that separates the second input channel from the second input terminal and the A/D conversion unit to charge or discharge the second input channel when a signal input into the first input terminal is sampled by the A/D conversion unit.
US09793909B2 Analog-to-digital converter, including synchronized clocks, image sensor including the same and method of operating image sensor wherein each synchronization circuit to provide synchronized input clock signals for each counter group
An image sensor includes a pixel array, a plurality of comparators, a plurality of counters and a plurality of synchronization circuits. The pixel array includes a plurality of pixels configured to generate analog signals by sensing incident light. The comparators generate comparison signals by comparing the analog signals with a reference signal. The counters are grouped into a plurality of counter groups. Each of the counters generates digital signals corresponding to the analog signals by counting, the counting terminated by the comparison signals. Each of the synchronization circuits synchronizes input clock signals to a source clock signal to provide synchronized input clock signals to each of the counter groups.
US09793908B2 Protection circuits for tunable resistor at continuous-time ADC input
Continuous-time analog-to-digital converters (ADCs) such as continuous-time delta-sigma ADCs and continuous-time pipeline ADCs, has input resistor structure at the input. The input resistor structure is typically tunable, and the tunability is usually provided by metal-oxide semiconductor field effect transistor (MOSFET) switches. Core MOSFETs, which has a terminal-to-terminal voltage <1.0V, is used for the switches for performance reasons. However, a typical implementation can have reliability issues with overloading inputs. An improved input resistor protection circuit can solve this issue by generating on and off voltages for the switches inside the tunable resistor structure based on a summing node voltage where one side of the switch is connected.
US09793907B2 Resonator, phase-locked loop, and semiconductor integrated circuit device
A resonator is supplied with voltage from a constant-voltage source, and the constant-voltage source outputs output voltage adjusted by a voltage adjustment signal to the resonator. The resonator outputs a clock signal having a frequency varied by varying capacitance in accordance with a received control signal and a frequency adjustment signal, and a frequency of the clock signal is varied by voltage output from the constant-voltage source.
US09793904B1 System and method of noise correcting PLL frequency synthesizers
An improved noise-corrected phase-locked loop frequency synthesizer configured to reduce noise, such as phase noise and spurious signals, without the use of switching circuits. The synthesizer uses a phase shifter device configured to accept a noise containing frequency signal from a voltage controlled oscillator (VCO) circuit, such as an integer-N single loop PLL synthesizer, as well as noise reducing control signals from a noise detecting sensor or circuit, and output a noise reduced VCO frequency signal. In some embodiments, the noise reducing sensor may be formed from a second, lower noise, phase locked loop circuit. The frequency synthesizer circuit, noise detecting sensor, and the phase shifter device are configured to all run continuously, with the noise reducing sensor and frequency shifter continually acting to reduce noise, produced by higher noise integer-N PLL frequency synthesizer.
US09793903B1 Device and method for recovering clock and data
A clock and data recovery device includes a data sampling module, a phase detection circuit, a frequency estimator, a clock generation module, and a data recovery module. The data sampling module samples input data according to first clock signals to generate data values, in which phases of the first clock signals are different from one another. The phase detection circuit detects a phase error of the input data according to at least one second clock signal, to generate an error signal. The frequency estimator generates an adjustment signal according to the error signal, a phase threshold value, and a frequency threshold value. The clock generation module generates the first clock signals and the at least one second clock signal according to the adjustment signal and a reference clock signal. The data recovery module generates recovered data corresponding to the input data according to the data values.
US09793902B2 Reference-less clock and data recovery circuit
Embodiments herein describe a reference-less CDR circuit that receives electrical signals that may have been transmitted along either an electrical or optical interconnect which are then processed to identify the original data. To do so, the CDR circuit includes a frequency locking loop (FLL) and a phase locking loop (PLL) which generate control signals for a voltage controlled oscillator (VCO). In one embodiment, the FLL generates a coarse adjustment signal which the VCO uses to output a recovered clock that substantially matches the frequency of the received electrical signal. The PLL, on the other hand, generates a fine adjustment signal which the VCO uses to make small adjustments (e.g., half cycle phase shifts) to the recovered clock. The recovered clock outputted by the VCO is then fed back and used as an input in both the FLL and the PLL.
US09793901B2 Integrated circuit
An integrated circuit may include: a phase detector suitable for generating a delay control signal by comparing the phases of first and second clock signals to first and second target positions, a variable delay unit suitable for shifting the first and second clock signals to the first and second target positions, respectively, in response to the delay control signal, and a position controller suitable for varying the first and second target positions according to an operation mode.
US09793899B1 Mitigation of single event latchup
The disclosed IC includes a load circuit and a temperature sensor circuit. The temperature sensor circuit measures temperature of the IC and stores temperature data in a register. An SEL mitigation circuit monitors the IC for a temperature change indicative of an SEL. A temperature change greater than a threshold over a time interval is indicative of an SEL. The SEL mitigation circuit is configured to reduce voltage applied to the IC to a voltage level that clears an SEL in the IC in response to a temperature change exceeding the threshold and to increase voltage applied to the load circuit after the reduction in voltage.
US09793898B2 Mixed-radix and/or mixed-mode switch matrix architecture and integrated circuit, and method of operating same
An integrated circuit comprising a plurality of switch matrices wherein the plurality of switch matrices are arranged in stages including (i) a first stage, configured in a hierarchical network (for example, a radix-4 network), (ii) a second stage configured in a hierarchical network (for example, a radix-2 or radix-3 network) and coupled to switches of the first stage, and (iii) a third stage configured in a mesh network and coupled to switches of the first and/or second stages. In one embodiment, the third stage of switch matrices is located between the first stage and second stage of switch matrices; in another embodiment, the third stage is the highest stage.
US09793896B1 Semiconductor device
A semiconductor device includes: first to Nth input terminals (where N is an integer equal to or greater than 2); and a redundant input terminal. When a Kth input terminal (where K is an integer ranging from 1 to N−1) is defective among the first to Nth input terminals, (K+1)th to Nth input terminals receive signals of Kth to (N−1)th input terminals, respectively, and the redundant input terminal receives a signal of the Nth input terminal.
US09793893B1 Differential input buffer circuits and methods
A termination circuit includes a first transistor coupled to a first pad, a first resistor coupled between the first transistor and a second pad, and an operational amplifier circuit. The termination circuit provides termination impedance to input signals received at the first and second pads. The first transistor generates a first common mode voltage of the input signals at a first node between the first resistor and the first transistor in response to an output signal of the operational amplifier circuit. The operational amplifier circuit generates the output signal based on the first common mode voltage of the input signals and based on a second common mode voltage of the input signals. The termination circuit generates the second common mode voltage at a second node that is a different node than the first node.
US09793892B2 High speed and high voltage driver
Systems, methods, and apparatus for biasing a high speed and high voltage driver using only low voltage transistors are described. The apparatus and method are adapted to control biasing voltages to the low voltage transistors such as not to exceed operating voltages of the low voltage transistors while allowing for DC to high speed operation of the driver at high voltage. A stackable and modular architecture of the driver and biasing stages is provided which can grow with a higher voltage requirement of the driver. Capacitive voltage division is used for high speed bias voltage regulation during transient phases of the driver, and resistive voltage division is used to provide bias voltage at steady state. A simpler open-drain configuration is also presented which can be used in pull-up or pull-down modes.
US09793889B2 Semiconductor device including a circuit to compensate for parasitic inductance
A semiconductor device includes a first transistor, a second transistor coupled in parallel with the first transistor, and a first parasitic inductance between an emitter of the first transistor and an emitter of the second transistor. The semiconductor device includes a first circuit configured to provide a first gate driver signal to the first transistor based on a common driver signal and a second circuit configured to provide a second gate driver signal to the second transistor based on the common driver signal. The first circuit and the second circuit are configured to compensate for a voltage drop across the first parasitic inductance such that the first gate driver signal and the second gate driver signal are in phase with and at the same magnitude as the common driver signal.
US09793888B2 Techniques for enabling and disabling transistor legs in an output driver circuit
An output driver circuit includes a control circuit and first and second transistor legs that are coupled to an output pad. Each of the first and second transistor legs includes a pull-up transistor and a pull-down transistor. The control circuit is coupled to the first and second transistor legs. The control circuit enables the first transistor leg to generate an output signal at the output pad and disables the second transistor leg during a first phase of a cycle. The control circuit enables the second transistor leg to generate the output signal at the output pad and disables the first transistor leg during a second phase of the cycle. The control circuit repeats the first and the second phases of the cycle.
US09793885B2 Method and apparatus for an active negative-capacitor circuit to cancel the input capacitance of comparators
A circuit comprises a first amplifier coupled to a first and a second node; a differential capacitive load coupled to the first and the second node, the differential capacitive load coupled between drains of transistors in a cross coupled transistor circuit; a current mirror coupled to a source of each transistor; and a capacitor coupled between the sources of the transistors. A plurality of amplifiers can be coupled to the differential capacitive load, wherein each amplifier comprises a clock-less pre-amplifier of a comparator. The amplifiers may be abutted to one another such that an active transistor of a first differential stage in a first amplifier behaves as a dummy transistor for an adjacent differential stage in a second amplifier.
US09793879B2 Rate convertor
Embodiments of the invention may be used to implement a rate converter that includes: 6 channels in forward (audio) path, each channel having a 24-bit signal path per channel, an End-to-end SNR of 110 dB, all within the 20 Hz to 20 KHz bandwidth. Embodiment may also be used to implement a rate converter having: 2 channels in a reverse path, such as for voice signals, 16-bit signal path per channel, an End-to-end SNR of 93 dB, all within 20 Hz to 20 KHz bandwidth. The rate converter may include sample rates such as 8, 11.025, 12, 16, 22.05, 24, 32 44.1, 48, and 96 KHz. Further, rate converters according to embodiments may include a gated clock in low-power mode to conserve power.
US09793875B2 Vibration element, vibrator, oscillator, electronic apparatus, and moving object
A vibration element includes a substrate having first and second principal surfaces, a first excitation electrode on the first principal surface, a second excitation electrode on the second principal surface, and a first extraction electrode on the first principal surface, and connected to the first excitation electrode. The first extraction electrode includes a first electrode section, and a second electrode section extending from the first electrode section in a first direction and connected to the first excitation electrode. The second electrode section is narrower in a second direction than the first electrode section. When an area of the first excitation electrode is S1, and an area of an overlapping part where the second electrode section overlaps the second excitation electrode is S2, (S2/S1)≦0.1.
US09793874B2 Acoustic resonator with electrical interconnect disposed in underlying dielectric
An apparatus comprises a substrate, a dielectric disposed on the semiconductor substrate, an acoustic resonator disposed on the dielectric, and an electrical interconnect disposed in the dielectric and configured to transmit an electrical signal to or from at least one electrode of the acoustic resonator through a signal path disposed at least partially below a level of the acoustic resonator.
US09793872B2 System and method for digital signal processing
The present invention provides methods and systems for digitally processing audio signals. Some embodiments receive an audio signal and converting it to a digital signal. The gain of the digital signal may be adjusted a first time, using a digital processing device located between a receiver and a driver circuit. The adjusted signal can be filtered with a first low shelf filter. The systems and methods may compress the filtered signal with a first compressor, process the signal with a graphic equalizer, and compress the processed signal with a second compressor. The gain of the compressed signal can be adjusted a second time. These may be done using the digital processing device. The signal may then be output through an amplifier and driver circuit to drive a personal audio listening device. In some embodiments, the systems and methods described herein may be part of the personal audio listening device.
US09793867B2 Method and apparatus for achieving very high-output signal swing from class-D amplifier using fewer components
An apparatus and method are disclosed for providing output signal swings that are greater than the supply voltage in a class-D amplifier. The amplifier circuit boosts the voltage across the amplifier load, such as a loudspeaker, by using capacitors to “charge pump” the voltage across the load and thus increase the voltage temporarily. This is done by using two or more output bridges rather than one, and connecting the bridges through the capacitors. For signals of less than the supply voltage, only an inner bridge, similar to a full bridge of the prior art, operates. For signals above the supply voltage, an outer bridge charges capacitors, which are then used to ‘boost’ the voltage on the bridge output for the short period of the Class-D switching period. Thus, only relatively small value boosting capacitors are needed, as they do not need to supply charge for very long.
US09793866B2 Single stage switching power amplifier with bidirectional energy flow
A switching amplifier realizes bidirectional energy flow and combines switching and power amplification into one single stage so as to increase system efficiency. The modulator circuit of the amplifier receives and modulates an input signal, and generates and outputs modulated driver signals, which are used by the power driver circuit to generate signals to drive switching transformers of an amplifier circuit of the amplifier, and control signals, which are used to control an output generator circuit so as to allow individual inductors across the load by enabling current flowing through the load to have a path to ground. The amplifier circuit comprises switching transformers as well as circuitries configured to capture energy returned from the load and enable the captured energy to flow back to a power supply circuit of the amplifier through an energy flow-back circuit of the amplifier.
US09793862B2 Transmitter and transmission method
A transmitter according to an exemplary aspect of the present invention includes: a modulation circuit configured to modulate a baseband signal into a multi-bit digital signal including a component in a radio-frequency band; a plurality of switch-mode power amplifiers corresponding to each bit of the multi-bit digital signal output from the modulation circuit; and a signal synthesis circuit including a band limiting unit configured to perform a band limitation on output signals from the plurality of switch-mode power amplifiers, and a plurality of voltage-to-current converting units configured to perform a voltage-to-current conversion on respective output signals from the plurality of switch-mode power amplifiers, the signal synthesis circuit configured to makes a synthesized signal connecting the band limiting unit and the plurality of voltage-to-current converting units, wherein, depending on an output power at a synthesis point where the synthesized signal is made, a switch-mode power amplifier is selected which is configured to receive input of a pulse, and a pulse number of pulses to be inputted into the selected switch-mode power amplifier is controlled.
US09793860B2 RF amplification device with power protection during high supply voltage conditions
Radio frequency (RF) amplification devices are disclosed along with methods of providing power to an RF signal. In one embodiment, an RF amplification device includes an RF amplification circuit and a voltage regulation circuit. The RF amplification circuit includes a plurality of RF amplifier stages coupled in cascade. The voltage regulation circuit is coupled to provide a regulated voltage to a driver RF amplifier stage. The voltage regulation circuit is configured to generate the regulated voltage so that the maximum output power of the RF amplification circuit is provided approximately at a first power level while the supply voltage is above a threshold voltage level. The first power level should be within the physical capabilities of the RF amplification circuit, and thus, the RF amplification circuit is prevented from being damaged once the supply voltage is above the threshold voltage level.
US09793857B1 Method and apparatus for characterizing local oscillator path dispersion
A method for calibrating a mixer, an apparatus using the calibrated mixer, and a method for using the apparatus to calibrate another mixer are disclosed. The method includes coupling a first RF signal characterized by a first timezero phase and a first RF frequency to the RF signal input. The method includes (a) coupling a first LO signal characterized by a first LO frequency and a first LO timezero phase to the LO signal input terminal; (b) determining an IF tone timezero phase of a tone from the IF signal output corresponding to the first LO signal; and (c) determining a first after LO signal path timezero phase from the IF tone and first LO timezero phase. Steps (a), (b), and (c) are repeated for second and third LO signals. An LO phase change as a function of frequency introduced by the LO signal path is then determined.
US09793856B1 Mixer with improved linearity
Mixers with improved linearity are disclosed. A diode or FET ring mixer is implemented with at least one parallel shunt element coupled with the ring mixer, the shunt element providing shunt to a diode or FET, for example, to reduce the effect of nonlinear or off resistance and/or capacitance. Linearity, isolation, symmetry, even order harmonics of the ring mixer, or any combination thereof can be improved as a result. The linearity of the ring mixer with parallel shunt resistors can be further improved by adding series resistors in the ring according to certain embodiments.
US09793852B2 Clamp and bowl mounting system for photovoltaic modules
A photovoltaic (PV) mounting hardware support system having a base portion. The system includes a hinged clamp having a first clamp portion hingedly connected to a second clamp portion and operable to lock and unlock the first clamp portion and second clamp portion to the base portion. A beam member is provided and configured as a mount for a PV module coupling device. The beam member is clamped between the first clamp portion and second clamp portion.
US09793851B2 Solar tracker
A solar tracker comprises a support frame, a panel assembly comprising one or more solar panels, and an actuator to rotate the panel assembly to track the movement of the sun. The panel assembly comprises a central spine and one or more panel carriers extending transversely over the top of the central spine for supporting solar panels. The panel carriers are secured to the central spine by respective support brackets. The support brackets comprise a top surface, side walls extending downwardly from opposing sides of the top surface, and a slot with a downwardly facing opening extending transversely through the sidewalls. The slot is configured to receive the central spine.
US09793849B2 Inverter apparatus for polyphase AC motor drive
In view of the problem that an existing technique can detect a failure in an arm circuit for each phase and continue motor drive by only a normal phase, but a brake torque is generated due to a closed circuit of the faulty phase, an inverter apparatus for polyphase AC motor drive is provided that includes: a first power supply switching device in a power supply line to an inverter circuit; a second power supply switching device for each phase in the arm circuit of the inverter circuit, and a motor relay switching device in an output path from each phase, wherein the parasitic diodes of the first power supply switching device and second power supply switching device have directional characteristics different from each other, which prevent generation of a closed circuit.
US09793845B2 Method for restarting induction machine
Disclosed embodiments relate to apparatuses, methods, and systems for restarting an induction machine. In some embodiments, a method includes estimating a position of a rotor and a speed thereof in a position and speed estimation Operation, resetting a speed reference to correspond to the speed of the rotor in a speed reference resetting Operation, generating a control voltage corresponding to the speed reference to regulate a voltage magnitude using the control voltage in a voltage magnitude regulation Operation, and re-accelerating the induction machine up to a target speed after the regulation of the voltage magnitude in a re-acceleration Operation.
US09793844B2 Permanent magnet motor controller
An object is to provide a permanent magnet motor controller capable of suppressing the rotary bending vibration that occurs in the permanent magnet motor effectively with simple configuration. A permanent magnet motor controller uses the dq coordinate conversion. A dq target current setting part adds the current component (i*da) that cancels the magnetic attractive force acting in the radial direction of the rotational shaft of the rotor of the permanent magnet motor to the d-axis target current value, whereby the eccentricity of the rotational shaft of the rotor is reduced.
US09793842B2 Control of an engine-driven generator to address transients of an electrical power grid connected thereto
A technique for providing electric power to an electric power utility grid includes driving an electric power alternator coupled to the grid with a spark-ignited or direct injection internal combustion engine; detecting a change in electrical loading of the alternator; in response to the change, adjusting parameters of the engine and/or generator to adjust power provided by the engine. In one further forms of this technique, the adjusting of parameters for the engine includes retarding spark timing and/or interrupting the spark ignition; reducing or retarding direct injection timing or fuel amount and/or interrupting the direct injection; and/or the adjusting of parameters for the generator including increasing the field of the alternator or adding an electrical load.
US09793838B1 Auto phase adjustment system and method for motor control
A method includes measuring a speed of a motor, determining a phase angle of a motor voltage relative to a motor current based on the measured speed of the motor, adjusting a profile of the motor voltage by the determined phase angle, and generating a profile of a drive voltage based on the adjusted profile of the motor voltage and a back-EMF profile. An apparatus includes a motor, and a driver circuit. The driver circuit measures a speed of the motor, determines a phase angle of a motor voltage relative to a motor current based on the measured speed of the motor, adjusts a profile of the motor voltage by the determined phase angle, and generates a profile of a drive voltage based on the adjusted profile of the motor voltage and a back-EMF profile.
US09793837B2 Motor driver and control method
Disclosed herein is a motor driver including: a motor current phase detector configured to detect a motor current phase and output a result of the detection as motor current phase information; a motor phase detector configured to detect a motor phase and output a result of the detection as motor phase information; a phase correction value calculator configured to calculate a correction value based on a difference between the motor current phase information and the motor phase information and output a result of the calculation as compensation information; and a motor applied voltage calculator configured to calculate a motor applied voltage representing a voltage to be applied to the motor based on the compensation information and motor phase information received and output a result of the calculation as a phase-compensated motor applied voltage signal.
US09793835B2 Power conversion device and method for diagnosing failure thereof
Provided is a power conversion device, including a fault determination unit (11) for determining, based on phase voltages of a polyphase dynamo-electric machine (4) detected by phase voltage detection units (10), a power, earth, or open fault of armature windings of the polyphase dynamo-electric machine (4). The fault determination unit (11) determines, in a state that all power semiconductor switching elements (2) are in an off state and no induction voltage is generated in the armature windings of the polyphase dynamo-electric machine (4), the power fault when all the phase voltages are substantially equal to an anode potential of a DC power supply (3), the earth fault when all the phase voltages are substantially equal to a cathode potential of the DC power supply (3), and the open fault when all the phase voltages are not substantially the same potential.
US09793833B1 Dynamic braking of an electric motor using capacitive load charging
The invention disclosed herein is an energy recovery system, for an electric motor, that uses the properties of dynamic braking to directly recharge a capacitive load made up of energy storage devices. The system contains switching circuitry that configures the energy storage devices into a capacitive load when braking is needed. Otherwise, the system configures the energy storage devices into a power supply for regular motor operation.
US09793831B2 Motor control circuit and method
In accordance with an embodiment, a stopping circuit includes a detection circuit connected to a subtraction amount determination circuit. A subtraction circuit is connected to the subtraction circuit and the subtraction circuit is coupled for receiving an output signal from the subtraction amount determination circuit. A duty determination is connected to the subtraction circuit and a state controller is connected to the duty determination circuit. A counter is connected to a state controller. In accordance with another embodiment a method for stopping a motor is provided by decreasing a duty of a drive signal. The duty of the drive signal is lowered from a first level to a predetermined level. A braking state is entered in response to the duty of the pulse width modulation signal achieving the predetermined level.
US09793828B2 Vibration power generator
Power generated by a vibration power generator using an electret is efficiently supplied to a power supply load. A vibration power generator includes a first substrate and a second substrate configured to be moved relative to each other by external vibration while remaining opposite each other, a group of a plurality of electrets arranged in the relative movement direction on one surface side of the first substrate, and a group of a plurality of electrodes arranged in the relative movement direction on a surface side of the second substrate opposite to the group of electrets, the group of electrodes including first current collecting electrodes and second current collecting electrodes electrically connected to respective power supply loads to which power generated by the external vibration is supplied, and ground electrodes each provided between the first current collecting electrode and the second current collecting electrode and grounded.
US09793826B2 Method of manufacturing a circuit device
In one form, a method of manufacturing a circuit device comprises providing a lead frame comprising a plurality of leads, each comprising an island portion, a bonding portion elevated from the island portion, a slope portion extending obliquely so as to connect the island portion and the bonding portion, and a lead portion extending from the bonding portion. The circuit elements are mounted on upper surfaces of the island portions, and are connected to corresponding bonding portions by wirings. Two leads are adapted to be connected to positive and negative sides of a power source, and another lead is an output lead for providing alternating-current power. Lower surfaces of the island portions are attached to an upper surface of a circuit board. The circuit board, the circuit elements, and the lead frame are encapsulated by a resin, so that the lead portions are not covered by the resin.
US09793824B2 Gate driving circuit, semiconductor device, and power conversion device
A gate driving circuit of embodiments is provided with a first transistor which controls a gate-on voltage applied to a gate electrode of a switching device, a second transistor which controls a gate-off voltage applied to the gate electrode of the switching device, a driving logic circuit which controls turn-on/turn-off of the first and second transistors, a first power source which supplies the gate-on voltage to the gate electrode when the first transistor is turned on, a second power source which supplies the gate-off voltage to the gate electrode when the second transistor is turned on, a first gate resistance variable circuit in which a plurality of field effect transistors is connected in parallel, a second gate resistance variable circuit in which a plurality of field effect transistors is connected in parallel, and a gate resistance control circuit which controls gate voltages of a plurality of field effect transistors.
US09793817B2 Multiple output converter and method for controlling the same
A multiple output converter is provided. The multiple output converter includes a power conversion circuit and a switching control unit. The power conversion circuit includes an input unit having at least one first switch, a transformer unit configured to convert a magnitude of power from the input unit, an output unit having a plurality of output terminals, which are configured to receive the power from the transformer unit, and a second switch unit having a plurality of second switches, wherein each of the plurality of second switches is installed in each of the plurality of output terminals, respectively, and is controlled in a time division multiple control manner. The switching control is configured to transmit a pulse width modulation signal to the at least one first switch and the plurality of second switches for controlling the at least one first switch and the plurality of second switches in the time division multiple control manner.
US09793816B2 Method and circuit for peak power in quasi-resonant converters
Implementations of the present disclosure involve a circuit and/or method for a control circuit of a switched-mode power supply that allows the power supply circuit to temporarily provide up to 2.0× the nominal maximum power rating of the circuit without the need for large storage devices within the power supply. For example, a control circuit of a switched-mode power supply may cause the power supply to operate in a quasi-resonant mode. However, when the load on the circuit increases such that the feedback voltage measurement meets or exceeds a voltage threshold, the control circuit causes the switched-mode power supply to enter a power excursion mode with a fixed switching frequency. If the load on the switched-mode power supply continues to increase, the off time of the switched-mode power supply may be scaled in response to increase the power provided by the switched-mode power supply.
US09793814B2 Low power converter
An AC to DC converter system is disclosed in which a conversion circuit for converting an AC input signal to a DC output signal is operably coupled with an enabling circuit designed for sensing and output parameter indicative of the presence or absence of a load at the DC output. The system is designed so that the conversion circuit operates in an inactive standby state when there is no load, and in an active state for supplying DC power when a load is present. The enabling circuit is configured to operate using low power.
US09793813B1 Step-down power conversion with zero current switching
Methods, apparatuses, computer program products, and computer readable media are disclosed herein. In one aspect, an apparatus includes a first capacitor, a first inductor in resonance with the first capacitor, a first electronic switch and a second electronic switch. The first electronic switch may be configured to cause, when the first electronic switch is closed, the first capacitor to store a first energy, and to cause a second energy to be stored in magnetic fields of the inductor. The second energy may be transferred to a load during a resonant portion of an energy transfer cycle. The apparatus may further include a second electronic switch configured to cause the stored first energy in the first capacitor to be transferred at least in part to the magnetic fields of the inductor, and then transferred to the load during a buck portion of the energy transfer cycle.
US09793806B2 Switching driver capable of reducing EMI effect and power ripple
A switching driver capable of reducing EMI effect and power ripple is disclosed. When the switching driver wants to increase the voltage of an output end, a non-overlapping signal generator controls a low-side driver to quickly turn off a low-side switch, and detects an ascending slope of the voltage of the output end to control a cut-off velocity of a low-side auxiliary switch. When the switching driver wants to decrease the voltage of the output end, the non-overlapping signal generator controls a high-side driver to quickly turn off a high-side switch, and detects a descending slope of the voltage of the output end to control a cut-off velocity of a high-side auxiliary switch. As the descending slope becomes higher, the cut-off velocity of the high-side auxiliary switch becomes slower. Accordingly, the switching driver can reduce EMI effect and power ripple operating in a dead-time.
US09793804B2 Circuits and methods for controlling a three-level buck converter
A circuit including: a control system for a three-level buck converter, the three-level buck converter including multiple input switches, each of the input switches receiving one of a plurality of different pulse width modulated signals, the control system including: a first clock signal and a second clock signal, the second clock signal being a phase-shifted version of the first clock signal; ramp generating circuitry receiving the first and second clock signals and producing first and second ramp signals, respectively, from the first and second clock signals; a first comparing circuit receiving the first ramp signal and producing a first one of the pulse width modulated signals therefrom; and a second comparing circuit receiving the second ramp signal and producing a second one of the pulse width modulated signals therefrom.
US09793798B1 Compensation of errors in current limiters
The present disclosure applies to peak current limitation and also to ensuring that a minimum current condition is not exceeded, that is, that the current through a component remains at or above a desired minimum level. A current limitation circuit compensates for time-induced errors by sampling and holding a current or voltage value at the time when a power switch changes state, deriving a rate of change of the electrical parameter and extrapolating the value over time. The extrapolated value is used for subsequent post-processing such as duty cycle modification of a switching mode DC-DC converter.
US09793797B2 Switching apparatus and control method thereof
Disclosed are a switching apparatus including an internal circuit using an inductive element and a control method thereof. The switching apparatus includes a switch that regulates a current of the inductive element, and a signal control circuit that arithmetically calculates a turn-off time point of the switch by using a monitoring voltage corresponding to the current of the inductive element, a sampling voltage of the monitoring voltage, and a reference voltage corresponding to a target average current of the inductive element, and controls the switch.
US09793796B2 Driver controller with AC-adapted and DC-adapted control modes
Methods, devices, and integrated circuits are disclosed for a driver controller that determines whether an input is AC or DC and controls a driver in either an AC-adapted control mode or a DC-adapted control mode. An example method includes detecting whether an input is primarily AC or DC. The method further includes controlling an output current in an AC-adapted control mode in response to detecting that the input is primarily AC, and controlling the output current in a DC-adapted control mode in response to detecting that the input is primarily DC.
US09793793B2 Power factor correction circuit and power supply device
A power factor correction circuit includes: a coil and MOSFETs that boost an input voltage to generate a boosted voltage; a first capacitor having one end connected to a first output terminal, and the other end connected to an intermediate node; and a second capacitor having one end connected to the intermediate node, and the other end connected to a second output terminal. In a first operation mode, the boosted vol tage is applied to the two ends of the first capacitor when a positive voltage is input, and applied to the two ends of the second capacitor when a negative voltage is input. In a second operation mode, the boosted voltage is applied to two ends of the first and second capacitors connected in series. Thus, there is provided a power factor correction circuit which has a high efficiency and is compatible with an input voltage in a broad range.
US09793792B2 Control of a half-bridge
A half-bridge includes a first switching device for connecting a terminal to a first potential, and a second switching device for connecting the terminal to a second potential. A method according to the present invention for controlling the half-bridge includes the steps of outputting a closing signal for the first switching device while the second switching device is open, and of ascertaining a latency period between the start of the closing signal and a collapse of a voltage applied across the first switching device. Subsequently, a dead time that lies between an opening of the second switching device and a closing of the first switching device is minimized on the basis of the ascertained latency period.
US09793787B2 Motor driving device and air conditioner including the same
A motor driving device and an air conditioner including the same are disclosed. The disclosed motor driving device includes a multi-level converter to receive AC power, thereby outputting multi-level power, the multi-level converter including plural diodes and plural switching elements, plural capacitors for storing the multi-level power from the multi-level converter, and a gate drive signal generator to generate gate drive signals for the switching elements of the multi-level converter. The gate drive signal generator includes a gate drive power source to supply a gate drive voltage, a gate driver to generate the gate drive signals, using the gate drive voltage, a gate capacitor connected to both terminals of the gate driver, and a gate switching element connected between one end of the gate capacitor and one end of one of the plural capacitors. Accordingly, gate drive signals for the multi-level converter can be generated.
US09793784B2 Cooling structure for slip ring device
There is provided a cooling structure whose performance for cooling ring members and brushes is enhanced. In a cooling structure applied to a slip ring device including ring members provided to an input shaft and brushes contacting with these ring members, the input shaft includes a shaft member where an external spline portion is formed, and a cylindrical member that is installed over the external circumference of the shaft member so that an internal spline portion formed on the cylindrical member is meshed with the external spline portion, and that the ring members are fixed to the cylindrical member. The internal spline portion is formed upon a portion of the inner circumferential surface of the cylindrical member that lies on the radially inward side of the ring members.
US09793780B2 Induction machine
An induction machine includes: a stator having a stator core and a coil; a rotor, which has a shaft, a rotor core secured to the shaft, and a secondary conductor; a bearing supporting the shaft; a cooling fan having a blade; and a cooling fan fixture. The secondary conductor includes a rotor bar and an end ring. The blade is located axially outward of the end ring, and the distal end of the blade in the axial direction extends axially outward of the coil end of the coil. The cooling fan has a securing portion located radially inward of the end ring and a cylindrical extended portion extending from the securing portion to the blade. The securing portion is secured to the rotor with the cooling fan fixture. The bearing is located axially inward of the distal end of the blade.
US09793777B2 Rotor bearing for an electrical machine
A disk armature generator for generating electrical energy from rotational energy of a wind power installation and comprising at least two stator components mutually offset axially along a generally horizontal rotation axis of the disk armature, and comprising, mounted therebetween so as to rotate about the rotation axis, at least one ring- or disk-shaped rotor component of the disk armature, and comprising an input-side connection for a gearbox wherein the sun gear thereof, which extends coaxially with the rotation axis of the disk armature, is coupled to at least one ring- or disk-shaped rotor component of the disk armature, wherein a rolling bearing associated with a ring- or disk-shaped rotor component of the disk armature is configured as a selected one of an angular contact ball bearing and angular contact ball bearings, having a contact angle of between 40° and 50° relative to the rotation axis, comprising a double-row angular contact ball bearing in an O arrangement.
US09793775B2 Methods and apparatus for reducing machine winding circulating current losses
In some embodiments, a system includes three conductors, each conductor being on a separate layer such that the layers are parallel to one another and stacked. Each conductor has a winding portion and a terminal portion. The conductors are configured such that at least one electrical interconnect electrically couples two adjacent conductors within the winding portion but the third conductor is electrically isolated from the other two conductors within the winding portion. Within the terminal portion all three conductors are electrically coupled.
US09793773B2 Stator of electric rotary machine and fabrication method therefor
One embodiment provides a stator of an electric rotary machine, including: a stator core having plural slots; a segmented coil of plural phases; and plural base plates laminated at each end of the stator core in an axial direction. While the stator core and plural coil bars of the segmented coil form a stator core assembly, and the plural base plates and plural end coil connections of the segmented coil form plural base plate assemblies. The stator is configured by the stator core assembly and the plural base plate assemblies laminated at each end of the stator core assembly.
US09793771B2 Rotor of an electric motor, with an outer sleeve formed by winding, method for producing such a rotor, and electric motor comprising such a rotor
An electric motor rotor including a magnetic core, magnets fastened to the periphery of the magnetic core, and a wire wound with touching turns around the magnetic core and the magnets. The wire includes a metal core surrounded by an electrically insulating layer, itself covered by an outer sheath of thermo-adhesive material, the turns being fastened to one another by adhesion between mutually contacting portions of the outer sheath. A method of fabricating such a rotor. An electric motor including such a rotor.
US09793767B2 Method and assembly for cooling an electric machine
In one exemplary embodiment, an electric machine includes a stator having a plurality of axial protrusions forming a plurality of stator cooling channels on a radially outer surface of the stator and a tapered portion located adjacent a distal end of at least one of the plurality of protrusions. Additionally, the disclosure includes a method for cooling the electric machine.
US09793766B2 Stator assembly for a wind turbine generator
It comprises stator segments forming a stator structure and a transverse structure connected to the stator structure and arranged between at least two stator segments. The transverse structure may have reinforcing ribs extending therealong and a handling device at longitudinally opposite portions of the transverse structure. A wind turbine generator comprising a rotor and said stator assembly and a wind turbine comprising such a generator are also provided.
US09793760B2 Wireless power distribution systems and methods
Apparatus, methods and systems of wireless power distribution are disclosed. Embodiments involve the redirection of collimated energy to a converter, which stores or converts the energy into a more suitable form of energy for at least one specific point-of-use that is coupled to the converter.
US09793753B2 Power quality detector
Systems and methods of controlling an uninterruptible power supply are provided. The uninterruptible power supply includes an input configured to receive input power, one or more sensors configured to monitor one or more parameters related to the input power, an output, a power conversion circuit coupled with the input and the output, a bypass switch configured to couple the input to the output in a bypass mode of operation, and a controller coupled with the power conversion circuit, and the bypass switch. The controller is configured to receive, from the one or more sensors, values for the one or more parameters, filter the values to determine one or more quality metrics, calculate, based on the quality metrics, a quality measure of the input power, and control the bypass switch based on the quality measure.
US09793750B2 Portable power charger with power input and power output connection interfaces
A portable charger is provided for charging electronic devices from a rechargeable internal battery. To accommodate multiple electronic devices, a portable charger unit is combined with multiple power output connection interfaces for connecting to more than one electronic device, as necessary, including connector cables attached to the charger housing or power connection ports. The charger also includes at least one power input connection interface for recharging the internal battery from an external power source, including an AC wall plug interface and a DC car charger interface, each connected to the charger housing and movable between a retracted, storage position and an extended use position. The power output connector cables can also be stored within storage cavities formed in the charger housing when not in use and extended therefrom for connection with electronic devices in need of recharging. The power connection ports can act as power inputs, power outputs, or both.
US09793749B2 Vehicle charging apparatus
A vehicle charging apparatus includes: an electric generator 3 that is driven by an internal combustion engine 1 and outputs an adjustable alternating-current voltage; a rectifier 4 that converts the outputted alternating-current voltage to a direct-current voltage; an electric storage device 5 that is charged with the converted direct-current voltage; and a voltage sensor 6 that measures an output voltage of the rectifier 4. The vehicle charging apparatus is provided with a control device 7 that controls the electric generator 3 for a charging voltage to be a target charging voltage calculated from the output voltage in order to suppress a charging current to be lower than a charging current upper limit value when the electric storage device 5 is charged. It thus becomes possible to achieve efficiency higher than that of a charging apparatus in the related art while preventing deterioration or damage of the electric storage device.
US09793746B2 Personal wireless charging systems
A wireless personal electronic charging system includes a personal storage item with a storage location for a portable electronic device, a power section, a connector, and a power controller. The power section includes a wireless induction charger receiver and a system battery configured to receive and store power from the wireless induction charger receiver. The connector extends through a lower wall of the storage location and, when a portable electronic device including a device battery is located within the storage location, is in electrical communication with the device battery and transfers power from the power section to the device battery. The power controller directs power from the wireless induction charger receiver to one of the device battery and the system battery. The power controller directs power to the device battery when the device battery is not fully charged and to the system battery when the device battery is fully charged.
US09793743B2 Wireless charging device for charging a plurality of wireless power receiving apparatus and charging method thereof
A wireless charging device includes a transmitting-end ferrite core and a transmitting-end coil, wherein the transmitting-end ferrite core have a bottom plate and two upright plates for forming a U-shaped structure defining a charging space therein. One or more wireless power receiving apparatus is put in the charging space. The wireless power receiving apparatus includes a receiving-end coil and a receiving-end ferrite plate, wherein the receiving-end ferrite plate is vertical to the two upright plates. When electrical current flows through the transmitting-end coil to generate an electromagnetic field in the charging space, the electromagnetic field via the two upright plates goes through each of the receiving-end ferrite plates to form an electromagnetic loop. Each of the receiving-end coils generates a charging electrical current induced by the electromagnetic field. Therefore, the present invention can achieve wireless charging to more than one wireless power receiving apparatus at the same time.
US09793738B2 Wireless power transfer for chargeable devices
Apparatus and methods directed to wireless power are disclosed. A charging device includes an antenna circuit for wirelessly receiving power from a first device via a power antenna. Received power can be stored in an energy storage device. The antenna circuit can wirelessly power or charge a plurality of second electronic devices via the power antenna based on power stored in the energy storage device. Furthermore, a wireless charging apparatus is disclosed that includes a display for receiving a device placed on its surface. Changes in a magnetic field in response to the placement of the chargeable electronic device on the surface of the display is detected. A communication link with the chargeable electronic device in response to the change in the level of the magnetic field is activated. A transmit antenna circuit wirelessly transmits power to the chargeable electronic device.
US09793734B2 Monitoring cells in energy storage system
A system for monitoring an energy storage system composed of multiple cells connected in series has a chain of monitors including at least first and second monitors. The first monitor is configured for monitoring at least a first cell in the energy storage system to produce first monitored data. The second monitor is configured for monitoring at least a second cell in the energy storage system to produce second monitored data. The first monitor is further configured for transferring the first monitored data to the second monitor for delivery to a controller.
US09793729B2 Uninterruptible power supply having removable battery
A UPS includes a battery contained within a battery housing. The battery housing has a first connector mounted on the battery housing. The UPS further includes a housing having a battery compartment for removably containing the battery housing of the battery. The housing has a second connector mounted within the battery compartment. The second connector is configured to mate with the first connector. The UPS further includes a first input configured to receive input power from an AC power source and at least one output configured to provide output AC power derived from the input power in a first mode of operation and configured to provide output power derived from the at least one battery module in a second mode of operation. The battery housing has a third connector configured to be coupled to a mobile device to provide power to the mobile device.
US09793725B2 Battery cell balancing circuit using LC serial resonance
The present invention relates to a technology capable of improving the use time of a battery cell by generally or individually controlling charge or discharge with respect to a multi-battery cell by using LC serial resonance in a module with a multi-battery cell structure. To this end, the present invention includes a battery module including a plurality of serially connected battery cells, a serial resonant circuit including serially connected inductor and capacitor and performing a serial resonant function, and first to third switch units that set an electric energy collection path and an electric energy supply path between the battery module and the serial resonant circuit.
US09793724B2 System and method for monitoring and balancing voltage of individual battery cells within a battery pack
Systems and methods for a scalable battery controller are disclosed. In one example, a circuit board coupled to a battery cell stack is designed to be configurable to monitor and balance battery cells of battery cell stacks that may vary depending on battery pack requirements. Further, the battery pack control module may configure software instructions in response to a voltage at a battery cell stack.
US09793723B2 Storage battery control device and storage battery control method
A plurality of storage battery modules include storage battery control devices that can mutually communicate with each other and obtain a demand for electric power in a predetermined consumer in which the plurality of storage battery modules are provided. The storage battery control devices mutually transmit and receive charging/discharging electric power of the storage batteries and control charging/discharging of the plurality of storage battery modules, respectively, on the basis of the demand for electric power in the predetermined consumer.
US09793722B2 Power source apparatus for vehicle
A power source apparatus mounted to a vehicle is equipped with a lead-acid battery and a lithium battery. An open circuit voltage and an internal resistance of each of the batteries are determined to satisfy the following conditions (a1), (a2), and (a3): (a1) In the use range of SOC of the lead-acid battery and the use range of SOC of the lithium battery, there is an equal voltage point Vds at which the open circuit voltage V0 (Pb) of the lead-acid battery becomes equal to the open circuit voltage V0 (Li) of the lithium battery; (a2) The relationship of V0 (Li)>V0 (Pb) is satisfied in the upper limit side of the use range of SOC of the battery; and (a3) A terminal voltage Vc (Li) of the lithium battery is not more than a set voltage Vreg of a regulator when a maximum current flows in the lithium battery.
US09793715B2 Portable load balancing and source optimization
Methods, systems, and devices for portable load balancing and source optimization are described herein. One portable load balancing and source optimization system, includes one or more electric generators that supply three phase electrical power, at least one sensor to sense whether the three phases have become unbalanced beyond a threshold amount, a set of contactors that enable the contacts of the three phases to be changed to adjust the balance of the three phases, and a controller to determine which reversible contactors of the set of contactors to change to adjust that balance of the three phases based on information from the sensor.
US09793713B2 Method for improving small disturbance stability after double-fed unit gets access to the system
A method for improving system small disturbance stability after double-fed unit gets access to the system belongs to the field of electric power system operation and control technology. A sensitivity analysis is adopted to optimize parameter, through making sensitivity analysis on the non-ideal dominant mode happens to the system to find out several nonzero elements that are most sensitive to this mode in system matrix; elements of state matrix is adopted to replace the elements of system matrix to make analysis so as to find out the most relevant parameter set; setting parameters change in the interval to observe track for the change of eigenvalues of corresponding mode and then balancing and optimizing system parameters comprehensively according to the change of eigenvalues. Without adding other control means, the present invention can improve dominant modal damping caused by selecting improper controller parameters or system parameters after double-fed unit gets access to the system without increasing cost; as this method is also highly targeted, exhaustive efforts for all the adjustable parameters of the system can be avoided, which not only greatly decreases workload, but also improves computational efficiency, so that it is very instructive.
US09793708B1 Overvoltage protection circuits and methods of operating same
Overvoltage protection circuits include a combination of an overvoltage detection circuit and a voltage clamping circuit that inhibits sustained overvoltage conditions. An overvoltage detection circuit can include first and second terminals electrically coupled to first and second power supply signal lines, respectively. This overvoltage detection circuit may be configured to generate a clamp activation signal (CAS) in response to detecting an excessive overvoltage between the first and second power supply signal lines. This CAS is provided to an input of the voltage clamping circuit, which is electrically coupled to the first power supply signal line and configured to sink current from the first power supply signal line in response to the CAS. The voltage clamping circuit may be configured to turn on and sink current from the first power supply signal line in-sync with a transition of the CAS from a first logic state to a second logic state.
US09793707B2 Fast transient precision power regulation apparatus
Apparatus disclosed herein implement a fast transient precision current limiter such as may be included in an electronic voltage regulator. The current limiter includes two current sense element/current clamp control loops. A fast response time control loop first engages and clamps a current spike. A precision control loop then engages to more accurately clamp the output current to a programmed set point. The precision clamping loop includes an inner loop to linearize the precision current sense element. The inner loop forces the drain-to-source voltage (VDS) of the precision sense element to track the VDS of the regulator pass element. A more precise clamping operation results. Overall speed is not sacrificed as the fast response time clamping loop operates in parallel to protect circuitry while the precision clamping loop engages.
US09793706B2 Current limiting systems and methods
Presented systems and methods can facilitate efficient switching and protection in electronic systems. A system can comprise: an input operable to receive a signal; an adjustable component configurable to operate in a first mode which includes a low resistance and the component configurable to operate in a second mode which includes a current limiting operation in which the second mode enables continued operation in conditions that are unsafe for operation in the first mode; and an output operable to forward a signal. The adjustable component can be configurable to turn off if unsafe to operate in either the first mode or second mode. The first mode can include a relatively large component configuration with a relatively low drain to source on resistance. Utilizing a small component configuration in the second mode can include a relatively increased gate to source voltage compared to a large component configuration in the second mode.
US09793705B2 DC-to-DC converter
A DC-to-DC converter for transporting energy between two networks includes two or more converter circuits connected in parallel, wherein a first semiconductor switch that can be actuated as a function of a voltage drop across the first semiconductor switch is arranged in series to each converter circuit or a second semiconductor switch that can be actuated as a function of a voltage drop across the second semiconductor switch is arranged in series to each converter circuit.
US09793703B2 Protecting a permanent magnet generator
A method for protecting a permanent magnet generator of a wind turbine with a multiphase generator, and n number of isolated converters, the multiphase generator including a rotor carrying permanent magnets and n number of independent multiphase sub-stators comprising a plurality of windings, each converter being connected to an independent multiphase sub-stator and configured to control the plurality of windings of the multiphase sub-stator comprises determining an asymmetrical short circuit current in one of the sub-stators, which generates a first oscillating torque, disconnecting the converter linked to the sub-stator with an asymmetrically short circuited group of windings, and injecting an asymmetrical current with the remaining connected converters, wherein said injected asymmetrical current generates a second oscillating torque that is substantially opposed in phase to the first oscillating torque so that the first oscillating torque is at least partly compensated is disclosed. Permanent magnet generators are also disclosed.
US09793701B2 Surge arrester
A surge arrester, in particular for arresting surges, includes a housing and a disconnecting device. The housing is divided into at least two housing parts, and the disconnecting device connects the housing parts to one another.
US09793699B2 Automated cord reel apparatus
The present disclosure is of an automated cord reel apparatus comprising a housing; an electrical cord accommodated into the housing with one end of the electrical cord being mounted with a plug member connected to a wall receptacle and the other end of the electrical cord being mounted with an extension socket; and an electric cord unwinding/winding device for unwinding or winding the electric cord in response to a user option, wherein the electric cord, a motor adjusting a rotation direction of the guide unit, and a switch mounted at the extension socket to turn on/off and forwardly/backwardly rotate the motor.
US09793697B1 Junction box and plug-ins
A junction box assembly is presented. The junction box has a top side, left side, right side, bottom side and rear side which define a space therein. The junction box assembly also features a plurality of openings within at least one of the sides. An interface is disposed within the junction box assembly and has a plurality of connectors disposed thereon, the interface capable of receiving a wire through said at least one opening and wherein said wire is capable of being placed in electrical and mechanical communication with at least one of the connectors. The junction box assembly is capable of receiving a plug-in inserted therein and providing electrical communication between the wire and the plug-in through said at least one of the connectors.
US09793693B1 Adjustably positionable cable dropout for cable tray
A cable dropout for a cable tray: The cable tray has side rails. Rungs at spaced intervals along the side rails define the width of the tray with the side rails. The tray side rails have laterally outward extensions at the bottom regions of the side rails for mounting a cable path re-directing dropout to the tray. The dropout has a convexly curved surface for redirecting and supporting a cable from its path on the tray to below the tray. A mounting bar at the entrance region of the dropout from the tray has laterally outward extensions clamped to the bottom region outward extensions at the bottom region of the side rails, so that the mounting bar may be clamped at any location along the side rails.
US09793686B2 Semiconductor device and fabrication method
A semiconductor device comprising a silicon substrate on which is grown a <100 nm thick epilayer of AlAs or related compound, followed by a compound semiconductor other than GaN buffer layer. Further III-V compound semiconductor structures can be epitaxially grown on top. The AlAs epilayer reduces the formation and propagation of defects from the interface with the silicon, and so can improve the performance of an active structure grown on top.
US09793683B2 Digital pulse width modulation power supply with pico second resolution
A laser system includes a laser generation element and a pulse width modulated (PWM) signal generator that uses a clock to generate a control signal having a period based on the clock frequency and includes a pulse width between a rising edge and a falling edge. The system also includes a switch mode power supply controlled by the control signal output by the PWM signal generator for providing power to the laser generation element based on the control signal. Also, the system includes a signal modification circuit that selectively delays the rising edge of each period of the control signal by one of one or more selectable durations thereby reducing the pulse width by a quantity, wherein the quantity is smaller than a minimum increment amount that the pulse width is able to change based on the clock frequency.
US09793678B2 Energy ratio sensor for laser resonator system
A device includes a first sensor configured to generate a first output signal corresponding to an energy of a portion of a forward beam transmitted by a mirror of a laser resonator system. The device further includes a second sensor configured to generate a second output signal corresponding to an energy of a portion of a return beam transmitted by the mirror. A ratio of the energy of the portion of the forward beam and the energy of the portion of the return beam corresponds to a measurement of a feedback ratio of the laser resonator system.
US09793676B1 Solid-state optical amplifier having an active core and doped cladding in a single chip
A solid-state optical amplifier is described, having an active core and doped cladding in a single chip. An active optical core runs through a doped cladding in a structure formed on a substrate. A light emitting structure, such as an LED, is formed within and/or adjacent to the optical core. The cladding is doped, for example, with erbium or other rare-earth elements or metals. Several exemplary devices and methods of their formation are given.
US09793661B2 Differential pin to RF adaptor for probing applications
A differential pin to RF adaptor includes a center conductor contact with an RF connector on one end and a signal contact on the other end. An insulating sleeve surrounds the central contact. A reference contact surrounds the insulating sleeve. The signal pin of the differential pair interfaces with the center conductor contact of the RF connector. The adaptor is structured to slide down over a pair of pins/leads so that the reference contact abuts a circuit board attached to the pins. The pins/leads are shielded all the way to the circuit board, which shields/isolates the pins from common mode and other types of interference. The adaptor maintains the shape of the signal pin and the reference pin during testing. The adaptor maintains a fixed impedance of the pins, which reduces or eliminates uncontrolled impedance and hence preserves system frequency response and reduces/eliminates erroneous ripple currents.
US09793658B2 Reuse of plug detection contacts to reduce crosstalk
An audio jack may include two contacts to electrically connect to a ground contact of an audio plug in order to detect that a metallic audio plug is inserted into the audio jack. A first of these two contacts may be grounded to form a current return path that generates a ground voltage at the ground contact of the audio plug. The second of these two contacts may be repurposed after the detection to sense the ground voltage. The sensed ground voltage may be added to right and left audio signals. The net voltages provided to the audio plug may be right and left audio signals that include the sensed ground voltage minus the actual ground voltage at the ground contact of the audio plug. This may remove the ground voltage from the net audio output signals, which may reduce crosstalk.
US09793655B2 Electrical connector with expanded housing to form mating cavity with offset EMI springs
An electrical connector includes an insulative housing having a mating tongue and a supporting tongue both extending forwardly in a front-to-back direction and spaced from each other in a vertical direction perpendicular to said front-to-back direction. A plurality of contacts is disposed in the housing with corresponding contacting sections exposed upon the mating tongue and corresponding tails retained in the housing. A metallic shield encloses the housing and cooperates with the supporting tongue to commonly define a mating cavity in which the mating tongue extends forwardly. The supporting tongue includes a plurality of cutouts in which a plurality of offset spring tangs of the metallic shield extend with corresponding ends extending into the mating cavity.
US09793653B2 Controller unit
A controller unit includes: a base unit having a slot; a module that includes a printed circuit board and that is mounted on the base unit; a pair of male and female connectors, one being included in the base unit and the other being included in the module; and a turning support that allows the module to be turned with respect to the base unit. A pair of a recess and a projection are provided to prevent wrong attachment. The base unit has one of the recess and the projection and the module has the other. The positions of the recess and the projection vary depending on the type of module.
US09793647B2 Connector assembly
A moving plate (30) includes two resilient locking pieces (34) and can be resiliently curved and deformed to incline a projecting direction of the resilient locking pieces (34). With the moving plate (30) held at an initial position by retaining projections (21), locks (55) of a female housing (50) are displaced from positions where the locks (55) are locked to the resilient locking pieces (34) to positions where the locks (55) are not locked to the resilient locking pieces (34) by resiliently deforming the resilient locking pieces (34). The retaining projections (21) are spaced apart in the same direction as a separating direction of the resilient locking pieces (34) and are at positions different from the resilient locking pieces (34) in the separating direction of the resilient locking pieces (34).
US09793645B2 Seal member and connector
A seal member includes a plurality of wire insertion holes arranged in parallel along both directions orthogonal to each other, a plurality of block parts each of which is divided to a block having at least a plurality of wire insertion holes, and a connecting part which is configured so as to connect between the adjoining block parts and have a thickness thinner than wall thicknesses of the block parts.
US09793642B2 Connector assembly
A connector assembly is provided with a housing forming an exterior, an inlet end, a cavity, and an outlet end. The housing has a recess formed within the exterior and at least one aperture formed through the housing within the recess for venting the cavity. A cord extends through the inlet end into the cavity. The first housing portion has a first fastener mechanism formed within the cavity. The second housing portion is provided with a second fastener mechanism sized to extend into the first housing portion cavity for engagement with the first fastener mechanism to fasten the first housing portion and the second housing portion together. A molded material is disposed within the cavity for engaging the fastened first and second fastener mechanisms for minimizing unfastening of the first and second fastener mechanisms. Retainers are provided for cords of varying thicknesses.
US09793639B1 Electrical connector system with multiple flexible terminal retaining beams
An electrical connector system including a connector having a terminal cavity within. The cavity has a rigid floor with a lock nib extending into the cavity, a first flexible beam extending into a rearward portion of the cavity and a second flexible beam extending into a forward portion. The first and second beams both overlie the floor. The system further includes a terminal having a top surface and a bottom surface defining a rigid lock edge. The terminal is received in the cavity such that the first beam engages a rearward portion of the top surface of the terminal and the second beam engages a forward portion of the top surface, thereby biasing the terminal towards the floor. The lock edge engages the lock nib, thereby preventing the terminal from being inadvertently withdrawn from the terminal receiving cavity. The connector may be formed by an additive manufacturing process.
US09793636B2 Insulating body for pluggable connector
The object of the present invention is an insulating body (1) for a pluggable connector (10) intended to be connected to a junction block (100), said insulating body (1) comprising a housing (2) for conductive parts (11, 12) comprising a connection terminal (11) for a conductive wire intended to be connected to the pluggable connector (10), said housing (2) comprising a support portion (6) for the connection terminal (11) and being arranged to open on a side wall (3) of the insulating body (1) via an aperture (4) arranged on said side wall (3), the insulating body (1) comprising wedging means (7), said wedging means (7) being disposed in whole or in part within a portion of the housing (2) situated facing the support portion (6) of the housing (2).
US09793635B2 Connection structural member and connection structural member module, and probe card assembly and wafer testing apparatus using the same
An apparatus comprising: a barrel having an first hole and a second hole opposite to the first hole; a first plunger disposed in the first hole and including a hook shape; a second plunger disposed in the second hole; and an elastic connection member disposed within the barrel to connect the first plunger and the second plunger.
US09793634B2 Electrical contact assembly for printed circuit boards
A socket housing and contact assembly process includes forming the solder ball contact region after initial installation of a set of contacts into the housing. The contact regions of the set of contacts pass through corresponding contact cavities to extend beyond the housing and the contact regions are formed over at equal angles for solder ball placement.
US09793628B2 Mezzanine connector with terminal brick
A connector is provided that includes a first housing that supports first terminal bricks. The first housing can mate with a second housing that supports second terminal bricks that are configured to mate with the first terminal bricks. The first housing and first terminal bricks can be adjusted so that a variety of spacing requirements can be meet by the combination of the first and second housings while allowing for reduced tooling investment.
US09793626B2 Mold for forming terminal of electric wire
A mold includes a first electrode on which a looped conductor of an electric wire is placed, the looped conductor being an exposed conductor of the electric wire from which a coating is removed and having an overlap portion at which different parts of the exposed conductor overlap each other, a hole forming jig provided upright on the first electrode to extend through an inner hole of the looped conductor, a wire holding jig arranged to surround the first electrode, and a second electrode having a conductor pressing protrusion configured to be fitted in a conductor molding groove defined by the first electrode and the wire holding jig to press and heat the looped conductor. The wire holding jig has a plurality of separable holding jigs configured to hold the looped conductor between the separable holding jigs from a direction perpendicular to an axis of the hole forming jig.
US09793618B2 Connector
A connector (10) includes a housing (20) with terminal holding portions (20A to 20D) and terminal fittings (60) in the respective terminal holding portions (20A to 20D). Each terminal fitting (60) includes a terminal main body (62A to 62D) having an annular portion (61A to 61 D) arranged substantially along a front-back direction. A wire connecting portion (63A to 63D) is connected to a rear end of the terminal main body (62A to 62D) and is connectable to a wire (W). The terminal holding portion (20A to 20D) includes a holding main body (21A to 21D) configured so that the annular portion (61A to 61D) is to be fit thereto, and a protecting portion (22A to 22D) intersecting with and integrally connected to a rear end of the holding main body (21A to 21D) and arranged to cover the wire connecting portion (63A to 63D) from the front and/or behind.
US09793610B2 Method and apparatus for radio frequency tuning utilizing a determined use case
A system that incorporates teachings of the present disclosure may include, for example, a memory, a transceiver, a plurality of antennas coupled with the transceiver, a matching network coupled with at least one of the plurality of antennas, a detector coupled with the matching network where the detector obtains operational data associated with at least two of the plurality of antennas, and a controller circuit coupled with the detector and the matching network. The controller circuit can analyze the operational data to determine an operational data differential between the at least two of the plurality of antennas. The controller circuit selects a use case for the communication device from among a group of use cases stored in the memory based on the operational data differential. Additional embodiments are disclosed.
US09793609B2 Surface-mount multi-band antenna
A surface-mount multi-band antenna includes a carrier, a first radiator, a second radiator, and a third radiator. The first radiator, the second radiator and the third radiator are respectively arranged on faces of the carrier. The first radiator includes a first rectangular region and a second rectangular region arranged on the bottom face of the carrier. The second radiator includes a third rectangular region and a fourth rectangular region on the bottom face. The second rectangular region has an opened area on the surface of the bottom face to provide coupling effect to increase bandwidth. One end of the fourth rectangular region forms a ground point and has a separation of 0.75 mm with the second rectangular region to provide matching. The fourth rectangular region has a length of 9.9 mm to add one more mode.
US09793608B2 Ferrite composition, ferrite plate, member for antenna element, and antenna element
An object is to provide a ferrite composition suitable for an antenna element with a long communication distance in a high-frequency band (for example, 13.56 MHz), a ferrite plate formed of the ferrite composition, a magnetic member for an antenna element formed of the ferrite plate, and an antenna element provided with a member for an antenna element. A ferrite composition, wherein: main components contain, with Fe2O3 conversion, 45.0-49.5 mol % of iron oxide, with CuO conversion, 4.0-16.0 mol % of copper oxide, with ZnO conversion, 19.0-25.0 mol % of zinc oxide, a remaining portion is constituted by nickel oxide, an inevitable impurity is removed with respect to the main components, and as accessory components, with TiO2 conversion, 0.5-2 weight % of titanium oxide, with CoO conversion, 0.35-2 weight % of cobalt oxide are contained.
US09793604B2 Antenna using liquid metal and electronic device employing the same
An antenna using a liquid metal is provided. The antenna includes a plurality of antenna structures, each having an inner cavity of a form corresponding to a radiator pattern; and at least one actuator connected to at least two of the plurality of antenna structures to control movement of the liquid metal to supply the liquid metal to at least one of the antenna structures. Thereby, deterioration of an antenna performance due to an influence of a human body can be prevented, and deterioration of an antenna performance can be prevented due to a form change of an electronic device including the antenna. In this manner, optimal antenna radiation performance can be dynamically realized.
US09793602B2 Multiband MIMO vehicular antenna assemblies
Disclosed are exemplary embodiments of multiband MIMO vehicular antenna assemblies. In an exemplary embodiment, a multiband MIMO vehicular antenna assembly generally includes a chassis and an outer cover or radome. The outer cover is coupled to the chassis such that an interior enclosure is collectively defined by the outer cover and the chassis. An antenna carrier or inner radome is within the interior enclosure. The antenna carrier has inner and outer surfaces spaced apart from the chassis and the outer cover. One or more antenna elements are along and/or in conformance with the outer surface of the antenna carrier so as to generally follow the contour of a corresponding portion of the antenna carrier.
US09793598B2 Wireless handheld electronic device
A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.
US09793593B1 Power combiners and dividers including cylindrical conductors and capable of receiving and retaining a gas
A power combiner/divider includes a main conductor; a ground conductor radially exterior of the main conductor; an input connector having a center conductor electrically coupled to the main conductor and having a second conductor electrically coupled to the ground conductor; a conductive cylinder including an inner cylindrical surface radially exterior of and spaced apart from the main conductor, including an outer cylindrical surface; a second ground conductor radially exterior of the outer cylindrical surface of the conductive cylinder, a gap being defined between the second ground conductor and the outer surface of the conductive cylinder; a plurality of output connectors, the output connectors having center conductors electrically coupled to the conductive cylinder and having respective second conductors electrically coupled to the second ground conductor; and means for receiving and retaining a gas inside the divider/combiner. Methods of manufacturing are also disclosed.
US09793592B2 RF coupler with decoupled state
Aspects of this disclosure relate to a radio frequency coupler with a decoupled state. In an embodiment, an apparatus includes a radio frequency coupler and a switch network. The radio frequency coupler has at least a power input port, a power output port, a coupled port, and an isolated port. The switch network can electrically connect a termination impedance to the isolated port in the first state, and the switch network can decouple an RF signal traveling between the power input port and the power output port from the isolated port and the coupled port in a second state.
US09793590B2 Coaxial wiring device and transmission/reception integrated splitter
The first member and the second member include, when a line that connects a first port and a second port is denoted by a reference line, a first groove that has a central point on the reference line and extends in a direction that intersects with the reference line; a second groove that connects one end of the first groove and the first port; a third groove that connects the other end of the first groove and the first port and has a shape that is line symmetrical to the second groove with respect to the reference line; a fourth groove that connects the other end (FN2) of the first groove and the second port; and a fifth groove that connects one end (FN1) of the first groove and the second port and has a shape that is line symmetrical to the fourth groove with respect to the reference line.
US09793586B2 Synthesis of hetero compounds using dialkylcarbonate quaternation
Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
US09793585B2 Battery system having an external thermal management system
Battery systems and modules having external thermal management systems are provided. In one embodiment, a battery module includes a housing and at least one electrochemical cell disposed within the housing. The battery module also includes a thermal interface having a first side in contact with the at least one electrochemical cell. The battery module also includes a heat sink in contact with a second side of the thermal interface. The thermal interface is adapted to enable heat transfer from the at least one electrochemical cell to the heat sink.
US09793583B2 Lithium-based battery pack
An electrical combination including a power tool and a battery pack. The power tool includes power tool terminals. The battery pack is configured to be interfaced with the power tool. The battery pack includes a battery pack housing, at least three terminals, and a plurality of battery cells. The battery pack terminals include a positive terminal, a negative terminal, and a sense terminal. The at least three terminals are configured to be interfaced with the power tool terminals. The plurality of battery cells are arranged within and supported by the battery pack housing. Each of the battery cells has a lithium-based chemistry and a respective state of charge, and power is transferable between the battery cells and the power tool. A circuit is configured to monitor the battery cells, detect a charge imbalance among the battery cells, and prevent the battery pack from operating when the charge imbalance is detected.
US09793580B2 Battery carrier for in situ analysis
The subject of the present invention is a device for the in situ analysis of batteries by means of X-ray, synchrotron or another radiation. The device has a sample support, which is realized as a sample wheel rotatably mounted about the center axis. A plurality of sample holders, the center points of which are placed on a common circular line about the center point of the sample support, are arranged on the sample support, wherein each sample holder can be repeatedly opened and closed individually by an arrestable cover. Each sample holder has in its interior a cavity which receives the battery, which is to be examined, in a manner ideal in shape with regard to circumference, wherein the cover and the cavity have an opening for the passage of the beam. A spring, engaging in the edge region of the battery, presses the battery against the cover, wherein the spring and the edge region of the cover are embodied so as to be electrically conducting but insulated with respect to one another. There are directed from each sample holder an electrically conductive connection from the edge region of the cover, and an electrically conductive connection from the spring onto the face of the sample support facing away from the cover and into the vicinity of its center point. There, the lines of all sample holders are combined to form a line bundle or a plug connector.
US09793579B2 Batteries for use in implantable medical devices
The present disclosure provides devices, systems, and methods for identifying conditions in a battery that predict fault or failure, alerting a user to the condition, and providing solutions to mitigate the potential harm that would otherwise result from the fault or failure. Further provided are battery casing designs for improved safety. These systems, devices, and methods are applicable to batteries generally, and are particularly useful in the field of implanted medical devices for mitigating the dangers of battery faults or explosions occurring within the body.
US09793575B2 Polymer gel electrolyte, lithium ion battery and method for producing same
A polymer gel electrolyte containing at least a lithium salt and an aprotic solvent, in which an amorphous polymer layer is formed on the surface of an electrode active material.
US09793567B2 Ion exchange membrane, method of preparing the same, and redox flow battery comprising the same
An ion exchange membrane for a redox flow battery, the anion exchange membrane including a porous substrate; and a polymer disposed in the porous substrate, wherein the polymer is a polymerization product of a composition for forming the ion exchange membrane, wherein the composition includes a first monomer and a second monomer, wherein the first monomer is substituted with a group including an ethylenic unsaturated double bond and includes a cationic heterocyclic compound including a nitrogen heteroatom and a counter anion thereof, and wherein the second monomer is polymerizable with the first monomer and is at least one selected from a (meth)acrylamide compound and a (meth)acrylate compound.
US09793563B2 Gasifier having integrated fuel cell power generation system
A direct carbonaceous material to power generation system integrates one or more solid oxide fuel cells (SOFC) into a fluidized bed gasifier. The fuel cell anode is in direct contact with bed material so that the H2 and CO generated in the bed are oxidized to H2O and CO2 to create a push-pull or source-sink reaction environment. The SOFC is exothermic and supplies heat within a reaction chamber of the gasifier where the fluidized bed conducts an endothermic reaction. The products from the anode are the reactants for the reformer and vice versa. A lower bed in the reaction chamber may comprise engineered multi-function material which may incorporate one or more catalysts and reactant adsorbent sites to facilitate excellent heat and mass transfer and fluidization dynamics in fluidized beds. The catalyst is capable of cracking tars and reforming hydrocarbons.
US09793561B2 Fuel cell system and control method of fuel cell system
An object is to provide a technique that a current state of a fuel cell may be detected more accurately. A fuel cell system includes a controller, a fuel cell, and an impedance measurer that may measure an impedance of the fuel cell. The controller obtains a first impedance value that expresses the impedance of the fuel cell in a predetermined state, acquires a second impedance value that expresses the impedance of the fuel cell that is measured by the impedance measurer during operation control of the fuel cell, and performs operation control of the fuel cell using the first impedance value and the second impedance value.
US09793556B2 Gasket for fuel cells
A gasket for sealing two mating surfaces of a fuel cell is described. The gasket has a core layer comprising exfoliated vermiculite. The core layer is interposed between a first and second coating layer, the said coating layers each comprising glass, glass-ceramic and/or ceramic material. Methods for producing gaskets according to the invention are also described. A solid oxide cell or a solid oxide cell component comprising one or more of the gaskets; use of the gasket to improve sealing properties in a solid oxide cell; and a method of producing a solid oxide cell or of sealing a solid oxide cell comprising incorporating at least one of the gaskets into the solid oxide cell are also defined.
US09793550B2 Gas diffusion layer for fuel cell
A gas diffusion layer (30) for a fuel cell includes: a gas diffusion layer substrate (31); and a microporous layer (32) containing a granular carbon material and scale-like graphite and formed on the gas diffusion layer substrate (31). The microporous layer (32) includes a concentrated region (32a) of the scale-like graphite that is formed into a belt-like shape extending in a direction approximately parallel to a junction surface (31a) between the microporous layer (32) and the gas diffusion layer substrate (31). Accordingly, both resistance to dry-out and resistance to flooding, which are generally in a trade-off relationship, in the gas diffusion layer can be ensured so as to contribute to an increase in performance of a polymer electrolyte fuel cell.
US09793549B2 Catalyst-supporting substrate, method of manufacturing the same, membrane electrode assembly, and fuel cell
According to one embodiment, a catalyst-supporting substrate comprises a substrate and a catalyst layer including a plurality of pores, the catalyst layer being supported on the substrate. The average diameter of the section of the pore when the catalyst is cut in the thickness direction of the thickness is 5 nm to 400 nm, and the long-side to short-side ratio of the pore on the section is 1:1 to 10:1 in average.
US09793548B2 Method of depositing nanoscale materials within a nanofiber network and networked nanofibers with coating
Provided herein is a method of manufacturing a nanoscale coated network, which includes providing nanofibers, capable of forming a network in the presence of a liquid vehicle and providing a nanoscale solid substance in the presence of the liquid vehicle. The method may also include forming a network of the nanofibers and the nanoscale solid substance and redistributing at least a portion of the nanoscale solid substance within the network to produce a network of nanofibers coated with the nanoscale solid substance. Also provided herein is a nanoscale coated network with an active material coating that is redistributed to cover and electrochemically isolate the network from materials outside the network.
US09793547B2 Lithium secondary battery and method for producing same
This invention provides a lithium secondary battery capable of bringing about greater cycle characteristics, being in a 4.2 V or higher class. The lithium secondary battery provided by this invention is a 4.2 V or higher class lithium secondary battery using a lithium transition metal composite oxide as a positive electrode active material. The lithium secondary battery comprises a negative electrode at or around which a silicon-containing cyclic compound and/or a reaction product thereof are present. The silicon-containing cyclic compound comprises at least one silicon atom in its ring and has a vinyl group.
US09793544B2 Method of manufacturing positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
A method of manufacturing the positive electrode material for a lithium ion secondary battery includes a first step of mixing Li3PO4, LiOH, H3PO4, an Fe source, a Mn source, and an M source to prepare raw material slurry, and a second step of subjecting the raw material slurry to a reaction under a high temperature and a high pressure. In the first step, mixing amounts of Li and P are set to 3.00≦Li/(Fe+Mn+M)≦3.10 and 1.00≦P/(Fe+Mn+M)≦1.10, mixing amounts of LiOH and H3PO4 are set to 0
US09793540B2 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
The present invention provides a positive electrode active material for non-aqueous electrolyte secondary battery comprising: core particles comprising a lithium transition metal composite oxide represented by the general formula: LiaNi1-x-yCoxM1yM2zO2  wherein 1.00≦a≦1.50, 0.00≦x≦0.50, 0.00≦y≦0.50, 0.00≦z≦0.02, 0.00≦x+y≦0.70, M1 is at least one element selected from the group consisting of Mn and Al, M2 is at least one element selected from the group consisting of Zr, Ta, Nb and Mo, and a surface layer located on a surface of the core particles, and the surface layer comprising boron, tungsten and oxygen; wherein the surface layer is obtained by heat-treating the core particles; a raw material compound (1) that is at least one compound selected from the group consisting of boron oxide, an oxo acid of boron, and a salt of an oxo acid of boron; and tungsten oxide (VI).
US09793539B2 Negative electrode for rechargeable lithium battery, rechargeable lithium battery including same and method of preparing rechargeable lithium battery
A negative electrode for a rechargeable lithium battery that includes a negative active material layer including a carbon-based material having a peak of about 20 degrees to 30 degrees at a (002) plane in an X-ray diffraction pattern using a CuKα ray, and an SEI (solid electrolyte interface) passivation film including at least one material selected from an organic material and an inorganic material and having an average thickness of about 10 nm to about 50 nm on the surface of the active material layer of the electrode.
US09793538B2 LMFP cathode materials with improved electrochemical performance
Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
US09793534B2 Battery pack and wiring substrate
A battery pack includes a pack body that includes a battery cell and that has an external shape substantially symmetric with respect to the horizontal and vertical axes, viewed from a front face on which terminals are arranged, and a terminal unit on the front face. The terminal unit includes a positive terminal, a negative terminal, a control terminal, and a temperature detection terminal for outputting temperature data. The positive terminal and the negative terminal are arranged on one side with respect to a center line in the width direction of the pack body. The control terminal is arranged symmetrically to the temperature detection terminal with respect to the center line in the width direction of the pack body.
US09793533B2 Module battery with multiple cells connected in series with fuse and method of manufacturing module battery
Two or more strings are connected in parallel. The strings each include two or more cells and a fuse. The two or more cells are connected in series. The fuse is connected in series to the two or more cells. Combustion of the cells do not occur when heat generated per unit time by the cells is less than or equal to an upper limit. The number of series-connected cells is determined to be less than or equal to a threshold value, within which the electric power converted into heat by a short-circuited cell in the event of a failure reaches the upper limit. The fusing current matches with a charging current that flows to a fault string when the electric power converted into heat by a short-circuited cell in the event of a failure reaches the upper limit.
US09793530B2 Battery assembly with linear bus bar configuration
A battery assembly utilizing a compact and robust bus bar configuration is provided. The batteries within the assembly are divided into groups, where the batteries within each battery group are connected in parallel and the groups are connected in series. The batteries are interconnected using a repetitive sequence of non-overlapping, alternating polarity bus bars. The bus bars, which are integrated into a battery assembly upper tray member, are devoid of contact fingers and positioned such that there is a single bus bar located adjacent to either side of each battery group.
US09793529B2 Layered-double-hydroxide-oriented film and method for producing same
Provided is a layered double hydroxide oriented membrane in which layered double hydroxide plate-like particles are highly oriented in the approximately perpendicular direction and which is also suitable for densification. The layered double hydroxide oriented membrane of the present invention is composed of a layered double hydroxide represented by the general formula: M2+1-xM3+x(OH)2An−x/n.mH2O wherein M2+ is a divalent cation, M3+ is a trivalent cation, An− is an anion having a valency of n, n is an integer of 1 or greater, x is 0.1 to 0.4, and m is 0 or greater, wherein when a surface of the oriented membrane is measured by X-ray diffractometry, a peak of a (003) plane is not substantially detected or is detected to be smaller than a peak of a (012) plane.
US09793528B2 Separator with improved thermal stability and secondary battery comprising the same
A separator having a microcapsule including a core-shell layer-spacer layer with improved thermal stability and methods for releasing the thermal stabilizer loaded microcapsule on the overheating of a battery using the same are achieved.
US09793527B2 Negative electrode for secondary batteries and method for producing same
A secondary battery negative electrode including a current collector, a negative electrode active material layer, and a porous membrane, wherein the negative electrode active material layer contains a negative electrode active material and a particulate negative electrode polymer, the porous membrane contains non-conductive particles and a porous membrane polymer that is a non-particulate cross-linked polymer, and the non-conductive particles are particles of a polymer that contains 50% by weight or more of a structural unit formed by polymerization of a (meth)acrylate, the polymer having a softening starting point or decomposition point of 175° C. or higher.
US09793526B2 Electric storage device and electric storage apparatus
An electric storage device includes: a container; an electrode assembly contained in the container, the electrode assembly including a positive electrode having a positive electrode substrate and a positive electrode active material layer that is formed on the positive electrode substrate and contains a positive electrode active material, a negative electrode having a negative electrode substrate and a negative electrode active material layer that is formed on the negative electrode substrate and contains a negative electrode active material, and a separator interposed between the positive and negative electrodes; and an electrolyte contained in the container, wherein the separator is configured such that a stress caused at a specific compressed depth in the separator, which corresponds to 5% of the thickness of the negative electrode active material layer, is 0.5 MPa or more and 14 MPa or less. An electric storage apparatus includes a plurality of electric storage devices described above.
US09793518B2 Apparatus for separating substrate and method of separating substrate by using the same
An apparatus for separating a substrate and a method of separating a substrate by using the same are disclosed. In one aspect, the apparatus includes a stage and an adsorber facing the stage and comprising a plurality of vacuum pad portions. An upper surface of the stage includes a first region and a pair of second regions located on opposing sides of the first region, wherein the first region and the second regions are disposed on different planes, and wherein each of the second regions is inclined with respect to the first region.
US09793516B2 Light extraction substrate for organic light-emitting element, method for manufacturing same and organic light-emitting element including same
The present invention relates to a light extraction substrate for an organic light-emitting element, a method for manufacturing the same and an organic light-emitting element including the same, which can shed its dependence on light extraction in a specific wavelength range appearing in a light determining pattern of a cyclical form and induce light extraction in a broader wavelength range. To this end, the present invention relates to a light extraction substrate for an organic light-emitting element, a method for manufacturing the same and an organic light-emitting element including the same. The light extraction substrate is disposed on one surface through which light emitted from the organic light-emitting element is outwardly released and comprises: a base substrate; a light determining pattern formed on the base substrate; and a leveling layer formed on the light determining pattern and having a surface contacting the organic light-emitting element, wherein a plurality of air voids having a random shape and size are irregularly distributed on an interface between the light determining pattern and the leveling layer.
US09793510B2 Organic light emitting display apparatus
Provided is an organic light emitting display apparatus. The organic light emitting display apparatus includes: a substrate; a display unit disposed on the substrate; an encapsulation layer covering the display unit; an integrated circuit device disposed on an outer portion of the display unit on the substrate; and a transparent protection unit (window) disposed on the encapsulation layer and separated from the integrated circuit device.
US09793509B2 Packaging apparatus
Embodiments of the present invention provide a packaging apparatus, which relates to a preparing field of display technology and can solve a problem of the poor bonding state between a packaging cover plate and a substrate to be packaged, improving a quality of assembled product. The packaging apparatus comprises: an upper sealing unit and a lower sealing unit which have recesses and are movable towards each other to engage and form a cavity, wherein upper suction columns for fixing a packaging cover plate is disposed inside the recess of the upper sealing unit and a bearing table for bearing a substrate to be packaged is disposed inside the recess of the lower sealing unit, and seal glue is disposed on a face of the substrate to be packaged facing the packaging cover plate; a suction mechanism for vacuumizing the cavity; a leveling mechanism for adjusting a levelness of the packaging cover plate and/or the substrate to be packaged; a displacing mechanism for driving the packaging cover plate and/or the substrate to be packaged to move towards each other so that the packaging cover plate contacts the seal glue; an inflation mechanism for filling gas into the cavity after vacuumizing.
US09793508B2 OLED display panel and OLED display device applying it
Disclosed are an OLED display panel and an OLED display device. The OLED display panel includes an array substrate (21) which is covered by a cathode (211) and a color filter substrate (22) on which an auxiliary electrode (221) is formed. A contact structure is disposed between the color filter substrate (22) and the array substrate (21) to electrically connect the cathode (211) and the auxiliary electrode (221), and the contacting area between the contact structure and the array substrate (21) is greater than or equal to that between auxiliary electrode (221) and the contact structure. The OLED display panel avoids broken circuit between the auxiliary electrode and the cathode that tends to occur due to excessive pressure upon cell-assembling a top-emitting OLED display panel.
US09793505B2 Light-emitting device including quantum dots
A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
US09793504B2 Electrode surface modification layer for electronic devices
There is disclosed a method for preparing a modified electrode for an organic electronic device, wherein said modified electrode comprises a surface modification layer, comprising: (i) depositing a solution comprising M(tfd)3, wherein M is Mo, Cr or W, and at least one solvent onto at least a part of at least one surface of said electrode; and (ii) removing at least some of said solvent to form said surface modification layer on said electrode.
US09793500B2 Condensed cyclic compound and organic light-emitting device including the same
A condensed cyclic compound is represented by Formula 1: where X1-X4, L1-L4 R1-R6 and Ar1-Ar8 are as defined in the specification. An organic light-emitting device includes the condensed cyclic compound.
US09793494B2 Organic light-emitting device
An organic light-emitting device including a first electrode; a second electrode; an organic layer between the first electrode and the second electrode and including an emission layer; and an electron transport region between the second electrode and the emission layer, the electron transport region including a charge control layer, wherein the charge control layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2:
US09793491B2 Compound and organic light-emitting device including the same
The present disclosure relates to a compound represented by Formula 1 and an organic light-emitting device including the same. The compound represented by Formula 1 has excellent stability and is suitable as an electron transporting material. An organic light-emitting device using the compound of Formula 1 may have high efficiency, low voltage, high luminance, and long lifespan.
US09793490B2 Organic optoelectronic material and use thereof
The present invention generally discloses an organic optoelectronic material and organic electroluminescent (herein referred to as organic EL) device, organic photovoltaics (herein referred to as OPV) device and organic thin-film transistor (herein referred to as OTFT) device using the organic optoelectronic material. More specifically, the present invention relates to the organic optoelectronic material formula (1), and an organic EL device, OPV device and OTFT device employing the organic optoelectronic material can improve performance.
US09793487B2 Organic light-emitting device
An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2:
US09793481B2 Patterning by stamped metal resist
A method is provided. A first layer is provided over a substrate, the first layer comprising a first material. A patterned second layer is applied over the first layer via stamping. The second layer comprising a second material. The second layer covers a first portion of the first layer, and does not cover a second portion of the first layer. The second portion of the first layer is removed via a subtractive process while the first portion of the first layer is protected from removal by the patterned second layer.
US09793480B2 Method for manufacturing organic electronic devices
The present invention relates to a method for manufacturing organic electronic devices including a dipyrannylidene film as an anodic interface layer, the method being carried out in a vacuum and without any exposure to air. The invention also relates to organic devices resulting from the method, more specifically to organic solar cells (OSC).
US09793477B2 Multinozzle emitter arrays for ultrahigh-throughput nanoelectrospray mass spectrometry
The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.
US09793476B2 Apparatus and method for treating a substrate
Provided are a substrate treating apparatus and method of manufacturing a phase-change layer having superior deposition characteristics. The substrate treating method of manufacturing a phase-change memory includes forming a bottom electrode on a substrate on which a pattern is formed, performing surface treating for removing impurities generated or remaining on a surface of the substrate while the bottom electrode is formed, performing nitriding on the surface of the substrate from which the impurities are removed, and successively depositing a phase-change layer and a top electrode on the bottom electrode. The substrate treating apparatus for manufacturing a phase-change memory includes a load lock chamber into/from which a plurality of substrates are loaded or unloaded, the load lock chamber being converted between an atmosphere state and a vacuum state, a nitriding chamber in which nitriding is performed on a surface of a substrate on which a bottom electrode is disposed, the nitriding chamber being coupled to one side of a plurality of sides of the vacuum transfer chamber, and a process chamber in which a phase-change layer is deposited on the surface of the substrate on which nitriding is performed in the nitriding process chamber, the process chamber being coupled to one of the plurality of sides of the vacuum transfer chamber.
US09793460B2 Thermoelectric conversion module
A thermoelectric conversion module is disclosed that corrects the difference in thermal resistance between a P-type thermoelectric conversion member and an N-type thermoelectric conversion member. In this thermoelectric conversion module, since insulators included in the P-type thermoelectric conversion member and the N-type thermoelectric conversion member have a different thermal resistance, it is possible to correct the difference in thermal resistance between the P-type thermoelectric conversion element and the N-type thermoelectric conversion element.
US09793458B2 Light-emitting device and method of manufacturing thereof
The present disclosure provides a method of manufacturing a light-emitting device, which comprises providing a first substrate and a plurality of semiconductor stacked blocks on the first substrate, and each of the plurality semiconductor stacked blocks comprises a first conductive-type semiconductor layer, a light-emitting layer on the first conductive-type semiconductor layer, and a second conductive-type semiconductor layer on the light-emitting layer; wherein there is a trench separating two adjacent semiconductor stacked blocks on the first substrate, and a width of the trench is less than 10 μm; and conducting a first separating step to separate a first semiconductor stacked block of the plurality of semiconductor stacked blocks from the first substrate and keep a second semiconductor stacked block on the first substrate.
US09793451B2 Light-emitting diode device
An encapsulated light-emitting diode device is disclosed. The encapsulated light-emitting diode device includes a circuit carrier including a surface; a light-emitting device including a transparent substrate, the transparent substrate including a first surface and a second surface, and the first surface and the surface of the circuit carrier includes an included angle larger than zero; a light-emitting diode chip located on the first surface of the transparent substrate; and a first transparent glue covering the light-emitting diode chip and formed on the first surface; and a second transparent glue formed on the second surface corresponding to the first transparent glue; wherein the first transparent glue has a circular projection on the first surface and the light-emitting diode chip is substantially located at the center of the circular projection.
US09793448B2 Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
A light-emitting diode (LED) includes a substrate, a semiconductor stacked structure disposed on the substrate, the semiconductor stacked structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, a wavelength converting layer configured to convert a wavelength of light emitted from the semiconductor stacked structure, the wavelength converting layer covering side surfaces of the substrate and the semiconductor stacked structure, and a distributed Bragg reflector (DBR) configured to reflect at least a portion of light wavelength-converted by the wavelength converting layer, in which at least a portion of the DBR is covered with a metal layer configured to reflect light transmitted through the DBR.
US09793447B2 Optoelectronic semiconductor chip and optoelectronic semiconductor component
An optoelectronic semiconductor chip has a non-rectangular, parallelogram-shaped top surface and an active zone, which is at a distance from the top surface and runs parallel to the top surface at least in places. The top surface includes a radiation exit surface, through which electromagnetic radiation generated during operation in the active zone emerges. The radiation exit surface has at least four vertices. The top surface includes at least one triangular connection area via which the active zone is electrically connectable.
US09793441B2 Light emitting diode module for surface mount technology and method of manufacturing the same
An LED is provided to include: a first conductive type semiconductor layer; an active layer positioned over the first conductive type semiconductor layer; a second conductive type semiconductor layer positioned over the active layer; and a defect blocking layer comprising a masking region to cover at least a part of the top surface of the second conductive semiconductor layer and an opening region to partially expose the top surface of the second conductive type semiconductor layer, wherein the active layer and the second conductive type semiconductor layer are disposed to expose a part of the first conductive type semiconductor layer, and wherein the defect blocking layer comprises a first region and a second region surrounding the first region, and a ratio of the area of the opening region to the area of the masking region in the first region is different from a ratio of die area of the opening region to the area of the masking region in the second region.
US09793439B2 Metallic contact for optoelectronic semiconductor device
A contact to a semiconductor layer in a light emitting structure is provided. The contact can include a plurality of contact areas formed of a metal and separated by a set of voids. The contact areas can be separated from one another by a characteristic distance selected based on a set of attributes of a semiconductor contact structure of the contact and a characteristic contact length scale of the contact. The voids can be configured to increase an overall reflectivity or transparency of the contact.
US09793437B2 Graphene-based solid state devices capable of emitting electromagnetic radiation and improvements thereof
Described herein are solid-state devices based on graphene in a Field Effect Transistor (FET) structure that emits high frequency Electromagnetic (EM) radiation using one or more DC electric fields and periodic magnetic arrays or periodic nanostructures. A number of devices are described that are capable of generating and emitting electromagnetic radiation.
US09793434B2 LED element and method of manufacturing the same
An LED element capable of further improving the light extraction efficiency and its manufacturing method are provided.An LED element comprises a semiconductor lamination part that includes a light-emitting layer, a diffractive surface on which light emitted from the light-emitting layer is incident and on which projection parts are formed with a period larger than an optical wavelength of the light and smaller than a coherence length of the light and which reflects the incident light in a plurality of modes according to a Bragg diffraction condition and transmits the incident light in a plurality of modes according to the Bragg diffraction condition, and a reflecting surface that reflects light refracted by the diffractive surface so that the reflected light is incident on the diffractive surface again, wherein the semiconductor lamination part is formed on the diffractive surface without any void around the projection parts and a proportion of a flat part in the diffractive surface is 40% or more in a plan view thereof.
US09793430B1 Heterojunction schottky gate bipolar transistor
Certain embodiments of the present invention may be directed to a transistor structure. The transistor structure may include a semiconductor substrate. The semiconductor substrate may include a drift region, a collector region, an emitter region, and a lightly-doped/undoped region. The lightly-doped/undoped region may be lightly-doped and/or undoped. The transistor structure may also include a heterostructure. The heterostructure forms a heterojunction with the lightly-doped/undoped region. The transistor structure may also include a collector terminal. The collector terminal is in contact with the collector region. The transistor structure may also include a gate terminal. The gate terminal is in contact with the heterostructure. The transistor structure may also include an emitter terminal. The emitter terminal is in contact with the lightly-doped/undoped region and the emitter region.
US09793425B2 Silicon-based visible and near-infrared optoelectric devices
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
US09793423B2 Light receiving device including transparent electrode and method of manufacturing light receiving device
Provided is a light receiving device including a transparent electrode and a method of manufacturing the light receiving device. A transparent electrode is formed so as to be in contact with a photoelectric conversion layer which absorbs light to generate electric energy, and the transparent electrode is formed by using a resistance change material which has high transmittance with respect to light in the entire wavelength range and of which resistance state is to be changed from a high resistance state into a low resistance state if a voltage exceeding a threshold voltage inherent in the resistance change material so that conducting filaments are formed in the transparent electrode. Accordingly, since the transparent electrode has high transmittance characteristic with respect to the light in the entire wavelength range and high conductivity characteristic, the light receiving device also has high photoelectric conversion efficiency and good electric characteristics.
US09793422B2 Solar cell
The present invention is to grant a margin in the control of a depth of a groove when removing a transparent insulation layer after the transparent insulation layer is formed on the entire surface of the transparent conductive layer, thereby provide a solar cell which has superior productivity in mass manufacturing. A solar cell includes an n-type amorphous silicon layer formed on a front-surface side of an n-type monocrystalline silicon the substrate; a front-surface side transparent conductive layer formed on the n-type amorphous silicon layer; a p-type amorphous silicon layer formed on a rear-surface-side of the substrate; and a rear-surface-side transparent conductive layer formed on the p-type amorphous silicon layer. A front-surface side collector electrode is formed by plating on the front-surface side transparent conductive layer whereas a rear-surface-side collector electrode is formed on the rear-surface-side transparent conductive layer by printing.
US09793416B2 Method for manufacturing semiconductor device
To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.
US09793415B2 Semiconductor device and method of manufacturing the same
A semiconductor device and a method of manufacturing the semiconductor device are provided. The semiconductor device includes a semiconductor layer, a gate electrode on the semiconductor layer, a first insulating layer between the semiconductor layer and the gate electrode; a second insulating layer on the gate electrode, source and drain electrodes corresponding to both ends of the semiconductor layer and disposed on the second insulating layer, and a doping layer disposed along contact holes of the first and second insulating layers, which expose the both ends of the semiconductor layer, such as, between the both ends of the semiconductor layer and the source and drain electrodes.
US09793411B2 Manufacturing method and structure of oxide semiconductor TFT substrate
The present invention provides a manufacturing method and a structure of an oxide semiconductor TFT substrate, in which an oxide conductor layer is used to define a channel and a source terminal of an oxide semiconductor TFT substrate. Since the oxide conductor layer is relatively thin and compared to the known techniques, the width of the channel can be made smaller and the width of the channel can be controlled precisely, the difficult of the manufacturing process of the oxide semiconductor TFT substrate can be reduced and the performance of the oxide semiconductor TFT substrate can be enhanced and the yield rate of manufacture can be increased. In a structure of an oxide semiconductor TFT substrate manufactured with the present invention, since the oxide conductor layer and the oxide semiconductor layer are similar in structural composition, excellent ohmic contact can be formed; the oxide semiconductor layer has better capability of inclining upward and the oxide conductor does not cause metal ion contamination in the oxide semiconductor layer; and the oxide conductor is transparent so as to help increase aperture ratio.
US09793407B2 Fin field effect transistor
A substrate is patterned to form trenches and a semiconductor fin between the trenches. Insulators are formed in the trenches and a dielectric layer is formed to cover the semiconductor fin and the insulators. A dummy gate strip is formed on the dielectric layer. Spacers are formed on sidewalls of the dummy gate strip. The dummy gate strip and the dielectric layer underneath are removed until sidewalls of the spacers, a portion of the semiconductor fin and portions of the insulators are exposed. A second dielectric layer is selectively formed to cover the exposed portion of the semiconductor fin, wherein a thickness of the dielectric layer is smaller than a thickness of the second dielectric layer. A gate is formed between the spacers to cover the second dielectric layer, the sidewalls of the spacers and the exposed portions of the insulators.
US09793406B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes a substrate, at least two gate spacers, and a gate stack. The substrate has at least one semiconductor fin. The gate spacers are disposed on the substrate. At least one of the gate spacers has a sidewall facing to another of the gate spacers. The gate stack is disposed between the gate spacers. The gate stack includes a high-κ dielectric layer and a gate electrode. The high-κ dielectric layer is disposed on the substrate and covers at least a portion of the semiconductor fin while leaving the sidewall of said at least one gate spacer uncovered. The gate electrode is disposed on the high-κ dielectric layer.
US09793382B2 Manufacturing method of semiconductor device
A semiconductor device and a method of manufacturing the same, the semiconductor device includes a fin shaped structure, a gate structure, an epitaxial layer, a germanium layer, an interlayer dielectric layer and a first plug. The fin shaped structure is disposed on a substrate. The gate structure is formed across the fin shaped structure. The epitaxial layer is disposed in the fin shaped structure adjacent to the gate structure. The germanium layer is disposed on the epitaxial layer. The interlayer dielectric layer covers the substrate and the fin shaped structure. The first plug is disposed in the interlayer dielectric layer to contact the germanium layer.
US09793380B2 Semiconductor structure and fabrication method thereof
A method for making a semiconductor device. A substrate having a fin structure is provided. A continuous dummy gate line is formed on the substrate. The dummy gate line strides across the fin structure. A source/drain structure is formed on the fin structure on both sides of the dummy gate line. An interlayer dielectric (ILD) is formed on the dummy gate line and around the dummy gate line. The ILD is polished to reveal a top surface of the dummy gate line. After polishing the ILD, the dummy gate line is segmented into separate dummy gates.
US09793376B2 Silicon carbide semiconductor device and method of manufacturing the same
In a method of manufacturing a silicon carbide semiconductor device including a vertical switching element having a trench gate structure, with the use of a substrate having an off angle with respect to a (0001) plane or a (000-1) plane, a trench is formed from a surface of a source region to a depth reaching a drift layer through a base region so that a side wall surface of the trench faces a (11-20) plane or a (1-100) plane, and a gate oxide film is formed without performing sacrificial oxidation after formation of the trench.
US09793375B2 High voltage lateral DMOS transistor with optimized source-side blocking capability
An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain diffused link, a channel diffused link, and an isolation link which electrically isolated the source, where the isolation diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain diffused link.
US09793373B2 Field effect transistor structure with abrupt source/drain junctions
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
US09793369B2 MIS-type semiconductor device
The present invention provides a MIS-type semiconductor device having a ZrOxNy gate insulating film in which threshold voltage shift is suppressed, thereby achieving stable operation. In the MIS-type semiconductor device having a gate insulating film on the semiconductor layer and a gate electrode on the gate insulating film, with a gate applied voltage of 5 V or more, the gate insulating film is formed of ZrOxNy (x and y satisfy the relation: x>0, y>0, 0.8≦y/x≦10, and 0.8≦0.59x+y≦1.0). The MIS-type semiconductor device having such a gate insulating film can perform stable operation because there is no shift in the threshold voltage even if a high voltage is applied to the gate electrode.
US09793365B2 Method for manufacturing silicon carbide semiconductor device having trench
A trench having an opening and a corner portion is formed in a silicon carbide substrate. A corner insulating film is formed to cover the corner portion. A gate insulating film is formed to cover a region extending from the opening to the corner portion. The step of forming the gate insulating film includes a step of thermally oxidizing the trench provided with the corner insulating film. The step of thermally oxidizing the trench includes a step of heating the silicon carbide substrate at not less than 1300° C. Accordingly, sufficient insulation reliability of the gate insulating film is secured near the opening of the trench while preventing dielectric breakdown of the gate oxide film at the bottom portion of the trench.
US09793363B1 GaN semiconductor device comprising carbon and iron
A semiconductor device includes: a substrate; a first GaN layer on the substrate and containing carbon; a second GaN layer on the first GaN layer and containing transition metal and carbon; a third GaN layer on the second GaN layer and containing transition metal and carbon; and an electron supply layer on the third GaN layer and having a larger band gap than GaN. A transition metal concentration of the third GaN layer gradually decreases from that of the second GaN layer from the second GaN layer toward the electron supply layer and is higher than 1×1015 cm−3 at a position of 100 nm deep from a bottom end of the electron supply layer. A top end of the second GaN layer is deeper than 800 nm from the bottom end. A carbon concentration of the third GaN layer is lower than those of the first and second GaN layers.
US09793360B2 Methods of fabricating semiconductor structures or devices using layers of semiconductor material having selected or controlled lattice parameters
Methods of fabricating semiconductor devices or structures include bonding a layer of semiconductor material to another material at a temperature, and subsequently changing the temperature of the layer of semiconductor material. The another material may be selected to exhibit a coefficient of thermal expansion such that, as the temperature of the layer of semiconductor material is changed, a controlled and/or selected lattice parameter is imparted to or retained in the layer of semiconductor material. In some embodiments, the layer of semiconductor material may comprise a III-V type semiconductor material, such as, for example, indium gallium nitride. Novel intermediate structures are formed during such methods. Engineered substrates include a layer of semiconductor material having an average lattice parameter at room temperature proximate an average lattice parameter of the layer of semiconductor material previously attained at an elevated temperature.
US09793356B2 Semiconductor device and method for fabricating the same
A semiconductor device may have a structure that prevents or reduces an etching amount of certain portions, such as a part of a source/drain region. Adjacent active fins may be merged with a blocking layer extending between adjacent the source/drain region. The blocking layer may be of a material that is relatively high-resistant to the etchant.
US09793344B2 Semiconductor device and method of manufacturing the same
According to one embodiment, a semiconductor device comprises a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, a third semiconductor region of the first conductivity type, a gate electrode, a gate insulating layer, a fourth semiconductor region of the second conductivity type, a first conductive unit and a first insulating layer. The fourth semiconductor region is provided selectively on the first semiconductor region. The fourth semiconductor region is separated from the second semiconductor region. At least a portion of the first conductive unit is surrounded with the fourth semiconductor region. At least a portion of the first insulating layer is provided between the first conductive unit and the fourth semiconductor region. A thickness of a portion of the first insulating layer is thinner than a film thickness of the gate insulating layer.
US09793343B2 Semiconductor device
To improve withstand capability of a semiconductor device during reverse recovery, provided is a semiconductor device including a semiconductor substrate having a first conduction type; a first region having a second conduction type that is formed in a front surface of the semiconductor substrate; a second region having a second conduction type that is formed adjacent to the first region in the front surface of the semiconductor substrate and has a higher concentration than the first region; a third region having a second conduction type that is formed adjacent to the second region in the front surface of the semiconductor substrate and has a higher concentration than the second region; an insulating film that covers a portion of the second region and the third region; and an electrode connected to the second region and the first region that are not covered by the insulating film.
US09793340B2 Capacitor structure
The invention relates to a capacitor structure (2) comprising a silicon substrate (4) with first and second sides (6, 8), a double double Metal Insulator Metal trench capacitor (10) including a basis electrode (12), an insulator layer (16, 20), a second and a third conductive layers (18, 22); and comprising a second pad (26) and a fourth pad (30) coupled to the basis electrode (12), a first pad (24) and a third pad (28) coupled together, the first pad (24) being located on the same substrate side than the second pad (26), the third pad (28) being located on the same substrate side than the fourth pad (30), the third pad (28) being coupled to the second conductive layer (18), said second conductive layer (18) being flush with or protruding from the opposite second side (8).
US09793336B2 High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
US09793335B2 Light emitting device and method of manufacturing the same
There is provided a light emitting device in which low power consumption can be realized even in the case of a large screen. The surface of a source signal line or a power supply line in a pixel portion is plated to reduce a resistance of a wiring. The source signal line in the pixel portion is manufactured by a step different from a source signal line in a driver circuit portion. The power supply line in the pixel portion is manufactured by a step different from a power supply line led on a substrate. A terminal is similarly plated to made the resistance reduction. It is desirable that a wiring before plating is made of the same material as a gate electrode and the surface of the wiring is plated to form the source signal line or the power supply line.
US09793334B2 Electronic device with flexible display panel including polarization layer with undercut portion and micro-coating layer
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
US09793329B2 Display device including light-emitting layer
It is an object to provide a flexible light-emitting device with long lifetime in a simple way and to provide an inexpensive electronic device with long lifetime using the flexible light-emitting device. A flexible light-emitting device is provided, which includes a substrate having flexibility and a light-transmitting property with respect to visible light; a first adhesive layer over the substrate; an insulating film containing nitrogen and silicon over the first adhesive layer; a light-emitting element including a first electrode, a second electrode facing the first electrode, and an EL layer between the first electrode and the second electrode; a second adhesive layer over the second electrode; and a metal substrate over the second adhesive layer, wherein the thickness of the metal substrate is 10 μm to 200 μm inclusive. Further, an electronic device using the flexible light-emitting device is provided.
US09793327B2 Array substrate, display device having the same, and method thereof
The present application discloses an array substrate comprising a pixel unit comprising a bottom emitting organic light emitting diode, a top emitting organic light emitting diode, a first drive thin film transistor, and a second drive thin film transistor. The first drive thin film transistor is connected to the bottom emitting organic light emitting diode for driving the bottom emitting organic light emitting diode to emit light. The second drive thin film transistor is connected to the top emitting organic light emitting diode for driving the top emitting organic light emitting diode to emit light.
US09793322B2 Apparatus having first and second switching materials
In an example, an apparatus includes an electrically conductive component having a first side and a second side, a first switching material formed on the first side of the electrically conductive component, and a second switching material formed on the second side of the electrically conductive component. The second switching material may include a different material than the first switching material and resistance states of each of the first switching material and the second switching material are to be modified through application of electric fields through the first switching material and the second switching material. The apparatus may also include an electrode in contact with one of the first switching material and the second switching material.
US09793319B2 Multilayered seed structure for perpendicular MTJ memory element
The present invention is directed to a magnetic random access memory element that includes a multilayered seed structure formed by interleaving multiple layers of a first transition metal with multiple layers of a second transition metal; and a first magnetic layer formed on top of the multilayered seed structure. The first magnetic layer has a multilayer structure formed by interleaving layers of the first transition metal with layers of a magnetic material and has a first fixed magnetization direction substantially perpendicular to a layer plane thereof. The first transition metal is platinum or palladium, while the second transition metal is selected from the group consisting of tantalum, titanium, zirconium, hafnium, vanadium, niobium, chromium, molybdenum, and tungsten.
US09793318B2 Landing pad in peripheral circuit for magnetic random access memory (MRAM)
The present invention is directed to a memory device having a via landing pad in the peripheral circuit that minimizes the memory cell size. A device having features of the present invention comprises a peripheral circuit region and a magnetic memory cell region including at least a magnetic tunnel junction (MTJ) element. The peripheral circuit region comprises a substrate and a bottom contact formed therein; a landing pad including a first magnetic layer structure formed on top of the bottom contact and a second magnetic layer structure separated from the first magnetic layer structure by an insulating tunnel junction layer, wherein each of the insulating tunnel junction layer and the second magnetic layer structure has an opening aligned to each other; and a via partly embedded in the landing pad and directly coupled to the first magnetic layer structure through the openings.
US09793317B1 Devices and systems incorporating energy harvesting components/devices as autonomous energy sources and as energy supplementation, and methods for producing devices and systems incorporating energy harvesting components/devices
An electrically-powered device, structure and/or component is provided that includes an attached electrical power source in a form of a unique, environmentally-friendly energy harvesting element or component. The energy harvesting component provides a mechanism for generating autonomous renewable energy, or a renewable energy supplement, in the integrated circuit system, structure and/or component. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. The energy harvesting component includes a plurality of energy harvesting elements electrically connected to one another to increase an electrical power output.
US09793316B1 Imager module with interposer chip
An imager module having an interposer chip electrically connected to and routing signals between an image sensor, a printed circuit board (PCB), and a voice coil motor (VCM) is disclosed. In some example embodiments, one or more surface mount devices (SMDs) may further be attached to the interposer chip, the PCB, or both the interposer chip and the PCB. The interposer chip may further have a cavity therethrough to allow light to impinge in the image sensor. The interposer chip may still further have through silicon vias (TSVs) to route signals from the PCB to the VCM.
US09793314B2 Imaging apparatus, imaging system and manufacturing method of imaging apparatus
One embodiment provides an imaging apparatus including a photoelectric conversion unit; and a junction type field effect transistor configured to output a signal based on a carrier generated by the photoelectric conversion unit. The junction type field effect transistor includes a semiconductor region of a first conductivity type that forms a channel and a gate region of a second conductivity type. The semiconductor region of the first conductivity type includes a first region and a second region. The first region and the second region are disposed in this order toward a direction to which a carrier in the channel drifts. An impurity density of the second region is lower than an impurity density of the first region.
US09793312B1 Insulating wall and method of manufacturing the same
A pixel includes a semiconductor layer with a charge accumulation layer extending in the semiconductor layer. A transistor has a read region penetrating into said semiconductor layer down to a first depth. An insulating wall penetrates into the semiconductor layer from an upper surface and containing an insulated conductor connected to a node of application of a potential. The insulating wall includes at least a portion provided with a deep insulating plug penetrating into the insulated conductor down to a second depth greater than the first depth. A continuous portion of the insulating wall laterally delimits, at least partially, a charge accumulation area and includes a wall portion with the deep insulating plug at least partially laterally delimiting the read region of the transistor.
US09793310B2 Image sensor devices using offset pixel patterns
A device includes a substrate and a plurality of unit pixels disposed in and/or on the substrate, arranged in a honeycomb pattern and separated from one another by a deep trench isolation (DTI) layer. The plurality of unit pixels may include a group of unit pixels radially arranged around and equidistant from a central unit pixel.
US09793306B2 Imaging systems with stacked photodiodes and chroma-luma de-noising
An imaging system may include an image sensor having pixels with stacked photodiodes in which a first photodiode generates a first image signal in response to light of a first wavelength and a second photodiode generates a second image signal in response to light of a second wavelength. The imaging system may include processing circuitry that applies a color correction matrix to isolate components of the first and second signals that are generated in response to light of the first and second wavelengths while removing components of the first and second signals that are generated in response to light of other wavelengths. The processing circuitry may increase noise correlations between the signals to mitigate noise amplification generated by the color correction matrix. The processing circuitry may apply a point filter to increase luma fidelity of the signals.
US09793305B2 Radiation image detecting device, radiation imaging system and operation method thereof
In capturing an image of a grid by an image detector, a measurement pixel that is not in the position of a specific point having a maximum or minimum value of an output signal is referred to as a first measurement pixel, and a measurement pixel that is in the position of the specific point is referred to as a second measurement pixel. The disposition of the first and second measurement pixels are determined so as to satisfy the following condition: fG/fN≠odd number, wherein fG is a grid frequency and fN is a Nyquist frequency of pixels; and in shifting the grid C times by one pixel, the number of the first measurement pixels is larger than that of the second measurement pixels at any time in the range of a cycle C of a repetition pattern appearing in the image.
US09793300B2 Thin film transistor and circuit structure
The present disclosure provides a TFT and a circuit structure to improve the characteristics of the threshold voltage drift of the TFT. The TFT includes a gate electrode, a semiconductor layer, an etch stop layer, and a source electrode and a drain electrode connected to the semiconductor layer. The TFT further includes a stopping structure arranged over the etch stop layer. The stopping structure is electrically isolated from the source electrode and the drain electrode, and an orthogonal projection of the stopping structure onto the etch stop layer at least partially overlaps an orthogonal projection of the semiconductor layer onto the etch stop layer. The present disclosure improves the characteristics of the threshold voltage drift of the TFT.
US09793299B2 Display device and hand-held electronic device
An electronic device includes a liquid crystal display device having a first substrate, a second substrate bonded to the first substrate, with liquid crystal material held between the first substrate and the second substrate, and an upper polarizing plate affixed to the second substrate. A protective member is disposed over the upper polarizing plate, and an adhesive member is disposed between the protective member and the upper polarizing plate without an air layer between the protective member and the upper polarizing plate. The protective member is configured as a protective cover of the electronic device.
US09793298B2 Manufacture method of TFT substrate involving reduced number of masks and structure of TFT substrate so manufactured
The present invention provides a manufacture method of a TFT substrate, and the method comprises steps of: step 1, forming a gate (21) on a substrate (1); step 2, deposing a gate isolation layer (3); step 3, deposing an oxide semiconductor layer (4) and a first photoresistor layer (5); step 4, taking the gate (21) as a mask to implement a back side expose to the first photoresistor layer (5); step 5, forming an island shaped oxide semiconductor layer (41), and removing the island shaped first photoresistor layer (51); step 6, forming an island shaped etching stopper layer (6); step 7, forming a source/a drain; step 8, deposing a protecting layer (8), a second photoresistor layer (9), and implementing gray scal exposure, development to the second photoresistor layer (9); step 9, forming a pixel electrode via (81) to implement ashing process to the second photoresistor layer (9); step 10, deposing a pixel electrode layer (10); step 11, removing the remaining second photoresistor layer (9′), and forming a pixel electrode (10′); step 12, implementing anneal process.
US09793293B1 Semiconductor device and method for manufacturing same
A semiconductor device includes a stacked body including a plurality of electrode layers stacked with an insulator interposed; a columnar portion provided in the stacked body and extending in a stacking direction of the electrode layers; and a first separation region provided in the stacked body and extending in a first direction. The stacked body includes a memory cell array and a staircase portion arranged in the first direction, the memory cell array including memory cells provided along the columnar portion, and the staircase portion including a plurality of terraces arranged along the first direction. The first separation region includes a first portion and a second portion in the staircase portion, the first portion having a first width in a second direction crossing the first direction, and the second portion having a second width in the second direction. The second width is narrower than the first width.
US09793292B2 Three-dimensional semiconductor memory devices
Three-dimensional (3D) nonvolatile memory devices include a substrate having a well region of second conductivity type (e.g., P-type) therein and a common source region of first conductivity type (e.g., N-type) on the well region. A recess extends partially (or completely) through the common source region. A vertical stack of nonvolatile memory cells on the substrate includes a vertical stack of spaced-apart gate electrodes and a vertical active region, which extends on sidewalls of the vertical stack of spaced-apart gate electrodes and on a sidewall of the recess. Gate dielectric layers extend between respective ones of the vertical stack of spaced-apart gate electrodes and the vertical active region. The gate dielectric layers may include a composite of a tunnel insulating layer, a charge storage layer, a relatively high bandgap barrier dielectric layer and a blocking insulating layer having a relatively high dielectric strength.
US09793286B2 Embedded HKMG non-volatile memory
The present disclosure relates to an integrated circuit (IC) that includes a high-k metal gate (HKMG) non-volatile memory (NVM) device and that provides small scale and high performance, and a method of formation. In some embodiments, the integrated circuit includes a logic region having a logic device disposed over a substrate and including a first metal gate electrode disposed over a first high-k gate dielectric layer and an embedded memory region disposed adjacent to the logic region. The embedded memory region has a non-volatile memory (NVM) device including a second metal gate electrode disposed over the high-k gate dielectric layer. By having HKMG structures in both the logic region and the memory region, IC performance is improved and further scaling becomes possible in emerging technology nodes.
US09793282B2 Floating gate memory cells in vertical memory
Floating gate memory cells in vertical memory. A control gate is formed between a first tier of dielectric material and a second tier of dielectric material. A floating gate is formed between the first tier of dielectric material and the second tier of dielectric material, wherein the floating gate includes a protrusion extending towards the control gate. A charge blocking structure is formed between the floating gate and the control gate, wherein at least a portion of the charge blocking structure wraps around the protrusion.
US09793274B2 CMOS transistors including gate spacers of the same thickness
A dielectric material layer is deposited on gate structures of first and second semiconductor material portions. The dielectric material layer is anisotropically etched to form a first gate spacer on a first semiconductor material portion, while being protected above the second semiconductor material portion. After formation of first raised active regions on the first semiconductor material portion, a dielectric stack of a dielectric oxide liner and a dielectric nitride liner is formed. The dielectric stack is removed over the second semiconductor material portion and a second gate spacer is formed on the second semiconductor material portion, while the dielectric stack protects the first raised active regions. A second gate spacer is formed by anisotropically etching the dielectric material layer over the second semiconductor material portion. The first and second gate spacers have the same composition and thickness. Second raised active regions can be formed on the second semiconductor material portion.
US09793273B2 Fin-based semiconductor device including a metal gate diffusion break structure with a conformal dielectric layer
The present disclosure provides a semiconductor structure comprising one or more fins formed on a substrate and extending along a first direction; one or more gates formed on the one or more fins and extending along a second direction substantially perpendicular to the first direction, the one or more gates including an first isolation gate and at least one functional gate; source/drain features formed on two sides of each of the one or more gates; an interlayer dielectric (ILD) layer formed on the source/drain features and forming a coplanar top surface with the first isolation gate. A first height of the first isolation gate is greater than a second height of each of the at least one functional gate.
US09793268B2 Method and structure for gap filling improvement
The present disclosure provides a method for forming a semiconductor structure. The method includes providing a substrate including a plurality of fin structures on the substrate; coating a first solution on the substrate to form a first dielectric layer; and coating a second solution on the first dielectric layer to form a second dielectric layer to cover the fin structures. The first solution has a first viscosity. The second solution has a second viscosity. In some embodiments, the second viscosity is greater than the first viscosity.
US09793265B2 Semiconductor device including Schottky barrier diode and power MOSFETs and a manufacturing method of the same
In a non-insulated DC-DC converter having a circuit in which a power MOS•FET high-side switch and a power MOS•FET low-side switch are connected in series, the power MOS•FET low-side switch and a Schottky barrier diode to be connected in parallel with the power MOS•FET low-side switch are formed within one semiconductor chip. The formation region SDR of the Schottky barrier diode is disposed in the center in the shorter direction of the semiconductor chip, and on both sides thereof, the formation regions of the power MOS•FET low-side switch are disposed. From the gate finger in the vicinity of both long sides on the main surface of the semiconductor chip toward the formation region SDR of the Schottky barrier diode, a plurality of gate fingers are disposed so as to interpose the formation region SDR between them.
US09793262B1 Fin diode with increased junction area
A method includes forming a first plurality of fins having a first width in a first region of a semiconductor substrate. A second plurality of fins having a second width greater than the first width is formed in a second region of a semiconductor substrate. A doped region is formed in a surface portion of the second plurality of fins to define an anode region of a diode. A junction is defined between the doped region and a cathode region of the second plurality of fins. A first contact interfacing with the anode region is formed.
US09793261B2 Power semiconductor device
A power semiconductor device includes: a first MOSFET having a first conductivity type including a first source, a first drain, and a first gate; a second MOSFET having a first conductivity type including a second drain, a second source electrically coupled to the first source, and a second gate electrically coupled the first gate; and a diode being coupled between the first and second drains. A breakdown voltage of the first MOSFET is higher than that of the second MOSFET
US09793259B2 Integrated semiconductor device
A III-nitride device that includes a silicon body having formed therein an integrated circuit and a III-nitride device formed over a surface of the silicon body.
US09793252B2 Method of integrating inorganic light emitting diode with oxide thin film transistor for display applications
A method of fabricating an active matrix display is disclosed in which one or more oxide thin film transistors is monolithically integrated with an inorganic light emitting diode structure. The method comprises forming an array of inorganic light emitting diodes over a substrate defining a plurality of sub-pixels, depositing an insulating layer over the inorganic LED array, forming conductive vias through the insulating layer, one via for each LED in the LED array, and forming a metal oxide thin film transistor backplane, including an array of pixel driver circuits, over the dielectric layer and conductive vias, wherein one driver circuit electrically controls each sub-pixel through the dielectric layer.
US09793251B2 Semiconductor package and manufacturing method thereof
Disclosed herein is a semiconductor package in which a semiconductor chip and a mounting device are packaged together. The semiconductor package includes a semiconductor chip, a mounting block on which a first mounting device is mounted on a substrate that includes a circuit formed thereon, and an interconnection part configured to electrically connect the semiconductor chip to the mounting block.
US09793248B2 Light emitting device
A light emitting device includes a substrate, a plurality of micro light emitting chips and a plurality of conductive bumps. The substrate has a plurality of pads. The micro light emitting chips are disposed on the substrate in dispersion. Each of the micro light emitting chips includes an N-type semiconductor layer, an active layer and a P-type semiconductor layer. The conductive bumps are disposed corresponding to the micro light emitting chips and located between the micro light emitting chips and the substrate. The micro light emitting chips are electrically connected to the pads of the substrate by the conductive bumps. An orthogonal projection area of each of the conductive bumps on the substrate is greater than an orthogonal projection area of each of the micro light emitting chips on the substrate.
US09793247B2 Solid state lighting component
An LED component according to the present invention comprising an array of LED chips mounted on a submount with the LED chips capable of emitting light in response to an electrical signal. The array can comprise LED chips emitting at two colors of light wherein the LED component emits light comprising the combination of the two colors of light. A single lens is included over the array of LED chips. The LED chip array can emit light of greater than 800 lumens with a drive current of less than 150 milli-Amps. The LED chip component can also operate at temperatures less than 3000 degrees K. In one embodiment, the LED array is in a substantially circular pattern on the submount.
US09793246B1 Pop devices and methods of forming the same
PoP devices and methods of forming the same are disclosed. A PoP device includes a first package structure and a second package structure. The first package structure includes a first chip, and a plurality of active through integrated fan-out vias and a plurality of dummy through integrated fan-out vias aside the first chip. The second package structure includes a plurality active bumps bonded to the plurality of active through integrated fan-out vias, and a plurality of dummy bumps bonded to the plurality of dummy through integrated fan-out vias. Besides, a total number of the active through integrated fan-out vias and the dummy through integrated fan-out vias at a first side of the first chip is substantially the same as a total number of the active through integrated fan-out vias and the dummy through integrated fan-out vias at a second side of the first chip.
US09793239B2 Semiconductor workpiece with selective backside metallization
Various semiconductor workpieces with selective backside metallizations and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a semiconductor workpiece that has multiple dies. A backside metallization is fabricated on a first die of the dies but not on a second die of the dies.
US09793238B2 Copper wire and electrode joining method and joint structure
With this copper wire joining method, a rubbed portion on which a coating remains between an electrode and a core wire is formed on the electrode. Then, after a capillary is moved away from the rubbed portion, and a ball is formed by melting a copper wire at a tip end of the capillary. Next, the ball is joined to the rubbed portion by pressing the ball against the rubbed portion.
US09793233B2 Forming sacrificial composite materials for package-on-package architectures and structures formed thereby
Methods of forming a microelectronic packaging structure are described. Those methods may include forming a solder paste comprising a sacrificial polymer on a substrate, curing the solder paste below a reflow temperature of the solder to form a solid composite hybrid bump on the conductive pads, forming a molding compound around the solid composite hybrid bump, and reflowing the hybrid bump, wherein the sacrificial polymer is substantially decomposed.
US09793230B1 Semiconductor structure and method of forming
A device package and methods of forming are provided. The device package includes a logic die and a first passivation layer over the logic die. The device package also includes a memory die and a molding compound extending along sidewalls of the logic die and the memory die. The device package also includes a conductive via extending through the molding compound, and a first redistribution layer (RDL) structure over the molding compound. The molding compound extends between a top surface of the memory die and a bottom surface of the first RDL structure. A top surface of the first passivation layer contacts the bottom surface of the first RDL structure.
US09793216B2 Fabrication of IC structure with metal plug
Aspects of the present disclosure include integrated circuit (IC) structures with metal plugs therein, and methods of forming the same. An IC fabrication method according to embodiments of the present disclosure can include: providing a structure including a via including a bulk semiconductor material therein, wherein the via further includes a cavity extending from a top surface of the via to an interior surface of the via, and wherein a portion of the bulk semiconductor material defines at least one sidewall of the cavity; forming a first metal level on the via, wherein the first metal level includes a contact opening positioned over the cavity of the via; forming a metal plug within the cavity to the surface of the via, such that the metal plug conformally contacts a sidewall of the cavity and the interior surface of the via, wherein the metal plug is laterally distal to an exterior sidewall of the via; and forming a contact within the contact opening of the first metal level.
US09793215B2 Semiconductor integrated circuit device
A semiconductor integratd circuit device includes fuse elements formed on an element isolation insulating film, and an insulating film, an interlayer insulating film and a silicon nitride film successively formed over the fuse elements. An opening region extends through the silicon nitride film into the interlayer insulating film above the fuse elements, and openings formed in the interlayer insulating film are positioned on both sides of middle portions of the fuse elements. The openings facilitate blowing off of the insulating film during laser cutting of the fuse elements, reducing physical damage to the element isolation insulating film under the fuse elements.
US09793213B2 Ion flow barrier structure for interconnect metallization
A method for forming an ion flow barrier between conductors includes forming a barrier material through a via in an interlevel dielectric layer and onto a first metal layer and recessing the barrier material to form a thickness of the barrier material on the first metal layer in the via, the thickness forming an ion flow barrier. A second metal layer is deposited in the via over the ion flow barrier such that, during operation, the ion flow barrier reduces ion flow between the first metal layer and the second metal layer while maintaining low resistance.
US09793211B2 Dual power structure with connection pins
The present disclosure relates to an integrated chip having a dual power rail structure. In some embodiments, the integrated chip has a first metal interconnect layer having a lower metal wire extending in a first direction. A second metal interconnect layer has a plurality of connection pins coupled to the lower metal wire by way of a first via layer and extending over the lower metal wire in a second direction perpendicular to the first direction. A third metal interconnect layer has an upper metal wire extending over the lower metal wire and the connection pins in the first direction. The upper metal wire is coupled to the connection pins by way of a second via layer arranged over the first via layer. Connecting the connection pins to the lower and upper metal wires reduces current density in connections to the connection pins, thereby reducing electromigration and/or IR issues.
US09793206B1 Heterogeneous metallization using solid diffusion removal of metal interconnects
A method for forming trenches of an interconnect network in a substrate. The method includes forming a first trench in the substrate, which has a first width. The method also includes forming a second trench in the substrate, which has a second width that is greater than the first width. The method also includes depositing a metal layer into the trenches, applying a dielectric over the metal, and diffusing metal atoms from the trenches to the dielectric. The dielectric absorbs a majority of the metal atoms from the first trench while simultaneously absorbing only a minority of metal atoms from the second trench.
US09793204B2 Method of manufacturing semiconductor structure comprising plurality of through holes using metal hard mask
A method of manufacturing a semiconductor structure including a conductive structure, a dielectric layer, and a plurality of conductive features is disclosed. The dielectric layer is formed on the conductive structure. A plurality of through holes is formed in the dielectric layer using a metal hard mask, and at least one of the through holes exposes the conductive structure. The conductive features are formed in the through holes. At least one of the conductive features has a bottom surface and at least one sidewall. The bottom surface and the sidewall of the conductive feature intersect to form an interior angle. The interior angles of adjacent two of the conductive features have a difference less than or substantially equal to about 3 degrees.
US09793203B2 Isolation device
An isolation device for isolating a first signal of a first circuit from a second circuit disclosed. The isolation device may have a substrate and a plurality of metal layers disposed on the substrate. The isolation device comprises a first plate that is electrically coupled to the first circuit, and a second plate that is electrically coupled to the second circuit. The first plate is configured to transmit the first signal from to a second plate that is electrically isolated from the first plate. The first plate and the second plate is surrounded by an isolation material. The isolation device further comprises at least one trench that extend at least partially through the isolation material in a direction that is substantially perpendicular to the first plate and the second plate. The at least one trench may circumscribe one of the first plate and the second plate.
US09793202B1 Wireless apparatus
According to an embodiment, a wireless apparatus includes an interposer substrate, a semiconductor chip, a nonconductive layer, and a conductive film. The interposer substrate includes a conductive portion. The semiconductor chip is mounted on a component mounting face of the interposer substrate. The nonconductive layer is provided on the component mounting face to seal the chip. The conductive film is configured to cover a surface of the nonconductive layer and a side of the interposer substrate and is electrically connected to the conductive portion. The film has a first slot aperture. The conductive portion has a second slot aperture connecting to the first slot aperture. The first and second slot apertures serve as an integrated slot antenna. The antenna has first and second portions. The first portion includes a boundary between the first and second slot apertures and has a width larger than a width of the second portion.
US09793199B2 Circuit board with via trace connection and method of making the same
Various circuit boards and methods of manufacturing the same are disclosed. In one aspect, a method of manufacturing is provided that includes forming a first interconnect layer of a circuit board. The first interconnect layer includes a first conductor trace with a first segment that does not include a via land. A first via is formed on the first segment.
US09793198B2 Conductive connections, structures with such connections, and methods of manufacture
A solder connection may be surrounded by a solder locking layer (1210, 2210) and may be recessed in a hole (1230) in that layer. The recess may be obtained by evaporating a vaporizable portion (1250) of the solder connection. Other features are also provided.
US09793196B2 Semiconductor device
Disclosed is a semiconductor device in which a resistance component resulting from wiring is reduced. A plurality of transistor units are arranged side by side in a first direction, each of which has a plurality of transistors. The gate electrodes of the transistors extend in the first direction. First source wiring extends between first transistor unit and second transistor unit, and first drain wiring extends between the second transistor unit and third transistor unit. Second drain wiring extends on the side of the first transistor unit opposite to the side where the first source wiring extends, and second source wiring extends on the side of the third transistor unit opposite to the side where the second drain wiring extends.
US09793195B1 Semiconductor device
A semiconductor device is disclosed. The semiconductor device has a semiconductor chip, an island having an upper surface to which the semiconductor chip is bonded, a lead disposed around the island, a bonding wire extended between the surface of the semiconductor chip and the upper surface of the lead, and a resin package sealing the semiconductor chip, the island, the lead, and the bonding wire, while the lower surface of the island and the lower surface of the lead are exposed on the rear surface of the resin package, and the lead is provided with a recess concaved from the lower surface side and opened on a side surface thereof.
US09793194B2 Leadframe
A leadframe includes an individual region to become a semiconductor device, and an outer frame part supporting the individual region through its peripheral edge. The thickness of the outer frame part is greater than the thickness of the individual region.
US09793192B2 Formation of through via before contact processing
The formation of through silicon vias (TSVs) in an integrated circuit (IC) die or wafer is described in which the TSV is formed in the integration process prior to contact or metallization processing. Contacts and bonding pads may then be fabricated after the TSVs are already in place, which allows the TSV to be more dense and allows more freedom in the overall TSV design. By providing a denser connection between TSVs and bonding pads, individual wafers and dies may be bonded directly at the bonding pads. The conductive bonding material, thus, maintains an electrical connection to the TSVs and other IC components through the bonding pads.
US09793190B2 Lid for integrated circuit package
A lid has a heat conductive substrate, a crystallized amorphous silicon layer and a native silicon oxide layer formed on the crystallized amorphous silicon layer. Another embodiment has a lid with a copper substrate and a native silicon oxide layer connected to the substrate by at least one intermediate layer. A method of providing a heat path through an integrated circuit package includes providing a substrate with an exterior layer of native silicon oxide and interfacing the layer of native silicon oxide with a layer of thermal interface material.
US09793188B2 Compositions and methods for semiconductor processing and devices formed therefrom
The present invention relates generally to the field of semiconductor devices, including solar cells, and compositions and methods for processing semiconductor devices, passivation of semiconductor surfaces, semiconductor etching and anti-reflective coatings for semiconductor devices.
US09793187B2 3D packages and methods for forming the same
Embodiments of the present disclosure include a semiconductor device and methods of forming a semiconductor device. An embodiment is a method of forming a semiconductor device, the method including bonding a die to a top surface of a first substrate, the die being electrically coupled to the first substrate, and forming a support structure on the top surface of the first substrate, the support structure being physically separated from the die with a top surface of the support structure being coplanar with a top surface of the die. The method further includes performing a sawing process on the first substrate, the sawing process sawing through the support structure.
US09793185B2 Test structure for monitoring liner oxidation
Embodiments of a method for forming a device using test structures are presented. The method includes providing a wafer with a device layer. The device layer includes a main device region and a perimeter region. The device layer is patterned with active and test patterns. Test patterns include dummy patterns disposed in a test device area. The wafer is processed to form at least one test device disposed in the perimeter region and one or more active devices disposed in the main device region. The test device determines a design window of the one or more active devices. Additional processing is performed to complete forming the device.
US09793183B1 System and method for measuring and improving overlay using electronic microscopic imaging and digital processing
An SEM image is acquired. The SEM image shows a metal line and a via hole disposed above the metal line. The via hole exposes a portion of the metal line vertically aligned with the via hole. A first portion and a second portion of the via hole are each vertically not aligned with the metal line and are disposed on opposite sides of the metal line. The acquired SEM image is processed to enhance a contrast between the first and second portions and their surrounding areas. A first dimension of the first portion and a second dimension of the second portion of the via hole are measured in a first direction. The first direction is different from a second direction along which the metal line extends. An overlay between the via hole and the metal line is determined based on the first dimension and the second dimension.
US09793180B2 Semiconductor device and manufacturing method thereof
A semiconductor device and manufacturing method thereof. Various aspects of the disclosure may, for example, comprise connection verification for a first one or more mounted components prior to additional assembly.