Document Document Title
US09609275B2 Single-stream transmission method for multi-user video conferencing
A method includes transmitting, from an encoding client to a first remote computing system, an encoded video stream that includes a plurality of first-resolution frames and a plurality of second-resolution frames. The method also includes transmitting, from the encoding client to the first remote computing system in the encoded video stream, a first-resolution non-displayed anchor frame. The method also includes receiving, at the encoding client from the first remote computing system, a request to change resolution. In response to receiving the request to change resolution, the method includes transmitting, from the encoding client to the first remote computing system in the encoded video stream, a set of frames that are encoded relative to the first-resolution non-displayed anchor frame.
US09609271B2 System for locating a position of local object from remote site
Systems and methods provide location of an object via video conferencing. The systems and methods may be useful for applications that require remote assistance from an individual to help another individual locate an object or a feature within an image displayed on screen. The user of a local device may view the remote image for context of the environment. In some embodiments, the local user may help direct the remote user by directions to zoom in or out of the displayed image and may provide a frame to guide the remote user. A position in the remote image shown in the remote device is activated and displayed by the local user as an icon to help pinpoint the object location for the remote user.
US09609265B2 Method and apparatus for interactive two-way visualization using simultaneously recorded and projected video streams
A system and method for point to point video enable communication and the provisioning of at least one commodity. The communication between two remote devices may include both video and audio and may be activated by use of at least one touch screen associated with a device for provisioning the at least one commodity, such as, for example, a vending machine.
US09609257B2 Solid-state imaging device
A solid-state imaging device includes: a first substrate; a second substrate; a pixel unit in which pixels are disposed in a matrix; and an A/D conversion unit that is disposed for every columns of the pixels and counts a count clock for only a period according to a magnitude of the pixel signal. The A/D conversion unit includes: counter units that is provided in one of the first substrate and the second substrate and generates n-bit count signals; memory units that is provided in the other of the first substrate and the second substrate and holds the count signals and outputs the held count signals to horizontal signal transfer lines; and a connection unit that connects each counter unit to a corresponding one of the memory units and simultaneously transfer the count signals from at least two counter units to at least two memory units.
US09609252B2 Image sensor, imaging apparatus and live body imaging apparatus
There is provided an image sensor including a pixel unit, the pixel unit including a photodiode, a first color filter and a second color filter each disposed in a different position on a plane above the photodiode, and a first on-chip lens disposed over the first color filter and a second on-chip lens disposed over the second color filter.
US09609250B2 Unit pixels for image sensors and pixel arrays comprising the same
Provided are unit pixels for image sensors and pixel arrays including the same. The unit pixels include a first pixel including first and second photo diodes which are adjacent to each other, and a first deep trench isolation (DTI) fully surrounding sides of the first and second photo diodes and electrically separating the first pixel from other pixels adjacent to the first pixel. The first pixel includes a second DTI positioned between the first photo diode and the second photo diode and having one side formed to be spaced apart from the first DTI. The first pixel also includes a color filter positioned on the first and second photo diodes and fully overlapping the first and second photo diodes. The first pixel further includes a floating diffusion node electrically connected with the first and second photo diodes. The first and second photo diodes share one floating diffusion node.
US09609246B2 Data throttling to facilitate full frame readout of an optical sensor for wafer testing
Providing for operation of high-speed optical sensor equipment at full data path speeds in conjunction with testing equipment operating at a lower speed is described herein. By way of example, a data stream output from optical sensor equipment to testing equipment can be throttled at a serial interface between such equipment. Throttling can involve subdividing a set of pixel data and outputting a subset of the pixel data in a given readout frame. Consecutive outputs of respective subsets of pixel data are initiated with an offset from the previous readout frame. Accordingly, the optical sensor equipment can be operated at full speeds, simulating realistic operational conditions, while slower testing equipment can be utilized to perform data analytics, heuristics, and other quality tests on various portions of the optical sensor equipment.
US09609243B2 Systems and methods for providing low-noise readout of an optical sensor
Systems, methods, and apparatuses that may be employed to reduce noise in an electronic circuit are described. Systems are provided that include a circuit, wherein the circuit is configured to provide an active reset technique and an active column sensor readout technique. Methods for reducing circuit noise are also provided. The methods include providing a circuit configured to perform an active reset technique and an active column sensor readout technique. The methods further provide that the active reset technique and the active column sensor readout technique are both performed by the circuit. An imaging apparatus is provided that includes an array of photo-sensitive pixels, wherein each of the pixels can include a circuit configured to provide an active reset technique and an active column sensor readout technique. The active reset technique and the active column sensor readout technique are executable on the circuit.
US09609236B2 Camera and image processing method
A camera system and method provide a trailing motion blur effect without the use of a flash. In one embodiment, a variable light-transmissive filter is positioned in front of an image sensor. While the light-transmissive property of the filter is lower, the blurred image of the object in motion is produced. The light-transmissive property of the filter is increased during the exposure in order to produce a clearer image of the object. In a method, a plurality of images taken in rapid succession are combined to produce a clear image of the object with a trailing blurred image of the object.
US09609234B1 Camera module and operating method
A completely self-contained camera module and operating method are provided. The camera module includes a housing member for mounting to a desired surface, an internal support structure positioned within the housing, and at least two cameras secured to the support structure. Each camera has a field of view to an exterior of the housing. The support structure being operably configured to be readily securable to and removable from the housing so that the support structure and cameras can easily be installed during manufacturing to at least reduce manufacturing variability and so that, if a module is not working in the field, an operator can at least readily replace the support structure and cameras as desired with a different support and cameras in the field without requiring tools and without needing to locate and replace a specific malfunctioning camera.
US09609230B1 Using a display as a light source
In general, the subject matter can be embodied in methods, systems, and program products for using a display of a computing device as a light source. The computing device receives a first image that was captured by a camera of the computing device, determines a brightness of at least part of the first image, selects an intensity of a light source that is to be presented by the display of the computing device, the intensity of the light source being selected based on the determined brightness of the at least part of the image, presents the light source by the display of the computing device, the presented light source having the selected intensity, and receives a second image that is captured by the camera of the computing device while the computing device is presenting the light source on the display using the selected intensity.
US09609229B2 Light emitting apparatus, image pickup apparatus and control method therefor
A light emitting apparatus that can obtain accurate color information including change of color information during luminescence. An information obtaining unit obtains status information on a status change of a light source in a luminescence time period of the light source. A determination unit determines color information of a light emitted from the light source in the luminescence time period based on the status information obtained by the information obtaining unit.
US09609227B2 Photographing apparatus, image pickup and observation apparatus, image comparison and display method, image comparison and display system, and recording medium
A photographing apparatus includes an image pickup section configured to output a first picked-up image obtained by photographing an object, a display control section for displaying the first picked-up image, a comparing section configured to compare an angle of view of the first picked-up image from the image pickup section and an angle of view of a second picked-up image from a second photographing apparatus, and an angle-of-view determining section configured to control, based on a comparison result of the comparing section, the display control section to display, in the first picked-up image, a display indicating a part or whole of an image pickup range of the second picked-up image.
US09609225B2 Deformable display device and operating method thereof
Provided is an operating method of a flexible display device including a display. The method includes: displaying, at a preview area of the display, a preview image corresponding to an object; expanding the display in an first direction according to detecting the display is expanded in the first direction; and capturing an image of the object when the display is expanded in the first direction.
US09609224B2 Imaging device and image display method
An imaging device includes a creation device configured to create a first display image, a second display image, and a third display image to be used for assisting the focusing confirmation from first and second images based on first and second image signals outputted from the first and second pixel groups, a display device, and a display control device, where the creation device creates the second display image including first and second display ranges in which the first image is used in the first display range and the second image is used in the second display range, and the creation device creates the third display image in which an image used in at least one of the first and second display ranges is different from the second display image.
US09609222B1 Visor digital mirror for automobiles
In one embodiment of the invention, a digital mirror is disclosed including an enclosure; a display device mounted in the enclosure to display images at a front side of the enclosure; an image capture device mounted in the enclosure adjacent the display device to reduce parallax error; lights mounted in the enclosure adjacent the display device; and a light diffuser mounted to the enclosure around the display device over the one or more lights. The one or more lights provide lighting in front of the display device and the image capture device captures images in the field of view in the front. The light diffuser diffuses and softens the light emitted by the one or more lights. Alternatively, the image capture device may be mounted on an articulated arm that may be used to capture and display various angles in the filed of view of the digital mirror.
US09609221B2 Image stabilization method and electronic device therefor
An apparatus and method for reducing or preventing image degradation due to shaking of a camera upon image acquisition is provided. The method includes determining illuminance corresponding to a subject, automatically determining a capturing mode of an electronic device based on at least the illuminance, acquiring a first resulting image of the subject based on a first exposure time, if the capturing mode is a first capturing mode, and acquiring a plurality of images of the subject based on a second exposure time, if the capturing mode is a second capturing mode, and generating a second resulting image based on at least two images among the plurality of images.
US09609220B2 Image pickup apparatus, image pickup method, and program
A photographing screen is divided into a plurality of blocks, for each of which a determination is made as to whether there is motion and then motion information is detected. At the same time, motion information of an image pickup apparatus is detected using an angular velocity sensor. From these motion information, the photographing screen is separated into a background region and a subject region, and contrast values in the background region are calculated. If the proportion of blocks determined to be high-contrast blocks in the background region is greater than a threshold, photographing conditions are set such that the exposure time increases as the amount of movement of the image pickup apparatus decreases. If the proportion described above is less than or equal to the threshold, photographing conditions are set such that a plurality of images are captured with different exposure times.
US09609218B2 Image-shake correction apparatus and control method thereof
In an image-shake correction apparatus, if distortion is generated such that a screen peripheral portion of an image pickup screen of an image pickup element is reduced as compared with a screen center portion of the image pickup screen and if distortion is generated such that the screen center portion is reduced as compared with the screen peripheral portion, image-shake correction effect in the screen center portion is higher than image-shake correction effect in the screen peripheral portion.
US09609211B2 Method of image conversion operation for panorama dynamic IP camera
The present invention provides a method of image conversion operation for panorama dynamic IP camera. Three wide-angle cameras are used for obtaining a panorama dynamic image, and then to be compressed and transferred through Internet to a PC/smartphone/tablet for being decompressed and image conversion operation, so that a user can use the PC/smart phone/tablet to slide a touch screen thereof for viewing the desired dynamic image.
US09609206B2 Image processing apparatus, method for controlling image processing apparatus and storage medium
An image processing apparatus includes an identification unit configured to identify an object in image data, an acquisition unit configured to acquire position information indicating a position of the object, a setting unit configured to set, based on the position information of the object, a movable range in which a position of the virtual illumination can be set, a specified position acquisition unit configured to acquire a specified position input by a user on a display screen, a determination unit configured to determine the position of the virtual illumination based on the movable range and the specified position, and a lighting processing unit configured to execute lighting processing on the object in the image data based on the position of the virtual illumination determined by the determination unit.
US09609205B2 Imaging system, camera control apparatus, panorama image generation method and program therefor
Disclosed is an imaging system including a camera terminal apparatus capable of performing pan operation and/or tilt operation and a camera control apparatus for controlling the camera terminal apparatus. In the imaging system, the camera terminal apparatus includes a signal processor configured to generate a panorama image, a panorama image storing unit configured to store the generated panorama image, and an imaging direction controller configured to generate camera position information indicative of an imaging direction, and the camera control apparatus includes a position determination processor configured to determine a position of the imaging direction in the panorama image, based on the camera position information, and a panorama image processor configured to process the panorama image in such a way that the determined position becomes the center position of an image.
US09609204B2 Auto-focus device and method for controlling operation of same
An auto-focus device, for eliminating an uncomfortable feeling when phase difference AF is switched to optical path length difference AF when an arbitrary area is set as a focusing target area, and a method for controlling operation of the same. A desired area is set as the focusing target area. Until a first threshold value position is reached, the focus lens is moved based on a phase difference AF evaluation value obtained from a phase difference AF sensor so as to bring the center portion of the imaging area into focus. Until a second threshold value position is reached, the focus lens is moved based on a phase difference AF evaluation value which is obtained from a signal of an area corresponding to the set focusing target area. When the focus lens reaches the second threshold value position, the focus lens is positioned at the focusing position.
US09609203B2 Image pickup apparatus and image pickup method
Disclosed is a technique for allowing proper classification information to be provided to an edited image. When it is determined that the editing is cropping, a system controller cuts a decompressed image down to a desired size using an image processor and performs face detection on a crop image. The system controller generates a header for image data of an edited image. When the setting of automatically providing classification information is “ON”, classification information is automatically provided based on the detected face information.
US09609196B2 Imaging module and electronic device
An imaging module 100 includes a lens unit 10 and an imaging element unit 20. The lens unit 10 includes a VCM 16A which moves a lens group 12 in a z direction, terminals 14A and 14B which are electrically connected to the VCM 16A, a VCM 16C and a VCM 16E which move the lens group 12 in an x direction and a y direction, and terminals 14C to 14F which are electrically connected to the VCM 16C and the VCM 16E. The imaging element unit 20 includes terminals 24A to 24F which are electrically connected to the terminals 14A to 14F. Exposed areas of the terminals 14A and 14B are larger than exposed areas of the terminals 14C to 14F.
US09609194B2 Camera and method for the detection of objects
A camera (10) for the detection of objects (30) in a detection region (16) is provided which has a light receiver (22) having a plurality of light reception pixels, a multispectral illumination unit (12) for illuminating the detection region (16) in different spectral bands and an evaluation unit (24) that is configured to illuminate the detection region (16) by means of the illumination unit (12) during different illumination windows of time (30a-c) in a respectively different spectral band and to record image data from the detection region (16) by means of the light receiver (22) in recording windows of time (40a-c, 42a-c). In this respect, the light receiver (22) is configured as a two-line receiver having a first line (22a) of light reception pixels and a second line (22b) of light reception pixels and the recording window of time (40a-c, 42a-c) for the first line (22a) is different from that for the second line (22b).
US09609188B2 Image pickup apparatus
An image pickup apparatus includes an image pickup element converting an object image to an electric signal, a magnetic shield member arranged in front of the image pickup element, a fixing member to which the image pickup element and the magnetic shield member are attached, and an elastic member arranged between the magnetic shield member and the image pickup element, and configured to press the image pickup element so as to surround a circumference of a light receiving plane of the image pickup element and to press the magnetic shield member toward the fixing member.
US09609181B2 Image signal processor and method for synthesizing super-resolution images from non-linear distorted images
An image signal processing apparatus and image signal processing method obtains a high super-resolution effect for distorted images captured by a specialized optical system, such as a 360-degree camera. A distortion-correction conversion-formula calculation section calculates a distortion correction conversion formula for correcting the nonlinear distortion. A distortion correction and interpolation processing section performs distortion correction and interpolation processing on each cropped region. An alignment conversion formula calculation section calculates an alignment conversion formula for alignment between each cropped image after distortion correction and interpolation processing is completed. A pixel coordinate conversion section rearranges pixel coordinates for each frame image before interpolation processing by using the distortion correction conversion formula and the alignment conversion formula corresponding to the cropped regions. An image synthesis section synthesizes the cropped images.
US09609180B2 Radiometric calibration from noise distributions
Technologies that enable correcting for the non-linear relationship between scene irradiance and digital pixel intensity values of an image of the scene produced by a camera. Imaging noise is used as a signal from which a corrective function is derived. Noise distributions from the image are evaluated to determine the radiometric response function of the camera, from which an inverse response function is computed and used for calibration.
US09609178B2 Color image processing device
A color image processing device uses a dither pattern of blocks, each including a plurality of dots representing the gradations of each pixel of an image in a prescribed print region. The dots including one block are arranged in a growth sequence in the ascending order of gradation, and print data is written sequentially at the dots the number of which corresponds to the gradation associated with the block. An extracting unit extracts a data region holding the color components from the print data. A dither processing unit generates dither patterns for the color components extracted by the extracting unit. The dither processing unit detects whether one or more of the dots including each of the pixels forming the image are outside the data region, and moves any dot outside the data region to a certain dot including the same pixel and existing in the data region.
US09609172B2 Approval device, approval system, and recording medium that ensure simplified approval operation of electronic document
An approval device includes a storage circuit, a document acquiring circuit, an imaging circuit, a face recognition circuit, an approval circuit and an editing circuit. The storage circuit stores a face image database, the face image database registering face image data of at least one user to be an approver for approving a document. The document acquiring circuit acquires the document. The imaging circuit images a face of the approver for approving the document. The face recognition circuit analyzes an imaged face image of the approver and searches the face image database stored in the storage circuit using the analysis result. The approval circuit approves the document based on the search result. The editing circuit attaches one of an electronic stamp and an electronic signature to the approved document.
US09609164B2 Dual-mode scanning device
A scanning device includes a visible light source, an infrared light source, a visible light sensor and an infrared light sensor. The visible light source provides visible light to a scan section of an original. The original reflects the visible light to generate reflected light. The infrared light source provides infrared light to the scan section. The infrared light penetrates through the original to generate penetrating light. The visible light sensor receives the reflected light at a first scan position and generates a visible light image signal representative of a visible light image of the scan section. The infrared light sensor receives the penetrating light at a second scan position and generates an infrared light image signal representative of an infrared light image of the scan section. A relative positional relationship between the first and second scan positions is fixed.
US09609163B2 Image capturing device, color measurement apparatus, and image forming apparatus
An image capturing device includes: a two-dimensional image sensor that captures an image of a predetermined image capture area including a subject; a light source that illuminates the image capture area; and a light blocking member that blocks light traveling from the light source toward a specular reflection position, the specular reflection position being a position that is in the image capture area and where, if light travels from the light source, the light would be specularly reflected to the two-dimensional sensor. The light blocking member is arranged outside the image capture area.
US09609161B1 Image reading apparatus and image forming apparatus
An image reading apparatus includes a housing unit including a support table on which an original document is supported, a reading member disposed inside the housing unit to read the original document, a power source unit disposed adjacent to the housing unit while being separated by at least one wall, the power source unit accommodating a power circuit, and a sending member that sends air inside the power source unit into the housing unit through an opening formed in the wall.
US09609160B2 Image forming apparatus, communication monitoring system, and communication monitoring circuit
An image forming apparatus includes an image forming unit, a controller including a master unit and a slave unit, and a serial communication line connecting the master unit and the slave unit and used in serial communication. The master unit includes an arithmetic module that generates first serial data to be transmitted to the slave unit to monitor serial communication, and monitors whether the first serial data has been successfully received in accordance with second serial data received from the slave unit. The slave unit includes a pulse signal output module that outputs pulse signals for a number of pulses which is set from the first serial data, an analog voltage output module that receives the pulse signals, changes an analog voltage in accordance with the number of pulses, and outputs the analog voltage, and an analog/digital conversion module that converts the analog voltage into the second serial data.
US09609153B2 Preview image generation for printers
A non-transitory recording medium has a program recorded therein that is executable by a computer. The program causes the computer to implement functions of a preview image generation condition creation unit configured to create a condition for generating a preview image, a determination unit configured to determine whether a preview image of output data should be generated based on the condition for generating the preview image and attribution information of the output data, the output data being stored in an output data storage unit, and a preview image generation unit configured to generate the preview image of the output data which is determined that the preview image of the output data should be generated.
US09609148B2 Communication apparatus, method of controlling the same, and storage medium
The present invention provides a communication apparatus configured to transmit image data through a network and a control method therefor. The apparatus stores, as transmission history, a destination and a communication mode for IPFAX at a time of transmission, reads the destination and the communication mode, and transmits image data to the read destination in the read communication mode.
US09609145B2 System and method for correlating user call response to electronic messages
A method of correlating outgoing electronic communications with received electronic messages includes: sending an electronic message associated with a second party to a first party; subsequently receiving an outgoing electronic communication from the first party by the second party; automatically determining whether the outgoing electronic communication resulted from the electronic message, based on electronically stored information about the sending of the electronic message and about the subsequently received outgoing electronic communication; and if it is determined that the outgoing electronic communication resulted from the electronic message, flagging the outgoing electronic communication to have a different status from outgoing electronic communications not determined to have resulted from an electronic message.
US09609143B2 Enforcing radio frequency usage billing and control policies
A method may include receiving information identifying a radio frequency (RF) usage policy that is associated with a user equipment (UE). The UE may communicate with a network using RF signals, and the RF access signaling usage policy may identify an RF access signaling usage threshold. The RF access signaling usage threshold may identify a quantity of bearers and an action to perform based on the UE requesting the quantity of bearers. The method may include causing a gateway device to monitor RF access signaling usage of the UE. The method may include receiving an RF access signaling usage update. The method may include determining that the RF access signaling usage satisfies the RF access signaling usage threshold based on the RF access signaling usage update. The method may include causing an action to be performed based on the RF access signaling usage policy.
US09609142B2 Application processing method and mobile terminal
An application processing method and a mobile terminal are provided. The method includes: analyzing an operation right of an application when the application executes an invoking operation for a fee deduction event; allowing the application to execute the invoking operation if the application has an operation right for the fee deduction event; and forbidding the application from executing the invoking operation if the application does not have the operation right for the fee deduction event. In the present disclosure, it is not necessary to scan an application every time the application runs. It is only necessary to determine the operation right of the application, which cuts down processing time and avoids waste of system resources, while at the same time does not require participation of the user and facilitates the user to use. In this way, the user experience is improved.
US09609140B2 Methods, systems, and computer-readable media for transferring or recovering a communication between a number of participants
The present disclosure relates to methods, systems, and computer-readable media for conducting communications. One method includes determining a context associated with a communication between a first participant and a second participant while the communication is occurring, determining a failure of the communication, and resuming the communication based, at least in part, on the context.
US09609138B2 Cross-media voice mail notification and delivery
The subject matter herein relates to voice mail systems and, more particularly, cross-media voice mail notification and delivery. Various embodiments described herein provide systems, methods, software, and data structures that operate to, or facilitate, dispatching of voice mail notification messages to voice mailbox owners. In some embodiments, the notifications are sent to the voice mailbox owners in a text format, such as a short message service text message, email, or other text based service. These and other embodiments are described herein.
US09609133B2 Predictive model for abandoned calls
A predictive model for abandoned calls provided by a contact center communication system for routing optimization is described along with various methods and mechanisms for administering the same. Based on multiple attributes, the system can calculate the probabilities, risks, and costs associated with abandonment and wait, taking into account the patience of a caller, region where the caller lives, agents available to handle the call, length of time that the caller has already been waiting, potential cost of having the caller and call type abandon, and potential total cost of having the caller wait to be served.
US09609130B2 System and method for managing agent schedules in a contact center
A transaction is received in a contact center. The transaction can be an email, an incoming call, an outgoing call, a video call, a text message, and/or the like. A best agent is determined to handle the transaction. A time is determined for the best agent to handle the transaction. The time can be based on a projected time that the agent will be able to handle the transaction, based on a callback time or any criteria. A schedule of the best agent is searched. The schedule of the best agent contains a movable event. A movable event can be any event that can be rescheduled, such as a break. When it is determined that the time for the best agent to handle the transaction is during and/or close to the movable event, the movable event is rescheduled to allow the best agent to handle the transaction.
US09609129B2 System and method for secure transmission of data signals
The present invention provides systems and methods for controlling signaling data transmitted over a communication system between a first party and a second party. The system comprises a first communication channel configured to carry communication data, wherein the communication data comprises the content of the communication between the first party and the second party; a second communication channel configured to carry signaling data, wherein the signaling data comprises data relating to the first communication channel and sensitive data transmitted by the first party; a signaling processor configured to receive the signaling data from the first party via the second communication channel, modify the signaling data to remove or replace at least some of the sensitive data in the signaling data, and transmit the modified signaling data via the second communication channel to the second party.
US09609123B2 Incoming call notification management
A mobile phone establishes and maintains a data connection with an intermediate server. The intermediate server receives an incoming call from a caller. In response, the intermediate server identifies a contact group associated with the caller, and generates a notification message identifying the caller and including the identified contact group. The notification message is sent by the intermediate server to the mobile phone via the data channel, and concurrently, the intermediate server routes the incoming call to the mobile phone over a voice channel different from the data channel. The mobile phone modifies an existing contact record or generates a new contact record associated with the caller to include the contact group identified by the notification message. The mobile phone, in response to receiving the incoming call, accesses the modified contact record or generated contact record, and displays a notification identifying the caller and the identified contact group.
US09609115B2 Mobile terminal and method of controlling the same
Provided is a mobile terminal including: a wireless communication unit that receives an event associated with an application; an output unit that outputs alerting information on the event; a display unit to which an alerting image that receives a first touch for activating the application is output; and a controller that, when the alerting image receives a second touch, controls the output unit in such a manner that an alerting mode for reception of the event associated with the application is changed.
US09609114B2 System and method for wireless communication with and control of motorized window coverings
A system for controlling at least one motorized window covering using wireless communication is presented. The system includes a wireless device which is wirelessly connected to wireless access point which is connected to a gateway which is wirelessly connected to at least one motorized window covering. The wireless device has a display and an application installed thereon. The application includes an interactive illustration of a window with a moveable bottom bar that extends there across and a plurality of actuation buttons. When a user actuates either the moveable bottom bar or any one of the actuation buttons, the wireless device transmits a control signal to any wirelessly connected motorized window covering instructing it to move in a directed manner. This system provides a convenient and easy to use system and method of controlling motorized window shades.
US09609113B2 Terminal, information leak prevention method, and computer-readable recording medium
A wearable device stores data therein. The wearable device transmits the data to a master device registered as a transmission destination of the data when communication is possible with the master device. Then, the wearable device transmits, to the master device, a request to cancel registration of the master device registered as the transmission destination of the data. Thereafter, having received a permission to cancel the registration from the master device, the wearable device cancels the registration of the master device and waits for registration of a device with which communication is possible.
US09609111B2 Method for communicating between a communications unit of a device and an external communications unit via a mobile phone unit
A method for communicating between a communication unit of an apparatus and an external communication unit via a mobile telephone unit wherein a serial connection to be set up between the communication unit of the apparatus and the mobile telephone unit, a protocol of the serial connection having a data field and a first header, for a connection to be set up between the mobile telephone unit and the external communication unit, for a second header for the connection to be generated from the first header in the mobile telephone unit, and for the data field to be transmitted without change from the serial connection to the connection. Also disclosed is an online connection of a mobile telephone unit even without a TCP/IP connection.
US09609107B2 Intuitive computing methods and systems
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. In one detailed arrangement, image processing tasks applied to the scene are selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone applies more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In another detailed arrangement, data is referred to the cloud for analysis, or for gleaning. In still another detailed arrangement, cognition, and identification of appropriate device response(s), is aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
US09609106B2 Display apparatus for releasing lock status and method thereof
A display apparatus and method of using the same is provided. The display apparatus includes a display unit for displaying a lock view comprising an affordance object including a connected section and a disconnected section; and a control unit for, when drawing is performed according to user touch on the lock view and the disconnected section is connected by the drawing, controlling the display unit to switch to an unlock view.
US09609105B1 Phone holder
An apparatus for holding a cell phone or a mobile device in a vehicle that includes a cradle assembly configured to receive the cell phone or the mobile device and a speaker assembly. The cradle assembly includes a cradle base and a cradle attached to the cradle base, wherein the cradle base includes a power charger adapter connection and a USB connector connection. The speaker assembly connects to the cradle assembly and includes one or more speakers, wherein the speaker assembly includes a Bluetooth connection for wireless connection of the one or more speakers to the cell phone.
US09609104B2 Misclassified contact updating in multi-number phones
An intermediate server communicatively coupled to a mobile phone associated with a first phone number corresponding to a first contact type and a second phone number corresponding to a second contact type, receives a request to receive an incoming call associated with a caller phone number. The request corresponds to the first or second phone number. The intermediate server identifies a contact type associated with the request and a contact type associated with the caller based on the caller phone number. The intermediate server further determines whether the caller is misclassified by comparing the contact type associated with the request and the contact type associated with the caller. In addition, the intermediate server sends a notification indicating that the caller is misclassified to the mobile phone in response to determining the contact type associated with the request and the contact type associated with the caller do not match.
US09609102B1 Intelligent interactive voice response system for processing customer communications
A method and apparatus of processing a user call via an intelligent voice response (IVR) call processing application is disclosed. One example method may include receiving a call from a user device, obtaining user information from the received call, comparing the user information to at least one pre-stored user information stored in a user databank associated with a user account, and calculating a first confidence level by comparing the user information to the pre-stored user information. The method may also include authorizing the user device to receive an offer based on the first confidence level, and transmitting the offer to the user authorized by the first confidence level.
US09609101B1 Mobile device protection case
A mobile device protection case includes a hard case body, and a flexible adapter member connected to one end of the case body and elastically bendable for allowing a mobile device to be inserted into the case body without scratching and then stopped in the case body by the adapter member that is immediately returned to its former shape after releasement of the applied pressure.
US09609099B2 Mobile terminal
A mobile terminal includes a display unit, a front case configured to be combined with the display unit using a front side of the front case, a main board configured to be combined with a rear side of the front case, a rear case configured to be combined with a rear side of the main board, a boss in which a internal screw thread formed on both a left side and a right side of the front case and the internal screw thread heading a rear side is formed, a connection hole formed on a position corresponding to the internal screw thread of the rear case, a screw configured to be connected with the internal screw thread in a manner of passing through the connection hole, a boss bump configured to be positioned at an outer circumstance of the boss and a boss accommodation part configured to be formed on both a left side and a right side of the main board and correspond to a shape of the boss and a shape of the boss bump. It is able to reduce thickness of the mobile terminal by omitting a frame. And, it is able to prevent the case from making a gap in a horizontal direction via a stable connection structure. Moreover, it is also able to prevent the front case and the rear case from being separated from each other via the stable connection structure.
US09609096B2 Electronic device with NFC antenna adjacent display and related methods
An electronic device may include a housing having a display opening therein, processing circuitry within the housing, and wireless transceiver circuitry within the housing and coupled to the processing circuitry. The electronic device may also include NFC transceiver circuitry within the housing and coupled to the processing circuitry, a display within the housing and coupled to the processing circuitry, the display having an external surface exposed through the display opening and having an internal surface within the housing, and an NFC antenna positioned within the housing behind and aligned with the internal surface of the display and coupled to the NFC transceiver circuitry.
US09609095B2 Tightly retained synchronously rotatable dual-axle hinge structure
A dual-axle hinge structure includes a dual axle assembly, at least one sleeve, and a contactor. The dual axle assembly includes first and second axles that are connected by and mutually push/pull each other through connection members for synchronous rotation. The sleeve is fit over and houses the first and axles. The contactor is arranged between the first and second axles and has two opposite sides respectively in contact engagement with surfaces of the first and second axles. By means of the tight retention achieved with the sleeve and the abutting engagement achieved with the two sides of the contactor, tight engagement is established among the sleeve, the first and second axles, and the contactor to allow for synchronous rotation, in a step-less manner, and positioning of the first axle and the second axle in a tightly retained condition.
US09609092B2 Method of indicating packet bandwidth in a wireless OFDM network with multiple overlapped frequency bands
A wireless OFDM transceiver uses a method of utilizing subcarrier characteristics, such as phase and amplitude, to indicate the bandwidth of a transmitted packet. By using different subcarrier characteristics in the long training symbols of a packet at the transmitter, the packet is associated with different bandwidths. The different bandwidths are used in a wireless network where devices can communicate using different frequency bands that overlap one another and where one is wider than the other.
US09609087B2 Sending and receiving configurable buckets of communications
A method of sending and receiving configurable buckets of communication is disclosed. A request to send a communication from an application executing on a client to an application executing on a server is received. The communication has a first priority. A request to send an additional communication from the application executing on the client to the application executing on the server is received. The additional communication has a second priority. The communication is placed into a bucket of communications based on the communication having the first priority. A determination is made to send the bucket of communications to the application executing on the server. The additional communication is placed into the bucket of communications based on a determination that the bucket of communications is not full. The bucket of communications is sent to the application executing on the server.
US09609078B2 HTTP proxy
Systems and methods are described for translating an HTTP/2 message into an HTTP/1 message by an HTTP proxy that connects HTTP/2 enabled clients with HTTP/1 only servers. According to an embodiment, an HTTP/2-HTTP/1 proxy receives an HTTP/2 request message from an HTTP/2-enabled client and directed to an HTTP/1-only server. The HTTP/2-HTTP/1 proxy translates the HTTP/2 request message into an HTTP/1 request message and sends the HTTP/1 request message to the HTTP/1-only server. The HTTP/2-HTTP/1 proxy receives an HTTP/1 response message from the HTTP/1-only server and translates the HTTP/1 response message into an HTTP/2 response message. Then, the HTTP/2-HTTP/1 proxy sends the HTTP/2 response message to the HTTP/2-enabled client.
US09609075B1 Browser activity replay with advanced navigation
Aspects include capturing and replaying activities conducted during a web browsing session. Activities conducted by a user via browser application at a website are received at a computer processor. The activities occur across multiple web pages and span multiple windows during a single browsing session. The activities associated with corresponding web pages, and the activities are ordered in chronological order for each of the web pages. User interface events corresponding to the ordered activities are displayed via a browser based interface. The user interface events are selectable by an end user of the browser based interface.
US09609074B2 Performing predictive analysis on usage analytics
Methods for predicting future data based on time-dependent data with increased accuracy include generating resampled datasets from a base dataset having at least one time dependent characteristic. Generating the resampled datasets includes randomly resampling data points in the base dataset to increase a pool of data for predicting future data while at least partially maintaining one or more time dependent characteristics of the base dataset. One or more embodiments apply a modified bootstrapping algorithm to the base dataset to generate the resampled datasets. Predicting the future data includes applying a time series algorithm to the resampled datasets to generate a predicted future dataset with improved accuracy by utilizing the time dependent characteristic maintained in the resampled datasets.
US09609070B2 Extending outdoor location based services and applications into enclosed areas
Methods and systems for indoor mobile unit positioning, for seamlessly toggling a mobile unit positioning between outdoor positioning and indoor positioning and for providing location based services or application generated by and external location server to the mobile unit while the mobile unit is indoors. The indoor mobile unit positioning includes mobile unit-based positioning with makes use of reception of access point signals by the mobile unit.
US09609068B2 Session management system, session management apparatus, and non-transitory computer readable medium
A response transmission unit transmits a response including unique information unique to a user who is authenticated on the basis of user identification information, to a session management server, in a case where the user identification information is included in a request received by a reception unit. A transmission unit transmits the response to a client apparatus along with identification information of a service providing server which is a transmission source of the response when the response with the unique information is received. A request transmission unit, in principle, transmits a request received by a request reception unit to a service providing server corresponding to identification information in the request, but transmits a request to a service providing server corresponding to identification information associated with unique information when receiving the request including the same unique information as unique information which has been stored in a session management DB.
US09609061B2 Rugged and mobile media server and method for providing media to passengers on a public transport vehicle
A rugged and mobile media server/portal for use on a public transport vehicle, such as a train to provide media content to passengers on board said vehicle. The rugged and mobile media server/portal includes a mobile and protective case that contains a computer with a media library stored thereon and a local wireless network access point for providing a local wireless network on board the vehicle.
US09609060B2 Distributed storage system and method
Provided a plurality of data nodes connected in a network, each including a data storage unit. The data node of data replication destination temporarily stores data to be updated in an intermediate data structure, and converts asynchronously with respect to the update request to a target data structure to store the converted data in the data storage unit. Based on access history information stored in an access history recording unit, trigger information, concerning timing for execution of conversion to the target data structure performed asynchronously by the data node is changed.
US09609050B2 Multi-level data staging for low latency data access
Techniques for facilitating and accelerating log data processing are disclosed herein. The front-end clusters generate a large amount of log data in real time and transfer the log data to an aggregating cluster. When the aggregating cluster is not available, the front-clusters write the log data to local filers and send the data when the aggregating cluster recovers. The aggregating cluster is designed to aggregate incoming log data streams from different front-end servers and clusters. The aggregating cluster further sends the aggregated log data stream to centralized NFS filers or a data warehouse cluster. The local filers and the aggregating cluster stage the log data for access by applications, so that the applications do not wait until the data reach the centralized NFS filers or data warehouse cluster.
US09609048B1 Resource request and transfer in a multi-node distributed system
Selective resource migration is disclosed. A computer system includes physical memory and a plurality of physical processors. Each of the processors has one or more cores and each core instantiates one or more virtual processors that executes program code. Each core is configured to invoke a hyper-kernel on its hosting physical processor when the core cannot access a portion of the physical memory needed by the core. The hyper-kernel selectively moves the needed memory closer to a location accessible by the physical processor or remaps the virtual processor to another core.
US09609043B2 Facilitating access to content from group interactions
The disclosed embodiments provide a system that facilitates access to content. During operation, the system detects uploading of the content within a group interaction among a set of users. Next, the system aggregates the content into a centralized location. Finally, the system enables access to the content at the centralized location by one or more of the users.
US09609036B2 Method and apparatus for approving multimedia data
A method and apparatus for approving multimedia data, including: receiving second multimedia data of a second resolution; selecting a block of the second multimedia data; and requesting a corresponding block of first multimedia data, to the selected block of the second multimedia data. Furthermore, the method includes receiving the corresponding block of the first multimedia data of a first resolution; and approving the second multimedia data at the server apparatus in response to evaluating the received block of the first multimedia data.
US09609035B2 Compressed headers for encapsulated real-time communications
A system performs tunneling for real time communication (“RTC”) between a source endpoint and a destination endpoint. The system receives, by a server, a request from a user equipment (“UE”) for enabling header compression of inner internet protocol (“IP”) and transport headers of media traffic encapsulated within a tunnel. The media traffic corresponds to the RTC between the source endpoint and the destination endpoint. The system determines a mapping that maps one or more indices to identifying information of the source endpoint and the destination endpoint, and sends a response to the UE including the mapping. Upon sending the response, the UE and the server communicate the media traffic according to the mapping, where the media traffic includes media packets in which inner IP and transport headers are replaced with an index within the one or more indices.
US09609032B2 Joint ownership of protected information
Disclosed herein is a system and method for managing a collaborative document that is owned by two different users who belong to different organizations. The users first create a document that will be owned by both users. Both users are also granted full ownership rights in the document. The users then contribute to the document by providing information that may be confidential to their organization. The users want to ensure that they can cut off access to the confidential information if and when the relationship between the users or organizations sours. When one of the users with full ownership privileges decides to end the cooperation with the other users, that user simply revokes access to the document to the other user. As a result of the revocation all users are no longer able to see or access the entire document. In this way the confidential information of all parties is protected.
US09609026B2 Segmented networks that implement scanning
Systems for providing scanning within distributed services are provided herein. In some embodiments, a system includes a plurality of segmented environments that each includes an enforcement point that has an active probe device, and a plurality of workloads that each implements at least one service. The system also has a data center server coupled with the plurality of segmented environments over a network. The data center server has a security controller configured to provide a security policy to each of the plurality of segmented environments and an active probe controller configured to cause the active probe device of the plurality of segmented environments to execute a scan.
US09609024B2 Method and system for policy based authentication
A mobile device capable of performing a plurality of functions. The mobile device includes a memory for storing a plurality of different security policies; an input device for invoking a function from the plurality of functions by a user; a processor for assigning a first security policy from the stored plurality of security policies to the invoked function; and a security module for requiring the user to satisfy the assigned first security policy, before the invoked function is performed by the mobile device.
US09609023B2 System and method for software defined deployment of security appliances using policy templates
A method includes retrieving, from a memory accessible by a computer, a document comprising a workload definition document that defines an intended virtual configuration to include at least one virtual machine and at least one network appliance to be associated with at least one of the virtual machines in the intended virtual configuration, each network appliance respectively serving a role in the intended virtual configuration of transforming, inspecting, filtering, or otherwise manipulating all the network traffic, before it reaches an intended virtual machine, for purpose other than a data packet forwarding in a virtual configuration. The workload definition document is parsed to extract attributes of each of the network appliances, including one or more security policy to be applied to each network appliance. Configuration data is extracted from the parsed workload definition document that is related to any security policy of any of the network appliances to be deployed. A security template library is accessed to select a security template for each network appliance that will implement the one or more security policy for that network appliance to be deployed.
US09609022B2 Context based dynamically switching device configuration
Various embodiments of systems and methods for dynamically switching device configuration based upon context are described herein. In an aspect, the method includes reading a tag attached to an entry gate of a restricted area through a device. Upon reading the tag, an application is executed to connect the device to a mobile device management (MDM) server. Upon establishing the connection, the restricted area identifier (ID) is sent to the MDM server. The device receives one or more policies applicable for the restricted area from the MDM server. The received one or more policies are executed on the device to change the device configuration. After execution, the device sends a confirmation message to the MDM server to indicate that the device is policy complaint. Upon receiving the confirmation, the MDM server instructs to open the entry gate to allow the device within the restricted area.
US09609018B2 System and methods for reducing impact of malicious activity on operations of a wide area network
System architecture and methods for controlling improper network activity in a wide area network, where the system includes multiple service provider devices configured to provide communications service to attack vector devices. Each service provider device or plurality of devices is provided with at least one policy agent. The policy agent of each of the service provider devices is placed in communication with a security service system. The method includes detecting an improper network event using one of the policy agents and providing the security service device associated with that policy agent/service provider device with vector data characterizing the improper network event. The method further includes forwarding the vector data relating to the improper network event from the security service system to other of the security service systems, and from those to the policy agents in the other service provider devices. The method then inhibits the transfer of messages, data, or other forms of traffic corresponding to the vector data.
US09609013B1 Detecting computer security threats in electronic documents based on structure
In an embodiment, a method providing an improvement in remediating vulnerabilities in computer security comprising: receiving, using a network tap of a sensor computer that is coupled to a compromised computer, a communication packet that was sent from the compromised computer to a target computer; using the sensor computer, determining that the target computer is one of a plurality of enterprise computers; reading, at the sensor computer, a plurality of fields within a header of the communication packet; and performing a remediation measure by generating a header of an action packet, wherein the header comprises duplicates of at least some fields of the plurality of fields so as to appear to be generated by the target computer, generating a payload of the action packet, and sending the action packet comprising the generated header and the generated payload to the compromised computer.
US09609011B2 Interface having selectable, interactive views for evaluating potential network compromise
A security platform employs a variety techniques and mechanisms to detect security related anomalies and threats in a computer network environment. The security platform is “big data” driven and employs machine learning to perform security analytics. The security platform performs user/entity behavioral analytics (UEBA) to detect the security related anomalies and threats, regardless of whether such anomalies/threats were previously known. The security platform can include both real-time and batch paths/modes for detecting anomalies and threats. By visually presenting analytical results scored with risk ratings and supporting evidence, the security platform enables network security administrators to respond to a detected anomaly or threat, and to take action promptly.
US09609009B2 Network security threat detection by user/user-entity behavioral analysis
A security platform employs a variety techniques and mechanisms to detect security related anomalies and threats in a computer network environment. The security platform is “big data” driven and employs machine learning to perform security analytics. The security platform performs user/entity behavioral analytics (UEBA) to detect the security related anomalies and threats, regardless of whether such anomalies/threats were previously known. The security platform can include both real-time and batch paths/modes for detecting anomalies and threats. By visually presenting analytical results scored with risk ratings and supporting evidence, the security platform enables network security administrators to respond to a detected anomaly or threat, and to take action promptly.
US09609007B1 System and method of detecting delivery of malware based on indicators of compromise from different sources
According to one embodiment, a computerized method comprises receiving a set of indicators of compromise (IOCs) associated with a known malware of a first message type from a first source and receiving one or more IOCs (IOC(s)) from a second source that is different from the first source. Thereafter, a determination is made as to whether the received IOC(s) from the second source correspond to the set of IOCs received from the first source. If so, information associated with at least the set of IOCs is used to locate a malware of the first message type that is undetected at the second source.
US09609006B2 Detecting the introduction of alien content
A computer-implemented method for identifying abnormal computer behavior includes receiving, at a computer server subsystem, data that characterizes subsets of particular document object models for web pages rendered by particular client computers; identifying clusters from the data that characterize the subsets of the particular document object models; and using the clusters to identify alien content on the particular client computers, wherein the alien content comprises content in the document object models that is not the result of content that is the basis of the document object model served.
US09609004B2 Process level locality and specialization for threat detection in the dendritic cell algorithm
Artificial Immune Systems (AIS) including the Dendritic Cell Algorithm (DCA) are an emerging method to detect malware in computer systems. An implementation of the DCA may detect anomalous behavior in various processes of a device or devices. Unlike previous approaches, the DCA implementation may use an inflammation signal to communicate information among the processes of device or a network, where the inflammatory signal indicates a likelihood that a process has been attacked by malicious software.
US09609002B2 Media content system utilizing user sponsored data
A system may receive a request to access user sponsored media content (“media content”), the request including a digital token (“token”), the media content being associated with a user sponsored account (“account”), and the account being associated with unused data from a mobile communications service plan, where the account and the mobile communications service plan are associated with a user. The system may identify token information included in the token. The system may compare the token information with stored token information. The system may determine that the token is valid based on the token information matching the stored token information. The system may provide access to the media content based on the token being valid. The system may provide information to cause data charges, for traffic flow associated with access to the media content, to be charged against the unused data associated with the account.
US09608998B2 Allowing guest of hospitality establishment to utilize multiple guest devices to access network service
Network traffic is received from a guest device on a computer network of a hospitality establishment, and a guest area of the hospitality establishment is accordingly identified. A login database is queried to find an unexpired login for the guest area, the unexpired login specifying a stored guest identifier corresponding to information retrieved from a property management system of the hospitality establishment regarding a guest of the guest area at a time when the unexpired login was created. The stored guest identifier of the unexpired login is compared with a current guest identifier of the guest area retrieved from the property management system regarding a current guest of the guest area. When the stored guest identifier matches the current guest identifier, the guest device is automatically allowed to access the network service for a remaining portion of the allowed access duration of the unexpired login.
US09608997B2 Methods and systems for controlling access to computing resources based on known security vulnerabilities
Methods and systems are provided for fine tuning access control by remote, endpoint systems to host systems. Multiple conditions/states of one or both of the endpoint and host systems are monitored, collected and fed to an analysis engine. Using one or more of many different flexible, adaptable models and algorithms, an analysis engine analyzes the status of the conditions and makes decisions in accordance with pre-established policies and rules regarding the security of the endpoint and host system. Based upon the conditions, the policies, and the analytical results, actions are initiated regarding security and access matters. In one described embodiment of the invention, the monitored conditions include software vulnerabilities.
US09608995B2 Information processing system, access method, and terminal device
An system comprises: a first storage that stores access destination information, characteristic information, and first identification information in a manner associated with one another; a transmitter that transmits a captured image of a medium; a first-acquiring-unit that extracts the characteristic information and acquires the access destination information and the first identification information associated with the characteristic information, access based on the access destination information being controlled by an authentication device comprising a second storage that stores second identification information allocated to each medium, third identification information corresponding to the first identification information, and collation information indicating an access source in a manner associated with one another; a second-acquiring-unit that acquires fourth identification information allocated to each medium from the captured image; and an access unit that transmits the first identification information, the fourth identification information, and the collation information when accessing an access destination indicated by the access destination information.
US09608990B2 Authority management server and authority management method
An API counting process that sets a limit number for an API used by a client, and when an access token is issued in response to a request from an authority delegation destination and a request to verify the issued access token is received, manages an API usage limit number on a client-by-client basis in accordance with the usage limit number for each API set for the authority delegation destination, is executed. The API usage number is incremented (S5.2), compared with the usage limit number (S5.3), and the access token verification is considered to have failed in the case where the limit has been exceeded.
US09608987B2 Systems and methods for the secure sharing of data
In various embodiments, a computer-implemented method for sharing tasks over one or more computer networks is disclosed. The method includes providing a task created on a first computer system located in a first network, the task comprising content information and metadata information. The task can be shared with a user of a second network that is different from the first network. The method can include transmitting the metadata information of the task to a second computer system in the second network over the one or more computer networks without transmitting the content information, the metadata information comprising at least a task identifier. The method can include receiving a request from the user to access the task. The method can include verifying that the user is a task participant. The content information of the task can be securely presented to the user over the one or more computer networks.
US09608974B2 Automatic token renewal for device authentication
Approaches are described for automatically generating new security credentials, such as security tokens, which can involve automatically re-authenticating a user (or client device) using a previous security token issued to that user (or device). The re-authentication can happen without any knowledge and/or action on the part of the user. The re-authentication mechanism can invalidate and/or keep track of the previous security token, such that when a subsequent request is received that includes the previous security token, the new security token can be invalidated, and the user caused to re-authenticate, as receiving more than one request with the previous security token can be indicative that the user's token might have been stolen.
US09608973B2 Security management system including multiple relay servers and security management method
The present invention relates to a security management system of a computer network, which includes a center server and two or more relay servers. The relay servers receives at least some of data stored in the center server and stores the received at least some of data. A first relay server stores access authentication information and transmits data requested by the client to the client, when access information received from a client does not match with the access authentication information. The center server transmits a ‘block relay’ command to the first relay server and a ‘start relay’ command to a second relay server, when the center server receives information on the malicious access. Accordingly, the second relay server performs a relay function instead of the first relay server.
US09608971B2 Method and apparatus for using a bootstrapping protocol to secure communication between a terminal and cooperating servers
A method comprising the use of a bootstrapping protocol to define a security relationship between a first server and a second server, the first and second servers co-operating to provide a service to a user terminal. A bootstrapping protocol is used to generate a shared key for securing communication between the first server and the second server. The shared key is based on a context of the bootstrapping protocol, and the context is associated with a Subscriber Identity Module (SIM) associated with the user terminal and provides a base for the shared key. A method of the invention may, for example, be employed within a computing/service network such as a “cloud”, and in particular for communications between two servers in the cloud that are co-operating to provide a service to a user.
US09608969B1 Encrypted augmentation storage
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for storing and retrieving encrypted data. In one aspect, a method includes receiving, at a server computer separate from a user device, a first encrypted resource encrypted by use of a public encryption key, wherein the public encryption key is paired with a private encryption key according to an asymmetric encryption key scheme; retrieving, by the server computer, a second encrypted resource encrypted by use of the public key; augmenting, by the server computer, the first encrypted resource with the second encrypted resource to form an encrypted data tuple; encrypting, by the server computer, the encrypted data tuple; and storing, by the server computer, the encrypted data tuple as the second encrypted resource.
US09608966B2 Information handling device, information output device, and recording medium
An information handling device has a first connection unit, a Web application executing unit to generate a device operating command, a second connection unit, an application authentication processing unit to generate a platform authenticator, an application origin information attacher to attach origin information of the web application to the platform authenticator, and a third connection unit to establish a connection for transmitting the device operating command and the platform authenticator attached with the origin information to the second communication device in order to transmit the device operating command and the platform authenticator attached with the origin information.
US09608965B2 Secure network request anonymization
Network request anonymizing nodes (“NRANs”) may be described herein. The NRANs may act as anonymizing proxies by generating additional anonymizing network requests to help anonymize a network request sent by a requesting computing node. By generating the additional anonymizing network request, the NRANs may cause a relatively large number of similar network requests to be transmitted in an approximately contemporaneous fashion with the transmission of the network request. The NRANs may receive indication of network requests via a secure anonymization proxy tunnel, which may be established through transmission of an anonymizing proxy request from the requesting computing node to the NRANs. The secure anonymization proxy tunnel may be established between a secure enclave of the requesting computing node and secure enclaves of the NRANs. Other embodiments may be described and/or claimed.
US09608964B2 Private application platform
Methods and systems disclosed provide for creating private networks for secured communication between devices. The devices can communicate with each other over a secure tunnel created for a closed circle of devices. Furthermore, the methods and systems can enable offline communication between devices on a private network.
US09608963B2 Scalable intermediate network device leveraging SSL session ticket extension
An intermediary network device receives a request for a secure communication session between an endpoint server and an endpoint client through the network device. The secure session between the endpoint server and the endpoint client is divided into a first session and a second session. The first session is between the endpoint server and the network device. The second session is between the network device and the endpoint client. The network device receives a first session ticket from the endpoint server. A session state of a proxy client in the first session, including the first session ticket, is determined. The network device also determines a session state of a proxy server in the second session. The combination of the session state of the proxy client, including the first session ticket, and the session state of the proxy server are encapsulated as part of a second session ticket.
US09608961B2 Firewall policy management
Methods and systems are provided for creation and implementation of firewall policies. According to one embodiment, a firewall maintains a log of observed network traffic flows. An administrator may request the firewall to generate a customized report based on the logged network traffic by extracting information from the log based on specified report parameters. The report includes aggregated network traffic items and one or more corresponding action objects. Responsive to receipt of a directive to implement an appropriate firewall policy for one or more network traffic items based on interaction with one or more action objects by the administrator, the firewall then automatically defines and establishes an appropriate firewall policy.
US09608957B2 Request routing using network computing components
A system, method and computer-readable medium for request routing. A DNS server at a content delivery network service provider obtains a DNS query corresponding to a resource requested from a client computing device and associated with a first resource identifier. The first resource identifier includes a first portion with DNS information and a second portion with path information. The DNS server selects a network computing component for processing the requested resource based on the DNS portion of the resource identifier and transmits information identifying the selected network computing component to the client computing device.
US09608953B1 Systems and methods for transferring message data
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, are described for providing messages to client devices. In certain examples, a stream of messages is provided to a messaging application on a client device at a desired message feed rate. A message download rate of the stream of messages by the messaging application is monitored. A determination is made that the message download rate is less than the desired message feed rate. In response, the stream of messages is provided to a buffer on the client device at the desired message feed rate, and the stream of messages is sent from the buffer to the messaging application at the message download rate. A determination is made that the message download rate is greater than the desired message feed rate and, in response, a stored quantity of messages on the buffer is allowed to decrease. A determination is made that the stored quantity of messages on the buffer is zero and, in response, the stream of messages is provided to the messaging application at the desired message feed rate.
US09608951B2 Displaying a known sender's identifier to a recipient of a joint senders' message
An approach is provided in which a request is received from a requestor to send a new email message to one or more recipients on behalf of a selected joint sender group (JSG). The selected JSG includes multiple JSG members with one of the JSG members being the requestor. Permissions corresponding to the JSG are then retrieved and compared to the requestor and the contents of the new email message are identified. The new email message is then sent to the recipients in response to determining, based on the comparison, that the requestor has permission to send the new email message on behalf of the selected JSG. On the other hand, the sending of the new email message is inhibited in response to determining that the requestor lacks permission to send the new email message on behalf of the selected JSG.
US09608945B2 Sending messages to multiple receiving electronic devices using a message server
The described embodiments include a message server that is configured to send, to multiple receiving electronic devices, corresponding messages that each include a payload acquired from a single request message received from a client electronic device. In these embodiments, the request message received from the client electronic device includes a push token for each of the receiving electronic devices and the payload. Upon receiving the request message, the message server generates, for a receiving electronic device associated with each push token, a message that includes the payload. The message server then sends each message to the corresponding receiving electronic device. In this way, the message server “fans out,” to the multiple receiving electronic devices, corresponding messages that each include the payload from the single request message.
US09608939B2 Methods and apparatus to reduce forwarding state on an FCoE-to-FC gateway using port-specific MAC addresses
In one embodiment, an apparatus includes an initialization module configured to receive a Fiber Channel over Ethernet Initialization Protocol (FIP) login request from a network device. The initialization module is configured to select an outbound port based at least in part on a load-balancing calculation. The initialization module is configured to define a destination Media Access Control (MAC) address. The initialization module is configured to associate the destination MAC address with the outbound port. The initialization module is configured to send, to the network device, a signal including the destination MAC address in response to the FIP login request.
US09608936B1 Network system with offload services for flash storage
A system is provided comprising: a packet routing network; Flash storage circuitry; a management processor coupled as an endpoint to the network; an input/output (I/O) circuit coupled as an endpoint to the network; a packet processing circuit coupled as an endpoint to the network; and a RAID management circuit coupled as an endpoint to the network and configured to send and receive packets to and from the Flash storage circuitry; wherein the management processor is configured to determine routing of packets among the I/O circuit, packet processing circuit and RAID management circuit.
US09608931B2 Migration assessment for cloud computing platforms
Various embodiments provide an assessment tool that enables an automated functional assessment of applications for migration to target cloud computing platforms, such as a Platform as a Service (PaaS). The technical capabilities of various types of applications in a traditional non-platform deployment are studied and support for these technical capabilities is evaluated relative to the target platform.
US09608929B2 System and method for dynamic queue management using queue protocols
A system and method for efficiently processing and managing data stored in a queue. A processing device may process the data stored in the queue. Queue protocols can be applied to the queue to efficiently process and manage data stored in the queue. Queue protocols may facilitate efficient use of processing resources that process the data stored in one or more queues. A queue protocol may include at least a first protocol for facilitating transfer of data in the queue to another queue processed by another processing device or a second protocol for inhibiting transfer of data in the queue to another queue.
US09608926B2 Flexible recirculation bandwidth management
A method for managing recirculation path traffic in a network node comprises monitoring an input packet stream received at an input port of the network node and monitoring a recirculation packet stream at a recirculation path of the network node. A priority level associated with individual packets of the monitored input packet stream is detected and low priority packets are stored in a virtual queue. The method also includes determining an average packet length associated with packets of the monitored recirculation packet stream. The method further comprises queuing one or more of the low priority packets or the recirculation packets for transmission based on the average packet length and a weighted share schedule.
US09608925B2 System and method for transmitting an alert using a virtual extensible LAN (VXLAN) tunneling mechanism
A data packet comprising a header, the header having a format associated with a Virtual Extensible LAN (VXLAN) technology is generated at an originating tunnel end point device in a network. A predetermined bit in a reserved portion of the header is set to a predetermined value. The data packet is then transmitted.
US09608918B2 Enabling concurrent operation of tail-drop and priority-based flow control in network devices
In one embodiment, a network device is provided that includes a plurality of ports, where each port is associated with a plurality of traffic classes for prioritizing traffic received on the port. The network device further includes a packet buffer memory, an ingress traffic management engine, and an egress traffic management engine. The network device is configured to allow, for each port, concurrent operation of tail-drop and priority-based flow control (PFC) with respect to different traffic classes of the port.
US09608913B1 Weighted load balancing in a multistage network
A method for weighted data traffic routing can include generating an integer hash value based on a header of a data packet and encoding the integer hash value to generate a search key for a content addressable memory included in the data switch. The method can also include performing a lookup in the content addressable memory to match the search key with one of a plurality of prefixes stored in the content addressable memory, the plurality of prefixes including an encoded set of routing weights associated with a plurality of egress ports of the data switch. The method can further include forwarding the data packet on an egress port of the plurality of egress ports associated with the one of the plurality of prefixes in the content addressable memory.
US09608909B1 Technique for mitigating effects of slow or stuck virtual machines in fibre channel communications networks
A method is provided in one example embodiment and includes monitoring an egress port connected to a server to detect a traffic flow comprising a plurality of data packets and determining whether one of the packets is timeout dropped at the egress port. If at least one of the packets is timeout dropped at the egress port, the method further includes detecting a destination identifier (“DID”) of the timeout dropped packet and withdrawing a device identified by the detected DID from an FC zone to which it is assigned and reactivating the zone. The method further includes determining whether the traffic flow is experiencing high wait times at the egress port and, if the traffic flow is experiencing high wait times at the egress port, detecting the DID of the traffic flow and reducing a priority of the zone to which the detected DID is assigned and reactivating the zone.
US09608907B2 Systems and methods for centrally-assisted distributed hash table
Methods and systems are described managing module for locating a target storage device among a plurality of storage devices connected via a network. A computer implemented method includes sending registration information to a central directory, wherein the registration information includes at least an address of one of the plurality of storage devices, and the central directory stores the registration information in a registry. The method also includes sending a request to the central directory for an address for another one of the plurality of storage devices, receiving the address from the central directory if the address is in the registry, and conducting a successive lookup of a closest known address until the address is located if the address is not in the registry.
US09608906B2 Methods, systems, and computer readable media for identifying network locations associated with endpoints
Methods, systems, and computer readable media for identifying network locations associated with endpoints are disclosed. According to one exemplary method, the method occurs at a registration server including at least one processor and configured to operate in a public network or a semi-public network. The method includes receiving, from an endpoint, a packet including a payload containing a first address associated with the endpoint. The method also identifying a second address from a header of the packet. The method further includes determining, using the first address or the second address, whether to initiate a connection with the endpoint for determining a network location associated with the endpoint.
US09608901B2 System and method for enabling services chaining in a provider network
A system and method for chaining one or more services in a service provider network. A service chaining policy and associated Service Path Identifier (SPID) are determined at an ingress node with respect to a particular data packet flow. If the service chaining policy involves one or more service nodes to be traversed by the data packet flow, each service node's EIDs and RLOCs are determined. A sequential data exchange process with the service nodes is effectuated using encapsulation of data packets based on the EIDs and RLOCs for obtaining services in accordance with the order of services set forth in the chaining policy.
US09608898B2 Method and apparatus for performing multicast traces in MPLS networks
A multicast path trace capability is provided for tracing a multicast path from a root node to a leaf node where the trace originates at the leaf node. The leaf node sends a multicast trace request to the root node. The root node receives the multicast trace request and initiates a path trace request for collecting path information associated with the multicast path. The root node receives at least one path trace response, in response to the path trace request, which includes path information associated with the multicast path. The root node sends a multicast trace response, including the collected path information, to the leaf node. The leaf node receives the multicast trace response including the path information. The leaf node derives end-to-end path information for the multicast path using the path information received in the multicast trace response. The multicast path trace capability may be used for tracing an MPLS multicast path (e.g., a P2MP LSP) from a root node to a leaf node of the MPLS multicast tree. The multicast path trace capability may be used for tracing multicast paths in other types of multicast networks.
US09608896B2 Service node originated service chains in a network environment
An example method for service node originated service chains in a network environment is provided and includes receiving a packet at a service node in a network environment that includes a plurality of service nodes and a central classifier, analyzing the packet for a service chain modification or a service chain initiation, classifying the packet at the service node to a new service chain based on the analysis, initiating the new service chain at the service node if the analysis indicates service chain initiation, and modifying an existing service chain for the packet to the new service chain if the analysis indicates service chain modification. In specific embodiments, the analysis includes applying classification logic specific to the service node. Some embodiments, service node attributes and order of service nodes in substantially all service chains configured in the network may be received from a central controller.
US09608895B2 Concurrency method for forecasting impact of speed tiers on consumption
A forecast model processes performance data from a site, e.g., a cable modem termination system (CMTS), to obtain a set of concurrency equations for existing speed tiers that is based on an observed subscriber bandwidth for the site. A new set of concurrency equations is obtained for new speed tiers so that a new subscriber bandwidth can be predicted for the new speed tiers. Based on the new subscriber bandwidth, expected subscriber growth, and changes in data consumption, the site is reconfigured with additional ports based on the forecast. This process can be repeated for the other sites. Sites may be grouped together based on the observed subscriber bandwidth. A new subscriber bandwidth may be predicted for the group with the new speed tiers so that additional ports can be configured for each of the sites in the group.
US09608893B2 Methods and systems for parsing data objects
Methods and apparatuses for use in applying an update to a communication protocol in a software application that is executed by a computing device are described herein. The computing device receives a protocol definition corresponding to a communication protocol and indicating positions of data elements within data objects corresponding to the communication protocol. When the computing device determines that the received protocol definition differs from a previous protocol definition corresponding to the communication protocol, the computing device creates a machine-executable object parser based on the received protocol definition. The machine-executable object parser is accessible to a software application executed by the computing device. The software application receives a data object corresponding to the communication protocol, and the computing device executes the machine-executable object parser to parse at least a portion of the data elements in the data object received by the software application.
US09608882B1 Network event tracking
A method and system for tracking network events are provided. A network event tracking system includes a network event database, multiple disparate networks, and a report generator. The network event database stores network event data and network element data associated with the multiple disparate networks. A vendor corresponding to each network element supplements the network element data stored in the network event database with vendor data when the network element is operating in a specified condition. The report generator utilizes the network event database to provide snapshots of network health during specified periods based on the network events associated with the network elements. Also, the report generator provides definitions for network acronyms and contact information for network sites associated with network elements.
US09608881B2 Service compliance enforcement using user activity monitoring and work request verification
A computer implemented method, data processing system, and computer program product control point in time access to a remote client device and auditing system logs of the remote client device by an auditing server device to determine whether monitored user activity on the remote client device associated with a work request was in compliance with one or more regulations.
US09608879B2 Methods and apparatus to collect call packets in a communications network
Methods and apparatus to collect call packets in a communications network are disclosed. An example method includes extracting data from packets captured at nodes in a communication network; storing the extracted data in a database in association with the voice data corresponding to the captured packets; searching, in response to a query including information, the extracted data in the database to identify records matching the information; identifying a second record in the database as belonging to a same unique voice call as the first record in the database based on determining that first metadata of the first record matches second metadata of the second record; and returning a first packet corresponding to the first record, a second packet corresponding to the second record, and a third packet comprising voice data corresponding to the same unique voice call in response to the query.
US09608876B2 Dynamically adjusting brand and platform interface elements
Embodiments render on a second data processing system, a result derived from a set of data by performing data processing across the first data processing system and a second data processing system. The amount of processing performed by the second data processing system can be dynamically adjusted. The first data processing system receives information indicating an amount of interface characteristics of the first data processing system as compared to interface characteristics of the second data processing system to be presented to a user. Data processing is dynamically allocated between the first data processing system and the second data processing system, based on an amount of interface characteristics of the first data processing system as compared to interface characteristics of the second data processing system to be presented to a user.
US09608870B1 Deep link verification for native applications
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for verifying deep links in for a native application. In one aspect, a method includes verify a deep link for a first version level of a native application and serving the deep link only if aversion level of a native application installed on a requesting user device is the same as or subsequent to the version level for which the deep link is verified.
US09608869B2 Enterprise applications navigation using tile characteristics that change with applications data
In example embodiments, space filling elements displayed on a computer screen represent items in one or more levels of a hierarchical menu structure. The area of a space filling element indicates the number of accesses to an application associated with the space filling element. Other attributes of the space filling element may indicate values of characteristics of an associated application.
US09608868B2 Efficient parallel processing of a network with conflict constraints between nodes
According to one exemplary embodiment, a method for parallel processing a network of nodes having at least one ordering constraint and at least one conflict constraint is provided. The method may include breaking a plurality of loops caused by the at least one ordering constraint. The method may also include determining a node order based on the at least one ordering constraint. The method may then include determining a conflict order based on the at least one conflict constraint, whereby no new loops are created in the network. The method may further include performing parallel processing of the network of nodes based on the node order and the conflict order.
US09608860B1 Synchronized MME pool
Example implementations are directed to systems and methods involving a mobility management entity (MME) pool. In example implementations, the MME of the pool can be configured as a backup for a fraction of subscribers associated with other MME in the pool. Upon detection of the failure of an MME in the pool, the surviving MME messages eNodeBs and other peer network nodes that it will take over the impacted subscribers such that the subscribers do not need to conduct a reattachment process. Multiple MME codes per MME can be used to partition the subscribers for backup, which can thereby lead to geo-redundancy for the MME.
US09608859B2 System, apparatus and method for reducing failover time through redundancy using virtual access points
According to one embodiment of the disclosure, a non-transitory computer readable medium is described for an network device, where the medium comprising instructions which, when executed by one or more hardware processors, cause performance of a number of operations. These operations include configuring a first network device to provide network access to a client device using a first Basic Service Set Identification (BSSID) and determining that the first network device is not responsive. Based on determining that the first network device is not responsive, the one or more hardware processors further configure a second network device to provide the network access to the client device using the same first BSSID that was previously used by the first network device without the client device disassociating with the first BSSID.
US09608855B2 Time control apparatus, time control method, and program
A time control apparatus provided in a slave machine and synchronizing time information with time information of a master machine connected over a network includes: calculation units respectively calculating time difference candidates of the slave machine with respect to the master machine and network delays indicative of an average of times necessary for communication of first and second messages over the network based on transmission and reception times of the first messages which are transmitted from the master machine and received using the slave machine and transmission and reception times of the second messages which are transmitted from the slave machine and received using the master machine; a selection unit selecting one of the calculated time difference candidates as a time difference based on the calculated network delays; and an adjustment unit adjusting the time information of the slave machine based on the selected time difference.
US09608854B2 Method and system for automatic execution of scripts on remote agent-less client machines
The present invention provides a system to automatically schedule at least one workflow and deploy at least one executable across one or more target remote agent-less client machines via a secured connection. The system may include a workflow generator and a script runner. The workflow generator is configured to receive at least one script that has to be executed across one or more target remote agent-less client machine and parameters as input from user, generate at least one optimized decision support workflow based on the input parameters from the user, and map the generated at least one optimized decision support workflow to one or more target remote agent-less client machine. The script runner retrieves the at least one optimized decision support workflow that is mapped with one or more target remote agent-less client machine and executes the at least one script in one or more target remote agent-less client machine.
US09608853B1 IP origination point and method to determine transcoding in packet communications
An IP origination point and method to determine transcoding in packet communications are provided. The IP origination point in one example embodiment includes a communication interface configured to exchange packet communications with a media transport path, a storage system configured to store an origination communication, payload data for the origination communication, integrity information for the origination communication that is configured to be modified by one or more transcoding operations, and returned integrity information that may have been modified by the one or more transcoding operations. A processing system generates and transmits the origination communication into the media transport path, compares the returned integrity information to the integrity information, and determines a transcoding level of transcoding that occurred in the media transport path if the returned integrity information is not equal to the sent integrity information.
US09608851B2 Turbo decoding techniques
Techniques are disclosed for turbo decoding orthogonal frequency division multiplexing (OFDM) symbols. Techniques for combined turbo decoding and equalization are disclosed. The disclosed techniques can be implemented in receivers that receive wired or wireless OFDM signals and produce data and control bits by decoding the received signals. The techniques may be incorporated within an ADSL or a VDSL receiver.
US09608849B2 Method, system and apparatus for audio communication modulation mode self-adaptation and electronic signature token
A method, system, and apparatus for audio communication modulation mode self-adaptation and an electronic signature token are provided. The method includes modulating first audio data using at least two modulation modes supported by the first device to generate first audio data frame streams; selecting an optimal modulation mode used in the second device from the modulation modes correctly received by the second device and supported by the first device according to a predetermined rule; demodulating the second audio data stream to obtain modulation modes correctly received by the first device and supported by the second device and the optimal modulation mode used in the second device; and selecting an optimal modulation mode used in the first device from the modulation modes correctly received by the first device and supported by the second device according to the predetermined rule.
US09608844B2 System and method for performing channel estimation on an OFDM signal
Embodiments of systems and methods for performing channel estimation on Orthogonal frequency-division multiplexing (OFDM) signals are described. In one embodiment, a method for performing channel estimation on an OFDM signal involves performing blind channel phase estimation on an OFDM signal to obtain channel phase information and performing blind channel magnitude estimation on the OFDM signal to obtain channel magnitude information. Each of performing blind channel phase estimation on the OFDM signal and performing blind channel magnitude estimation on the OFDM signal involves detecting and suppressing a signal path of the OFDM signal. Other embodiments are also described.
US09608843B2 Multiple-input multiple-output orthogonal frequency division multiplexing communication system and method for signal compensation
Embodiments of the present invention provide a method for signal compensation, including: receiving, by a receiver via N receiving antennas, a plurality of channel estimation preamble signals sent by M transmitting antennas of a remote transmitter; determining, by the receiver, channel estimation parameters according to the first pilot signals of the M transmitting antennas contained in the plurality of channel estimation preamble signals; receiving, by the receiver, data signals and second pilot signals sent on a first data symbol by the M transmitting antennas; determining, by the receiver, channel phase shift parameters according to signals arrived at the N receiving antennas which come from the second pilot signals; and determining, by the receiver according to the channel estimation parameters and the channel phase shift parameters, signal compensation for the data signals arrived at the N receiving antennas. Accuracy of demodulation for transmitted data to a certain extent is improved.
US09608841B2 Method for real-time synchronization of ARP record in RSMLT cluster
Embodiments herein include systems and methods for providing a mechanism for efficient data synchronization of ARP records between two peer nodes of an SMLT system. Such techniques include modifying control information of ARP packets transmitted between peer nodes of the SMLT system to indicate originating SMLT ports. Techniques also include disabling MAC synchronization control messaging across the IST link. These techniques enable real-time synchronization ARP records for MAC learning without needing dedicated control messaging over the IST, thereby providing nodal and SMLT port failover and recovery.
US09608840B2 Virtualized on-demand service delivery between data networks via secure exchange network
In one embodiment, a method comprises determining, by a network edge device in a first autonomous network, whether a second network edge device in a second autonomous network is authorized to submit a service request to the first autonomous network, the service request associated with one of providing or consuming an identified network-based service; identifying, by the network edge device within the first autonomous network, a third network edge device in a third autonomous network and identified as responsive to the service request for the identified network-based service; and sending instructions for establishing a secure communications between the second network edge device and the third network edge device via a data network distinct from the first, second, or third autonomous networks, for establishment of the identified network service between the second autonomous network and the third autonomous network via the data network.
US09608833B2 Supporting multiple multicast trees in trill networks
Systems and techniques for supporting multiple multicast trees are described. Some embodiments provide a system that determines an internal multicast group identifier based on a source address, a multicast address, and a multicast tree identifier field associated with a multicast packet. The system can then forward the multicast packet based on the internal multicast group identifier. Specifically, the system can determine a first set of bits based on the source address and the multicast address of the multicast packet. The system can determine a second set of bits based on the multicast tree identifier field of the multicast packet. Next, the system can combine the first set of bits and the second set of bits to obtain the internal multicast group identifier. In some embodiments, the scope of an internal virtual network identifier does not extend beyond a switch or a forwarding module within a switch.
US09608826B2 System and method for partner key management
A system and method for implementing an interoperable credential management protocol for processing online transactions. The protocol, referred to as the Partner Key Management (PKM) protocol provides an improved alternative to traditional public key infrastructure (PKI), particularly for use in high-value commercial transactions which require additional controls on the use of credentials for authentication and authorization. According to the PKM protocol, a user may take advantage of credential interoperability by using the same credential at a plurality of different financial institutions for authentication or digital signatures. Additionally, the credential interoperability achieved according to the PKM protocol allows the user to employ the same credential at a plurality of financial institutions for the purpose of digital or electronic signatures.
US09608825B2 Trusted platform module certification and attestation utilizing an anonymous key system
This application is directed to trusted platform module certification and attestation utilizing an anonymous key system. In general, TPM certification and TPM attestation may be supported in a device utilizing integrated TPM through the use of anonymous key system (AKS) certification. An example device may comprise at least combined AKS and TPM resources that load AKS and TPM firmware (FW) into a runtime environment that may further include at least an operating system (OS) encryption module, an AKS service module and a TPM Certification and Attestation (CA) module. For TPM certification, the CA module may interact with the other modules in the runtime environment to generate a TPM certificate, signed by an AKS certificate, that may be transmitted to a certification platform for validation. For TPM attestation, the CA module may cause TPM credentials to be provided to the attestation platform for validation along with the TPM and/or AKS certificates.
US09608819B1 Learning parity with noise-based relational encryption for proximity relations
A method includes receiving a first and a second linearity ciphertexts representative of a first and second biometric templates, respectively that are encrypted using a relational linearity encryption scheme (linearity scheme). The linearity scheme is based on learning parity with noise. The method includes discovering a linearity relationship between the first and the second linearity ciphertexts. The method includes receiving a first and a second proximity hash value representative of the first and second biometric templates, respectively encrypted using a relational proximity hash scheme (proximity scheme). The proximity scheme is based on the linearity scheme and an error correcting code. The method includes detecting a proximity between the first and the second proximity hash value in terms of a Hamming distance. The method includes authenticating an identity of a user based on the proximity and the linearity relationship.
US09608817B2 Homomorphic evaluation including key switching, modulus switching, and dynamic noise management
Homomorphic evaluation of a function is performed on input ciphertext(s), which were encrypted using a public key of an encryption scheme that also includes multiple secret keys. Each input ciphertext includes multiple real numbers that are kept with finite precision. Performing the homomorphic evaluation of the function includes performing operation(s). Performing each of one or more operations includes the following. A key-switching transformation is performed on selected ciphertext(s), including converting a first version of a selected ciphertext with respect to a first of the secret keys and with some number r bits of precision to a second version of the selected ciphertext with respect to a second of the secret keys and with some other number r′ bits of precision, r′>r. Each key switching transformation is performed prior to or after the operation(s) are evaluated. Results of the operation(s) are output.
US09608810B1 Systems and methods for encryption and provision of information security using platform services
Systems and methods for securing or encrypting data or other information arising from a user's interaction with software and/or hardware, resulting in transformation of original data into ciphertext. Generally, the ciphertext is generated using context-based keys that depend on the environment in which the original data originated and/or was accessed. The ciphertext can be stored in a user's storage device or in an enterprise database (e.g., at-rest encryption) or shared with other users (e.g., cryptographic communication). The system generally allows for secure federation across organizations, including mechanisms to ensure that the system itself and any other actor with pervasive access to the network cannot compromise the confidentially of the protected data.
US09608806B2 Extending data confidentiality into a player application
In a content protection scheme, and in response to a request for a content segment received by a server, the server generates and associates with the segment a message that confers entitlement to a session-specific key from which one or more decryption keys may be derived. The decryption keys are useful to decrypt the segment at runtime as it is about to be rendered by a player. Before delivery, the server encrypts the segment to generate an encrypted fragment, and it then serves the encrypted fragment (and the message) in response to the request. At the client, information in the message is used to obtain the session-specific key. Using that key, the decryption keys are derived, and those keys are then used to decrypt the received encrypted fragment. The decryption occurs at runtime. The approach protects content while in transit to and at rest in the client browser environment.
US09608804B2 Secure key authentication and ladder system
Method and system for secure key authentication and key ladder are provided herein. Aspects of the method for secure key authentication may include generating a digital signature of a secure key in order to obtain a digitally signed secure key and transmitting the digitally signed secure key from a first location to a second location. The digital signature may be generated by utilizing an asymmetric encryption algorithm and/or a symmetric encryption algorithm. The digitally signed secure key may be encrypted prior to transmission. The secure key may be a master key, a work key and/or a scrambling key. The digitally signed secure key may be received at the second location and the digitally signed secure key may be decrypted to obtain a decrypted digitally signed secure key.
US09608800B2 Frequency aided clock recovery based on low speed information exchange mechanism
A method and apparatus of clock recovery is disclosed. A communications device matches the frequency of a local clock signal with the frequency of a transmit clock signal of a transmitting device based on a first set of signals received from the transmitting device during a low-speed information exchange. The low-speed information exchange may correspond to an autonegotiation operation, wherein each of the transmitting device and the communications device declares its communication capabilities to the other device. The communications device then determines a frequency offset to be applied to the local clock signal during a high-speed data communication with the transmitting device. During the high-speed communication, the communications device may apply the frequency offset to the local clock signal and match the phase of the receive clock signal with the phase of the transmit clock signal based on a second set of signals received from the transmitting device.
US09608799B2 Frequency acquisition for serdes receivers
The present invention is directed to data communication. More specifically, embodiments of the present invention provide a method for acquiring sampling frequency by sweeping through a predetermined frequency range, performing data sampling at different frequencies within the predetermined frequency range, and determining a target frequency for sampling data based on a maximum early peak frequency and a maximum late peak frequency. There are other embodiments as well.
US09608795B2 Dynamic bandwidth control in interference situations
When a wireless communications device intends to communicate with another device over a wide channel consisting of multiple narrow channels, but detects interference on one or more of those narrow channels, it may restrict subsequent communications with that other device to those narrow channels that don't suffer from the interference. In one embodiment the device may simply refuse to monitor the interfering channel(s) for signals for a particular period of time. In another embodiment the device may use a CTS to signal the other device not to use the interfering narrow channel(s). That may result in using a wide channel with a reduced bandwidth for communications.
US09608793B2 Method and system for maritime high speed broadband communication networking
Method and system for providing an integrated long range, high capacity communication system between several entities involved in maritime Simultaneous Operations (SIMOPS). The method and system makes use of narrow lobe phase steerable antenna being controllable in both azimuth and elevation by software control.
US09608791B2 Mobile communication system and channel transmission/reception method thereof
A method and an apparatus for transmitting Hybrid Automatic Repeat reQuest (HARQ) Acknowledgement/Negative Acknowledgement (ACK/NACK) are provided. The HARQ ACK/NACK transmission method includes receiving a Physical Downlink Shared Channel (PDSCH) in a subframe of a first cell, identifying an ACK subframe for transmitting HARQ ACK/NACK corresponding to the PDSCH, and transmitting the HARQ ACK/NACK in the identified ACK subframe of a second cell.
US09608789B2 Method and apparatus for transmitting acknowledgements in response to received frames
A method and apparatus for transmitting acknowledgements in response to data packets in wireless communication are disclosed. A recipient may receive a plurality of data packets from a plurality of stations and transmit acknowledgements for the data packets to the originating stations in a single transmission. The acknowledgements may be transmitted using multi-user multiple-input multiple-output (MU-MIMO). Alternatively, the acknowledgements may be aggregated and transmitted in the single transmission. A short acknowledgement (ACK) frame may be sent in response to a received frame. The short ACK frame may include an ACK sequence corresponding to a sequence identity (ID) included in the received frame. The short ACK frame may include a short training field (STF) and the ACK sequence. The short ACK frame may be transmitted with a short ACK indication. The short ACK frame may be sent in response to an indication included in the received frame.
US09608786B2 Method of transmitting sounding reference signal in wireless communication system
A method of transmitting a sounding reference signal includes generating a physical uplink control channel (PUCCH) carrying uplink control information on a subframe, the subframe comprising a plurality of SC-FDMA (single carrier-frequency division multiple access) symbols, wherein the uplink control information is punctured on one SC-FDMA symbol in the subframe, and transmitting simultaneously the uplink control information on the PUCCH and a sounding reference signal on the punctured SC-FDMA symbol. The uplink control information and the sounding reference signal can be simultaneously transmitted without affecting a single carrier characteristic.
US09608781B2 Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
A method and an apparatus for transmitting broadcast signals thereof are disclosed. The apparatus for receiving broadcast signals, the apparatus comprises a receiver to receive the broadcast signals, a demodulator to demodulate the received broadcast signals by an OFDM (Orthogonal Frequency Division Multiplex) scheme, a frame parser to parse a signal frame from the demodulated broadcast signals, wherein the signal frame includes at least one service data, a time deinterleaver to time deinterleave each the service data, wherein the time deinterleaving is performed depending on a number of physical paths for each the service data, a damapper to demap the time deinterleaved data and a decoder to decode the demapped service data.
US09608777B2 LTE hierarchical burst mode
Methods, systems, and devices are described for hierarchical communications within a wireless communications system. An eNB and/or a UE may be configured to operate within the wireless communications system which is at least partially defined through a first layer with first layer transmissions having a first subframe type and a second layer with second layer transmissions having a second subframe type. The first subframe type may have a first round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, and the second layer may have a second RTT that is less than the first RTT. Subframes of the first subframe type may be multiplexed with subframes of the second subframe type, such as through time division multiplexing.
US09608776B2 Method and system for supporting multiple hybrid automatic repeat request processes per transmission time interval
A method and apparatus may be used for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI). A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of TBs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated TBs with the TBs. The transmitter may send the TBs using the associated H-ARQ processes simultaneously per TTI. After receiving the TBs, the receiver may send feedback for each of the H-ARQ processes and associated TBs indicating successful or unsuccessful receipt of each of the TBs to the transmitter. The feedback for multiple TBs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., TBs).
US09608774B2 Opportunistic HARQ repetition for coverage enhancement
Certain aspects of the present disclosure provide techniques opportunistic retransmissions. According to certain aspects, a user equipment (UE) may transmit data associated with a first hybrid automatic repeat request (HARQ) process, receive signaling indicating the UE is to retransmit the data in at least one subframe not belonging to the first HARQ process, and retransmit the data on the at least one subframe. According to certain aspects, a base station (BS) may schedule a UE to transmit data on a first HARQ process and signal the UE to retransmit the data in at least one subframe not belonging to the first HARQ process.
US09608773B2 Transmission of symbols in a MIMO environment using Alamouti based codes
A method for transmitting data in a multiple-input-multiple-output space-time coded communication using a mapping table mapping a plurality of symbols defining the communication to respective antennae from amongst a plurality of transmission antennae and to at least one other transmission resource. The mapping table may comprise Alamouti-coded primary segments and may also comprise secondary segments, comprising primary segments. The primary segments in the secondary segments may be defined in accordance to an to Alamouti based code pattern applied at the segment level to define a segment-level Alamouti based code.
US09608772B2 Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
The present invention is related to a method and apparatus for implementing space frequency block coding (SFBC) in an orthogonal frequency division multiplexing (OFDM) wireless communication system. The present invention is applicable to both a closed loop mode and an open loop mode. In the closed loop mode, power loading and eigen-beamforming are performed based on channel state information (CSI). A channel coded data stream is multiplexed into two or more data streams. Power loading is performed based on the CSI on each of the multiplexed data streams. SFBC encoding is performed on the data streams for each of the paired subcarriers. Then, eigen-beamforming is performed based on the CSI to distribute eigenbeams to multiple transmit antennas. The power loading may be performed on two or more SFBC encoding blocks or on each eigenmodes. Additionally, the power loading may be performed across subcarriers or subcarrier groups for weak eigenmodes.
US09608768B2 Recovery from burst packet loss in internet protocol based wireless networks using staggercasting and cross-packet forward error correction
A method and apparatus for staggercasting are described including encoding and compressing a first data sequence, packetizing the compressed encoded data sequence to form a data packet, performing forward error correction (FEC) encoding on the data packet in order to generate a second data sequence related to the first data sequence, appending FEC control information as padding to the end of payload data of the data packet, packetizing the second data sequence to form a packet, multicasting the data packet to a first multicast group, multicasting the packet formed using the second data sequence delayed by an offset time to a second multicast group.
US09608767B2 Recovery from burst packet loss in internet protocol based wireless networks using staggercasting and cross-packet forward error correction
A method and apparatus for staggercasting are described including encoding and compressing a first data sequence, packetizing the compressed encoded data sequence to form a data packet, performing forward error correction (FEC) encoding on the data packet in order to generate a second data sequence related to the first data sequence, appending FEC control information as padding to the end of payload data of the data packet, packetizing the second data sequence to form a packet, multicasting the data packet to a first multicast group, multicasting the packet formed using the second data sequence delayed by an offset time to a second multicast group.
US09608765B1 Systems and methods for detecting and controlling wireless transmission devices
Disclosed is a system for managing wireless transmitting devices in which a wireless transmission from a transmission device is detected within or about a set area and an allowability of the transmission device to continue transmitting is based on an identification information, of the device, a location of the device and a number being called by the device.
US09608764B2 Uplink data routing during multiple carrier power imbalance
In an aspect, this disclosure provides for determining a power imbalance between a first radio frequency (RF) carrier and a second RF carrier of a dedicated physical control channel for uplink transmission, determining whether the power imbalance is greater than a power imbalance threshold, and blocking data transmission on one of the first RF carrier or the second RF carrier when the power imbalance is greater than the power imbalance threshold.
US09608761B2 Realizing coarse wavelength-division multiplexing using standard multimode optical fibers
Tuning parameters of individual wavelength channels transmitted over a multimode optical fiber is provided. Characteristics of the multimode optical fiber used for an optical data link within an optical signal transmission system are retrieved. A wavelength channel grid including each central wavelength in a plurality of central wavelengths that corresponds to each particular wavelength channel in a plurality of wavelength channels used to transmit data via optical signals over the multimode optical fiber is determined. A maximum allowable data rate is calculated for each wavelength channel based on the characteristics of the multimode optical fiber at defined channel wavelengths, optical signal transceiver specifications, and data transmission performance requirements for the optical signal transmission system. Operational parameters are assigned to each wavelength channel based on the calculated maximum allowable data rate for each wavelength channel to achieve the data transmission performance requirements for the optical signal transmission system.
US09608758B1 Low cost gain clamped EDFA for TWDM passive optical network application
A communication system includes a first optical system and a second optical system optically connected to a clamping laser and a pump laser. The first optical system includes first and second optical splitters. The first optical splitter is configured to receive a clamping laser signal from the clamping laser and split the signal into split clamping laser signals. The second optical splitter is configured to receive a pump laser signal from the pump laser and split signal into split pump laser signals. The second optical system is optically connected to the first optical system and includes amplifier systems. Each amplifier system is configured to receive a multiplexed signal. The second optical system includes first and second combiners optically connected to an erbium-doped fiber. The first combiner is optically connected to the first splitter, and the second combiner is optically connected to the second splitter.
US09608757B2 Bi-directional optical transmission system with coherent detection
An optical device includes a first optical port connected to a first optical fiber, and a second optical port connected to a second optical fiber. The optical device further includes first optical components that switch first optical traffic carried via a first set of optical channels from the first optical port to the second optical port, and second optical components that switch second optical traffic carried via a second set of optical channels from the second optical port to the first optical port. The second set of optical channels includes different optical channels than the first set of optical channels. The optical device also includes a receiver that coherently detects portions of the first optical traffic and the second optical traffic, and converts the detected portions of the first and second optical traffic to electrical signals for delivery to a node or network external to the optical device.
US09608755B2 Network element clock synchronization systems and methods using optical transport network delay measurement
The present disclosure provides Network Element (NE) clock synchronization using Optical Transport Network (OTN) delay measurement systems and methods such as described in ITU-T G.709 (December 2009) “Interfaces for the Optical Transport Network (OTN)” and G.798 (October 2010) “Characteristics of optical transport network hierarchy equipment functional blocks”. OTN provides a Delay Measurement (DM) function to measure fiber path latency between two network elements to within microsecond accuracy. The convergence of packet switching and OTN transport into the same network element allows the sharing of this information between the two applications. The OTN delay measurement value can be used to synchronize two network element clocks to within microsecond accuracy without the need for a costly GPS synchronization solution or reduced accuracy NTP solutions.
US09608751B2 Simplified synchronized Ethernet implementation
A method of simplifying the implementation of Synchronous Ethernet on an Ethernet device having a first port and a second port device using a predetermined protocol and signaling, comprises delivering a master clock from a Synchronous Ethernet system to the first port of the Ethernet device; transmitting the delivered master clock to the second port of the Ethernet device independently of the protocol and signaling of the Ethernet device; and transmitting the master clock from the second port of the Ethernet device to a downstream device that supports Synchronous Ethernet. In one implementation, the Ethernet device has a local clock, and the method synchronizes the local clock to the master clock. In another implementation, the Ethernet device does not have a local clock, and the master clock is transmitted from the second port of the Ethernet device to the downstream device without any synchronizing operation at the Ethernet device.
US09608750B2 Tunnel follow-up message for transparent clock
A method for handling at least one encapsulated synchronization message by a tunnel node including a transparent clock, includes generating a signature from the encapsulated synchronization message and generating, or updating if it has already been generated, a tunnel follow-up message. The tunnel follow-up message includes the encapsulated synchronization message signature. The method further includes measuring the encapsulated synchronization message residence time across the tunnel node, and updating the correction field of the tunnel follow-up message with the measured residence time.
US09608746B1 Detecting deviation in broadcasting device properties
A computer-implemented method includes identifying a broadcasting device. The broadcasting device operates via a short-range wireless communication protocol. The computer-implemented method further includes determining one or more affinity indications associated with the broadcasting device. The computer-implemented method further includes determining one or more deviation indicators based on the one or more affinity indications. The one or more deviation indicators are associated with the broadcasting device. A corresponding computer program product and computer system are also disclosed.
US09608745B2 Information delivery system, gateway device, delivery control method, and non-transitory computer readable medium storing program
To provide an information delivery system, a gateway device, a delivery control method and a program that can be used by various business entities to meet diversified needs for information delivery, an information delivery system includes an event detection device (10) that is configured to detect occurrence of a plurality of events and specify delivery area information of event information according to the events, and a delivery device (20) that delivers the event information to a delivery destination node corresponding to the delivery area information specified by the event detection device (10).
US09608741B2 Electronic apparatus for use in a communication system
A system and method of an electronic apparatus for use in a communication system includes a switching module arranged to combine a plurality of input signals received by a plurality of input ports in connection with the switching module to define a combined input signal having a plurality of frequency components; and a loading module arranged to receive the combined input signal from the switching module and to individually separate each of the plurality of frequency components of the combined input signal by processing the combined input signal with a plurality of resonating networks, each arranged to resonate at a resonance frequency associated with each of the plurality of frequency components of the combined input signals.
US09608739B2 System and method for a blended signal
The system includes a controller communicatively connected to a first and second device. The first and second devices have multiple wireless technologies capabilities, such as Bluetooth, Wi-Fi, and other known wireless technologies. The controller is configured to combine two signals generated from the wireless technologies into a single blended signal to transmit data from the first device to the second device or vice versa. The wireless technologies may be selected via a user interface which is communicatively connected to one of the first and second devices. Additionally, the wireless technologies may be selected using voice command or automatically selected by the type of data an operator designates. The controller is configured to combine two signals generated from the wireless technologies into a blended signal as well as allow two-way communication between the first and second device.
US09608734B2 Optical transmission system, optical reception apparatus, and signal adjustment method
An optical transmission system includes: a reception apparatus configured to receive signal light separated from wavelength division multiplexing light; and a management apparatus configured to manage a plurality of optical transmission apparatuses that transmit the wavelength division multiplexing light, wherein the reception apparatus further comprises: an amplification section configured to amplify each power of electric signals for demodulating the signal light within a predetermined tolerance level, the electric signals being converted from mixed light of local light and the signal light input into the reception apparatus; an adjustment section configured to adjust power of the signal light input into the reception apparatus or power of the local light; and a controller configured to control the adjustment section based on an adjustment amount notified by the management apparatus, the management apparatus includes a computer.
US09608732B2 Optical transmitter, optical communication system, and optical communication method
It becomes difficult to regenerate transmitting signals depending on modulation systems for the optical phase modulation in a polarization multiplexed optical communication system employing the optical digital coherent communication system, therefore, an optical transmitter according to an exemplary aspect of the invention includes first optical quadrature modulation means for performing a phase modulation on a first continuous light beam and outputting a first transmitting light beam; second optical quadrature modulation means for performing a phase modulation on a second continuous light beam belonging in the same frequency band as that of the first continuous light beam and outputting a second transmitting light beam; optical phase difference adding means for adding an optical phase difference varying temporally between the first transmitting light beam and the second transmitting light beam; and polarization multiplexing means for polarization-multiplexing the first transmitting light beam and the second transmitting light beam in the state where their polarizations are made to be orthogonal to each other and outputting a polarization multiplexed transmitting light beam.
US09608730B2 Upstream aggregation with noise performance improvement
Particular embodiments use aggregation logic that reduces the noise in a daisy-chained optical return signal aggregation of multiple nodes. The aggregation logic determines when an input to a transmitter/receiver is not used and disables or turns off that input. Further, in the case of daisy-chaining, a service group aggregation signal (e.g., RF signals) from the customer premise equipment (CPEs) serviced by a respective node are presented to the channel “A” port of a digital return transmitter/receiver. However, internal to the transmitter/receiver, aggregation logic auto-senses what optical return signals have already been aggregated up to that point in the daisy chain and can then intelligently place the service group aggregation signal onto one of the digital return transmitter channels. In one embodiment, if there are two return channels, A and B, whichever of these channels has seen fewer aggregations up to this point, will receive the service group aggregation signal.
US09608725B2 Information processing program, reception program, and information processing apparatus
An information processing program causes a computer to execute: encoding information to be transmitted, to determine a luminance change frequency; and outputting a signal of the determined luminance change frequency to cause a light emitter to change in luminance according to the determined luminance change frequency to transmit the information. In the encoding, each of a first frequency and a second frequency different from the first frequency is determined as the luminance change frequency. In the outputting, each of a signal of the first frequency and a signal of the second frequency is output as the signal of the determined luminance change frequency, to cause the light emitter to change in luminance according to the first frequency during a first time and change in luminance according to the second frequency during a second time different from the first time after the first time elapses.
US09608715B1 Media service delivery over a wireless relay in a data communication network
A Long Term Evolution (LTE) network delivers a media service that uses an Access Point Name (APN) Quality-of-Service (QoS) Class Identifier (QCI) to serve User Equipment (UE) over a wireless relay. A relay control system transfers a session request indicating the APN QCI to a wireless base station serving the wireless relay. The base station and the wireless relay configure a wireless network bearer to use the APN QCI. Responsive to the network bearer configuration, the wireless relay transfers a relay bearer request for the APN QCI to the relay control system. The relay control system returns a session request to the wireless relay. The wireless relay and the UE then configure a wireless access bearer to use the APN QCI. The wireless relay exchanges user media over the wireless access bearer and the wireless network bearer between the UE and the wireless base station using the APN QCI.
US09608712B2 Method and apparatus for transmitting and receiving single stream through multiple beams in wireless communication system
Methods and apparatuses are provided for controlling a transmission signal in a transceiver. Cyclic shift values that are applied to transmission signals are determined, when the transmission signals are to be transmitted through multiple layers. The transmission signals are cyclically shifted according to the cyclic shift values. The cyclically-shifted transmission signals are added. The added cyclically-shifted transmission signals are transmitted.
US09608711B2 Apparatus and methods for antenna correlation estimation in a multi-antenna system
Disclosed apparatuses obtain real-time performance measurements and adaptively select multiple-input, multiple-output (MIMO) antennas to improve MIMO antenna performance. A correlation estimator determines an approximation of instantaneous antenna correlation values. One method includes obtaining a channel quality indicator (CQI) measurement for first and second antennas of a mobile device. The method determines a composite CQI for the two antennas and estimates the antenna correlation for the first and second antennas based on the composite CQI. The method can include performing a lookup operation in a CQI table mapping composite CQI to coding rates. The method can include obtaining a signal-to-noise ratio (SNR) measurement for the first and second antennas of the mobile device, and estimating the antenna correlation for the first and second antennas based on the composite CQI and the SNR measurement.
US09608706B2 System and method for multiple-input and multiple-output (MIMO) full-duplex precoding structures
Embodiments are provided to enable effective cancellation or reduction of the self-interference (SI) introduced when applying full-duplex (FD) transmission to Multiple-Input-Multiple-Output (MIMO) systems. A method embodiment includes forming, using a precoding matrix generated in accordance with channel conditions, a plurality of beams for a plurality of transmit signals and a plurality of self-interference cancellation signals corresponding to the plurality of transmit signals. The method further includes transmitting, at a plurality of antennas, the plurality of beams for the transmit signals, and receiving, via the plurality of antennas, a plurality of receive signals. A corresponding self-interference cancellation signal is then added to each of the plurality of receive signals to obtain a plurality of corrected receive signals, and the plurality of corrected receive signals are detected at a plurality of receivers.
US09608705B2 MIMO communication system for propagation environment including deterministic communication channel, and antennas for MIMO communication system
In a MIMO communication system that includes a transmitter and a receiver and forms line-of-sight orthogonal channels between the transmitter-side transmitting antenna and the receiver-side receiving antenna, the MIMO communication system is provided between the transmitting antenna and the receiving antenna with an optimum antenna-to-antenna spacing shortening unit to shorten an optimum antenna-to-antenna spacing by changing the phase rotation of a carrier wave used for directly opposed waves between opposed antennas, and the phase rotation of a carrier wave used for intersecting waves between oblique antennas in such a manner that the amount by which one of the phase rotations changes is different from that by which the other phase rotation changes.
US09608704B2 MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
In a closed-loop wireless communication system, a codebook-based feedback mechanism is provided to enable non-unitary precoding for multi-stream transmission, where in each stream is optimized with suitable transmission power allocation and AMC. The codebook-based feedback mechanism uses a precoding codebook having a power allocation matrix which is constrained to specify that beamforming always applies full power to a predetermined beam. With this constraint, a one-bit power allocation feedback index may be used to switch between beamforming and spatial multiplexing.
US09608701B2 Method and apparatus for transmitting/receiving signal in distributed-array massive MIMO system
An apparatus for transmitting and receiving signal and a method thereof are provided. The apparatus for transmitting signals selects at least one array of a plurality of arrays connected to the apparatus based on a spatial covariance matrix of an uplink from a terminal to the plurality of arrays, wherein the spatial covariance matrix ensures channel reciprocity at downlink from the plurality of arrays with the terminal, and forms a transmission beam to be transmitted to the terminal through the at least one selected array.
US09608696B2 Dynamic transmit power and signal shaping
This disclosure provides several mechanisms for adapting transmit power spectral density (PSD). A communications device may adapt the power spectrum utilized at the transmitter based, at least in part, on the channel conditions or PSD constraints associated with the communications medium between the transmitter and a receiver device. Additionally, the transmit PSD may be adapted based, at least in part, on a total power capability associated with a transmitter. Power is allocated to improve throughput and utilization of the communications channel. A transmission profile may be selected based, at least in part, on the notch depth. The transmission profile may be associated with symbol timing parameters. The communications device may maintain a plurality of selectable pulse shapes that are optimized for different notch depths.
US09608695B1 Communication system
A communication system includes a transmitter, a first transmission line, and a second transmission line. The transmitter includes a modulation circuit, a carrier generator, and a pulse generator. The modulation circuit is configured to modulate a first data stream based on a first carrier signal, thereby generating a modulated signal. The carrier generator is configured to generate the first carrier signal and a reference clock signal. The pulse generator is configured to generate a pulse train signal based on the reference clock signal. The first transmission line is configured to carry the modulated signal. The second transmission line is configured to carry the pulse train signal.
US09608687B2 Computer based activity center
The present invention relates to a casing for accommodating a computer based device or an activity board having an input/output port interface and/or an interface in form of a touch sensitive screen, comprising one or more operating means (e.g., levers, handles, buttons, knobs) and/or one or more apertures for interacting with said device, wherein said casing, at least partially, can cover the interface of said device.
US09608683B2 Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system
The device includes: a signal generating unit generating a millimeter wave signal by signal processing of an input signal; a coupling circuit transmitting an electromagnetic wave from the millimeter wave signal generated by the signal generating unit to one end of a circuit board; a coupling circuit receiving the electromagnetic wave from the millimeter wave signal from the other end of the circuit board; and a signal generating unit that generates an output signal by signal processing of the millimeter wave signal from the electromagnetic wave received by the coupling circuit. Preferably, the circuit board is constituted by a dielectric material whose the dielectric loss tangent is relatively large, and a transmission line functioning as a millimeter wave transmission path is constituted within this circuit board. With this construction, extremely high-speed signals can be transmitted through a circuit board having a prescribed dielectric constant representing a large loss.
US09608682B2 Interference reduction for multiple signals
The present invention reduces the degradation in performance of one or more radio signals that are co-transmitted with a first radio signal from the same transmitting antenna in the same frequency channel and received by the same antenna due to multipath or other shared interference, where the one or more radio signals can be separated from the first radio signal. All received signals are coupled to the same adaptive array or adaptive filter to reduce multipath or other shared interference of the first radio signal, which reduces multipath and other shared interference in the other radio signals before they are separated and processed by their respective receivers, or the individual radio signals are separated before the first signal enters the adaptive array and coupled to a slave weighting network slaved to the weights of the adaptive array of the first signal to reduce interference in all the signals.
US09608680B2 Messaging devices and methods
An electronic messaging device includes a receiver configured to receive a message at one of a first operational frequency and second operational frequency. The messaging device can operate using a time synchronous protocol and can receive commands through over-the-internet-programming (OTIP) and over-the-air-programming (OTAP).
US09608679B2 Very low intermediate frequency (VLIF) receiver and a method of controlling a VLIF receiver
A very low intermediate frequency (VLIF) receiver and a method of controlling a VLIF receiver. The method comprises estimating energy levels in first and second signals and detecting interference from a first adjacent channel interferer based upon a difference in energy in the first and second signals. The first signal comprising a first on-channel portion and an adjacent channel portion and the second signal comprises an intermediate frequency translation of the first on-channel portion. The energy levels are estimated for corresponding time instances and the adjacent channel interferer is of the adjacent channel portion. The VLIF receiver is then controlled based upon the detected interference.
US09608677B2 Systems and methods of RF power transmission, modulation, and amplification
An apparatus, system, and method are provided for energy conversion. For example, the apparatus can include a trans-impedance node, a reactive element, and a trans-impedance circuit. The reactive element can be configured to transfer energy to the trans-impedance node. The trans-impedance circuit can be configured to receive one or more control signals and to dynamically adjust an impedance of the trans-impedance node. The trans-impedance node, as a result, can operate as an RF power switching supply based on the one or more control signals.
US09608673B2 Transmitter and method of processing transmission signals
A transmitter and method are provided for processing a transmission signal. The transmitter includes an FEM that switches a plurality of band signals for a first and second communication scheme, wherein the band signals for the first communication scheme include a first HB signal, a second HB signal, a first LB signal, and a second LB signal, and the band signals for the second communication scheme include a third LB and a third HB signal; a first PAM including a first power amplifier that amplifies the third HB signal, a second power amplifier that amplifies the first HB signal, and a third power amplifier that amplifies the first LB signal; and a second PAM including a fourth power amplifier that amplifies the third LB signal, a fifth power amplifier that amplifies the second HB signal, and a sixth power amplifier that amplifies the second LB signal.
US09608672B2 Apparatus and method for generating base band receive signals
An apparatus for generating base band receive signals includes a first analog-to-digital converter module generating a first digital high frequency receive signal at least by sampling a first analog high frequency receive signal, a first digital signal processing module generating a first base band receive signal based on the first digital high frequency receive signal, a second analog-to-digital converter module generating a second digital high frequency receive signal at least by sampling a second analog high frequency receive signal and a second digital signal processing module generating a second base band receive signal based on the second digital high frequency receive signal. The first analog high frequency receive signal comprises first payload data at a first receive channel associated with a first carrier frequency and the second analog high frequency receive signal comprises second payload data at a second receive channel associated with a second carrier frequency.
US09608665B2 Adaptive compression of data
A method of encoding data includes determining a magnitude of change between a first value associated with first data and a second value associated with second data based on a comparison of the first value and the second value. The first value is encoded into a first set of bits having a first number of bits. The method also includes encoding the magnitude of change into a second set of bits utilizing a sign-interspersed two's complement encoding scheme. The second set of bits has a second number of bits that is less than the first number of bits.
US09608659B2 Analog/digital conversion circuit
An A/D conversion circuit includes: first/second pulse circulation circuits delaying an input signal and circulating a pulse signal; a circulation number difference measurement section outputting a difference between circulation time numbers of the pulse signal through the first/second pulse circulation circuits; a conversion control circuit outputting the difference as A/D conversion data when outputting a conversion data output processing signal; and a signal ratio change circuit: outputting, from a first output terminal, a voltage calculated by adding the reference voltage and a voltage obtained by multiplying a differential voltage, obtained by subtracting the reference voltage from the analog input voltage, by a first proportional coefficient; and outputting, from a second output terminal, a voltage calculated by subtracting, from the reference voltage, a voltage obtained by multiplying the differential voltage by a second proportional coefficient. The first/second pulse circulation circuits receive power source voltage supply from the first/second output terminals and a ground line.
US09608654B2 Semiconductor device including an analog/digital conversion circuit
The present invention provides a semiconductor device having a high-speed A/D conversion circuit realizing improvement in noise resistance. A semiconductor device having an A/D conversion circuit includes a sample and hold circuit outputting an analog signal having a value according to a value of an analog signal supplied in a first period, and prediction tables. The prediction tables have reference voltage information designating a reference voltage to be compared with an analog signal output from the sample and hold circuit at a plurality of timings in the first period and bit position information designating a bit position of a digital signal determined by comparison with the reference voltage.
US09608653B2 Method and device for compensating bandwidth mismatches of time interleaved analog to digital converters
A device can be used for compensating bandwidth mismatches of time interleaved analog to digital converters. A processor of the device determines, for each original sample stream, an estimated difference between the time constant of a low pass filter representative of the corresponding converter and a reference time constant of a reference low pass filter, and uses this estimated difference and a filtered stream to correct the original stream and deliver a corrected stream of corrected samples.
US09608652B2 Methods and apparatus for reducing timing-skew errors in time-interleaved analog-to-digital converters
A time-interleaved (TI) analog-to-digital converter (ADC) architecture employs a low resolution coarse ADC channel that samples an input analog signal at a Nyquist rate and facilitates background calibration of timing-skew error without interrupting normal operation to sample/convert the input signal. The coarse ADC channel provides a timing reference for multiple higher resolution TI ADC channels that respectively sample the input signal at a lower sampling rate. The coarse ADC digital output is compared to respective TI ADC digital outputs to variably adjust in time corresponding sampling clocks of the TI ADC channels so as to substantially align them with the sampling clock of the coarse ADC channel, thus reducing timing-skew error. In one example, the coarse ADC output provides the most significant bits (MSBs) of the respective TI ADC digital outputs to further improve conversion speed and reduce power consumption in these channels.
US09608649B2 Analog phase-locked loop with enhanced acquisition
An analog phase-locked loop (PLL) is disclosed, comprising a voltage controlled oscillator (VCO); a frequency divider having its input connected to an output of the VCO; a first phase detector arranged to detect a phase difference between an output signal of the frequency divider and a reference frequency signal and provide an output signal based on the phase difference, wherein the detectable phase difference is within one cycle of the reference frequency; a first charge pump connected to an output of the first phase detector and arranged to output a charge per detected phase error based on the output of the first phase detector; and an analog loop filter connected to the first charge pump and arranged to provide a voltage, based on the output of the first charge pump, to the VCO. The PLL further comprises a second phase detector arranged to detect a number of cycles in phase difference between the output signal of the frequency divider and the reference frequency signal and provide an output signal based on the number of cycles in phase difference; and a second charge pump connected to an output of the second phase detector and arranged to provide a charge per detected phase error, based on the output of the second phase detector, to the loop filter. A radio circuit, a communication device and a communication node are also disclosed.
US09608647B1 System and method for voltage-controlled oscillator calibration
A system and method for calibrating a Voltage-Controlled Oscillator (VCO) having both fine-tuning control and coarse-tuning control. The VCO frequency can vary monotonically with changes in each of one or more operational conditions. The calibration method determines the coarse-tuning control setting for the VCO at system start-up. The method comprises generating frequency characterization data, generating a polynomial function from the characterization data, calculating the fine-tuning control voltage based on the polynomial function and a measurement of the operational conditions, and sweeping through all the coarse-tuning control settings to determine the coarse-tuning control setting that generates the closest VCO frequency to a target frequency when using the calculated fine-tuning control voltage.
US09608644B1 Phase-locked loop having sub-sampling phase detector
An example phase-locked loop (PLL) circuit includes a voltage controlled oscillator (VCO) configured to generate an output clock based on an oscillator control voltage, a sub-sampling phase detector configured to receive a reference clock and the output clock, and a phase frequency detector configured to receive the reference clock and a feedback clock. The PLL circuit includes a charge pump configured to generate a charge pump current, a multiplexer circuit configured to select either output of the sub-sampling phase detector or output of the phase frequency detector to control the charge pump, and a lock detector configured to receive the reference clock, the feedback clock, and the output of the phase frequency detector to control the multiplexer. The PLL circuit includes a loop filter configured to filter the charge pump current and generate the oscillator control voltage, and a frequency divider configured to generate the reference clock from the output clock.
US09608640B1 Receiving circuit and method for controlling frequency
A receiving circuit includes: a detector configured to detect a position at which logics of first data and second data acquired by sampling received data using two clocks having mutually-different phases do not match each other as an edge; and an adjustment circuit configured to perform an adjustment causing an internal clock frequency to be close to a data frequency in the received data based on a first probability that logics of third data in a next cycle of the first data and the second data match each other and a second probability that logics of fourth data in a next cycle of the second data and the third data match each other.
US09608635B1 Digital input circuit and method for high voltage sensors
A digital input circuit includes a series connection of a current limiter and a switch having a switch control input coupled between a signal input and ground, and a logic level shifter coupled to the signal input and having a switch control output coupled to the switch control input and a signal output, where a maximum amplitude at the signal input is greater than a maximum amplitude at the signal output. A digital input method includes coupling an input signal to ground with a current limiter by closing an electronic switch, providing an output signal responsive to the input signal, where a maximum amplitude of the input signal is greater than a maximum amplitude of the output signal, by latching the output signal while the input signal is above a threshold voltage and opening the electronic switch after the output signal is latched.
US09608631B2 Semiconductor memory device, a memory module including the same, and a memory system including the same
A semiconductor memory device includes a ZQ calibration unit configured to generate a pull-up VOH code according to a first target VOH proportional to a power supply voltage and an output driver configured to generate a data signal having a VOH proportional to the power supply voltage based on the pull-up VOH code, wherein VOH means “output high level voltage.”
US09608628B2 Capacitive touch panel with improved visibility
The present invention provides a capacitive touch panel and a manufacturing method thereof, wherein the capacitive touch panel includes a first transparent substrate in which an upper transparent electrode and an upper metal interconnect electrode are formed on the lower side thereof; a transparent adhesive portion; and a second transparent substrate in which a lower transparent electrode and a lower metal interconnect electrode are formed on the upper side thereof. More specifically, the invention provides a capacitive touch panel with excellent visibility since an expensive ITO transparent electrode is replaced with conductive materials such as CNT and graphene and the touch panel has an electrode pattern of a specific structure.
US09608621B1 Power on reset circuit, power on reset method and electric device using the same
Disclosed are a power on reset circuit, a power on reset method and an electric device using the same. In the power on reset circuit and method, a first voltage detecting circuit and a second voltage detecting circuit detect the voltage of a power supply and output a first voltage signal and a second voltage signal respectively. A logic circuit receives the first voltage signal and the second voltage signal to turn no or off the first voltage detecting circuit for detecting the voltage of the power supply. Specifically, merely when the voltage value of the power supply is less than a rising threshold voltage value of the first voltage detecting circuit or a falling threshold voltage value of the second voltage detecting circuit, the first voltage detecting circuit is turned on to detect the voltage value of the power supply.
US09608616B1 Power clamp circuits and methods
A circuit includes a first node having a first supply voltage, a second node having a second supply voltage, and a voltage detector coupled between the first node and the second node, the voltage detector including a first output node. A clamp circuit is coupled between the first node and the second node. The voltage detector is configured to drive the first output node to the first supply voltage in response to a difference between the first supply voltage and the second supply voltage exceeding a predetermined threshold voltage value. The clamp circuit is configured to establish a conduction path between the first node and the second node in response to the first or second output node being driven to the first supply voltage.
US09608604B2 Voltage level shifter with single well voltage
This invention discloses a voltage level shifter, which comprises a first P-type metal-oxide-semiconductor (PMOS) transistor having a gate, a source and a bulk coupled to an input terminal, a first positive voltage power supply and a second positive voltage power supply, respectively, and a second PMOS transistor having a source, a drain and a bulk coupled to a third positive voltage power supply, an output node and the second positive voltage power supply, respectively, wherein the first and second PMOS transistors are formed in a single Nwell.
US09608599B2 Circuit for detecting phase shift applied to an RF signal
An RF circuit and method for detecting the amount of phase shift applied to an RF signal. An RF heating apparatus including the RF circuit. The RF circuit includes a phase shifter operable to apply a phase shift to a reference signal to produce a phase shifted reference signal. The RF circuit also includes a phase detector operable to detect a phase difference between the phase shifted RF signal and the phase shifted reference signal. The phase detector has a reduced input range at a frequency of the phase shifted RF signal. The RF circuit further includes a controller operable to control the phase shifter to set the phase of the phase shifted reference signal so that the phase difference between the phase shifted RF signal and the phase shifted reference signal falls within the reduced input range of the phase detector.
US09608598B1 Cascaded integrator-comb filter as a non-integer sample rate converter
The implementation of non-integer sample rate conversion and filtering of data sequences may be improved by performing both operations together with a system that includes a CIC filter and a control block that modifies internal states of the CIC filter. In one embodiment, input data samples provided at a first sample rate may be filtered by a CIC filter that includes a cascade of an integrating stage and a comb filter stage, each stage operating at a different sampling rate. A control block coupled to the CIC filter may modify at least one internal state of at least one of the integrating stage and comb filter stage of the CIC filter, wherein filtering by the CIC filter and modifying the at least one internal state causes the CIC filter to output data samples at a second sample rate unequal to the first sample rate.
US09608597B2 Digital interpolator and method of interpolating
The present invention relates to a digital interpolator, comprising an input to receive an input signal at a first clock frequency and comprising an output to provide an interpolated signal at a second clock frequency larger than the first clock frequency. The interpolator comprises a differentiator connected to the input, an interpolator stage connected to a differentiator output, and an integrator connected to the output and connected to an output of the interpolator stage.
US09608596B2 Acoustic wave device and antenna duplexer including same
An acoustic wave device includes a first longitudinally-coupled acoustic wave filter having interdigital transducer (“IDT”) electrodes arranged in a propagation direction of acoustic wave, and a second longitudinally-coupled acoustic wave filter having IDT electrodes arranged in a propagation direction of acoustic wave. In the IDT electrodes of the first longitudinally-coupled acoustic wave filter, a comb-shaped electrode connected to an input port and another comb-shaped electrode connected to an output port are disposed in an in-phase relation. In the IDT electrodes of the second longitudinally-coupled acoustic wave filter, a comb-shaped electrode connected to an input port and another comb-shaped electrode connected to an output port are disposed in an anti-phase relation. This acoustic wave device has an excellent attenuation characteristic while maintaining a preferable insertion loss.
US09608594B2 Capacitive coupled resonator device with air-gap separating electrode and piezoelectric layer
A bulk acoustic wave (BAW) resonator includes a bottom electrode disposed on a substrate, a piezoelectric layer disposed over the bottom electrode, and a top electrode disposed over the piezoelectric layer. The BAW resonator further includes at least one air-gap and corresponding support structure, where the at least one air-gap separates at least one of the bottom electrode and the top electrode from the piezoelectric layer, respectively.
US09608592B2 Film bulk acoustic wave resonator (FBAR) having stress-relief
An acoustic resonator structure comprises: a substrate having a cavity, which has a plurality of sides; a first electrode disposed over the cavity; a piezoelectric layer disposed over a portion of the first electrode and extending over at least one of the sides; and a second electrode disposed over the piezoelectric layer, an overlap of the first electrode, the piezoelectric layer and the second electrode forming an active area of the FBAR. The active area of the FBAR is completely suspended over the cavity.
US09608590B2 Cable assembly having a signal-control component
Cable assembly includes a communication cable having first and second insulated wires. Each of the first and second insulated wires has a signal conductor and an insulation layer that surrounds the signal conductor. The cable assembly also includes a circuit carrier that is coupled to the communication cable and has first and second signal pathways. Each of the first and second signal pathways includes a leading conductive surface and a trailing conductive surface that are separated from each other. The signal conductors of the first and second insulated wires are coupled to the trailing conductive surfaces of the first and second signal pathways, respectively. Each of the first and second signal pathways includes a corresponding signal-control component that electrically couples the separated leading and trailing conductive surfaces.
US09608589B2 Method of forming acoustic resonator using intervening seed layer
A method of forming an acoustic resonator includes forming a seed layer on a first electrode layer, forming a piezoelectric layer directly on a surface of the seed layer, and forming a second electrode layer on the piezoelectric layer. The piezoelectric layer includes multiple crystals of piezoelectric material, and the seed layer causes crystal axis orientations of the crystals to be substantially perpendicular to the surface of the seed layer.
US09608588B2 Dynamic range control with large look-ahead
A system and method applying Dynamic Range Control/Compression (DRC) to an audio signal. The dynamic range controller presented here differs from conventional DRC techniques by providing a much larger look-ahead time. In particular, the system and method takes advantage of the look-ahead by analyzing macroscopic loudness changes in the order of seconds as opposed to the microscopic changes most conventional DRCs are designed to control. This approach avoids most of the typical DRC distortions associated with conventional DRC techniques and preserves the micro-dynamics of the audio signal. Gain changes are applied at a rate comparable with manual volume adjustments by mixing and mastering engineers to balance a mix. Ideally, the DRC will approach what a professional sound engineer would do to reduce the dynamic range if there were only a volume control to accomplish the task on the final mix.
US09608577B2 Radio frequency front end module circuit incorporating an efficient high linearity power amplifier
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
US09608576B2 Apparatus and methods for power amplifier bias circuits
Apparatus and methods for power amplifier bias circuits are disclosed herein. In certain implementations, a power amplifier bias circuit includes a current source configured to generate a reference current, a plurality of reference bipolar transistors, a selection circuit configured to select one or more selected reference bipolar transistors from the plurality of reference bipolar transistors, and a transimpedance amplifier. The one or more selected reference bipolar transistors have a current therethrough that changes in relation to a power amplifier stage bias voltage, and the transimpedance amplifier is configured to control the power amplifier stage bias voltage based on an error current corresponding to a difference between the reference current and the current through the one or more selected reference bipolar transistors.
US09608575B2 Signal amplifying circuit with noise suppression function
A signal amplifying circuit with noise suppression function includes a first circuit module and a second circuit module. The first circuit module includes a current source and a switch. The current source is connected to an input stage for inputting a current. The switch is connected to a first output terminal and adapted to switch the input stage and the first output terminal according to a chopping frequency. The second circuit module includes an equivalent capacitance disposed between an output stage and a second input terminal connected to the first output terminal. The signal amplifying circuit controls current volume of the current source and capacity value of the equivalent capacitance to accordingly adjust an interior frequency bandwidth of the signal amplifying circuit, and the interior frequency bandwidth is smaller than the chopping frequency and greater than an input signal of the input stage.
US09608574B2 Port isolation in shared transformers
Techniques for improving performance of a transformer shared amongst a plurality of operating modes. In an aspect, first and second primary windings of a transformer are coupled to an AC ground voltage. Primary windings are mutually coupled to a secondary winding of the transformer. To render the second primary winding inactive, e.g., when operating in a first mode, a switch coupling the second primary winding to the common reference voltage is opened. Similarly, when it is desired to render the first primary winding inactive, e.g., when operating in a second mode, a switch coupling the first primary winding to the common reference voltage is opened. In this manner, the inactive primary winding advantageously does not load the secondary winding. Further aspects provide for, e.g., extending the techniques to more than two modes, and alternative techniques to mutually couple the signal from the primary to the secondary winding.
US09608571B2 High efficiency variable voltage supply
Aspects of the present disclosure are generally directed to a power supply for generating an output supply voltage. The power supply generally includes a variable voltage supply configured to generate an intermediate supply voltage based on a reference signal, a correction circuit configured to generate an error signal based on the output supply voltage or the intermediate supply voltage, and a combiner configured to combine the intermediate supply voltage and the error signal to provide the output supply voltage.
US09608569B2 Linearizing scheme for baseband filter with active feedback
A method and apparatus for linearizing a baseband filter are provided. The apparatus is configured to, via a first conducting module, receive a first current signal. The apparatus is further configured to, via a converting module, receive a second current signal, generate a voltage signal based on the second current signal, and apply the voltage signal to the first conducting module. An amount of the second current signal received by the converting module is based on an amount of the first current signal flowing through the first conducting module. The apparatus is also configured to, via a second conducting module, control an output current signal based on the voltage signal. The output current signal is controlled to be a linear replica of the first current signal for in-band frequencies.
US09608565B2 Electric circuit of a generator of oscillations
The invention relates to an electric circuit of a generator of oscillations, comprising an enhancement-mode field transistor T1, inductance L1 and resistance R1 connected to the source or the drain of the transistor T1, characterized in that the inductance L1 is connected directly between the gate and the drain of the transistor T1 or to an electric circuit of a generator of oscillations, comprising an depletion-mode field transistor T1, inductance L1 and resistance R1 connected with its one end to the source of the transistor T1, characterized in that the inductance L1 is connected directly between the gate of the transistor T1 and the other end of the resistance R1.
US09608563B2 Method for detecting the degree of soiling of PV modules
A method for detecting the degree of soiling of PV modules of a string includes the following steps: determination of the deviations of the string power output values from a calculated reference value over the last year; calculation of a historical trend line from the deviations; determination of a maximum difference between the trend line and the deviations; calculation of final deviations of the power output values through subtraction of the maximum difference from the trend line; and determination of the degree of soiling through subtraction of the final deviations from the deviations.
US09608562B2 Cooling fixture for solar photovoltaic panels
The cooling fixture for solar photovoltaic panels has a hollow support platform made from thermally conductive metal that contains a heat exchange medium, preferably water. The solar photovoltaic panel is supported atop the platform so that heat absorbed by the panel is transferred to the platform by conduction and through the media by convection. The platform is pivotally supported on a base frame, and can be adjusted to any desired angle by a brace releasably engaging lugs projecting from the edge of the platform. The heat exchange medium is circulated from the top of the platform to the bottom of the platform by a thermo-siphon effect through at least one thin, rectangular duct having at least one fin for cooling the medium by heat exchange with air.
US09608559B2 Slide fit mounting clip for installing photovoltaic modules
A module bracket includes first and second mounting clips (202, 204) that are spaced from each other along the pitch of a roofing surface. An inlet (212) to the first mounting clip (202) faces or projects in the general direction that the second mounting clip (204) is spaced from the first mounting clip (202). An inlet (212) to the second mounting clip (204) faces or projects in the general direction that the first mounting clip (202) is spaced from the second mounting clip (204). A second module flange (134) of a first photovoltaic module (120) is slid into the first mounting clip (202) of the module bracket. A first module flange (128) of a second photovoltaic module (120) is slid into the second mounting clip (204) of this same module bracket.
US09608554B2 D-Q control system and method for controlling a switched reluctance motor
A D-Q or rotating reference frame control system for a switched reluctance motor (SRM) provides a negativity removal module and a non-linear model module. As such, the control system utilizes control inputs fq and fd, which are converted into the ABC domain as electrical current functions f′ix with negative values. The negativity removal module is configured to share the torque portion of the negative values of the electrical current functions f′ix for each of the three phases of the SRM motor to remove the negative values. The non-linear module corrects the non-linearity of the SRM to smooth the torque that is output. The control system also utilizes a phase advancing module, which outputs fd for achieving a wide range of operating speeds.
US09608551B2 Reducing peak fault output current in a DC power generation system
Technologies for reducing peak fault output current in a DC power generation system include a generator having a reduced damper winding and a controller to control a rectifier array to generate a DC power output. In some embodiments, the generator may have no damper windings, may have damper windings including a reduced number of damper bars, and/or may have damper windings having separated end ring mounts for each damper bar. The controller is configured to control the rectifier array so as to reduce oscillations of the DC output that may be due to the reduced damper windings. To do so, the controller is configured to generate the control signal based on an oscillation component of the DC power output. For example, the controller may generate an oscillation correction signal based on the DC power output and adjust a firing angle set point of the rectifier array based on the oscillation correction signal.
US09608548B2 Power generating device and electronic component
A power generating device includes: a piezoelectric member that is formed from a piezoelectric material; one pair of electrodes that are installed to the piezoelectric member; a transformation unit that repeatedly transforms the piezoelectric member; an inductor that is installed between the one pair of electrodes and configures a resonance circuit together with a capacitive component of the piezoelectric member; a switch that is connected to the inductor in series; and a switch control unit that connects the switch when a transformation direction of the piezoelectric member is switched, and cuts off the switch when a time corresponding to a half period of a resonance period of the resonance circuit elapses.
US09608547B2 Microfluidic manipulation and sorting of particles using tunable standing surface acoustic wave
An apparatus for manipulating particles uses tunable standing surface acoustic waves includes a channel defined on a substrate and a pair of variable frequency interdigital transducers. The channel is disposed asymmetrically between the transducers such that the zero order node location is outside of a working region in the channel.
US09608544B2 Energy supply system comprising an energy storage device and method for actuating coupling devices of the energy storage device
The invention relates to an energy supply system having an energy storage device. The energy storage device has a plurality of energy storage modules that are serially connected in at least one energy supply branch, each comprising an energy storage cell module having at least one energy storage cell, and a coupling device having coupling elements configured to selectively switch the energy storage cell module into the respective energy supply branch, or to circumvent same, and comprising a plurality of driver devices, each dedicated to one of the energy storage modules, and coupled to one of the energy storage modules, and which are configured to actuate the coupling elements of the coupling devices according to a driver signal. The energy supply system further comprises a control device, which is coupled to the driver devices by way of a control signal line, and which is configured to emit a control signal to the driver devices by way of the control signal line, which is provided with a physical control signal parameter, into the value of which a control mode for the driver devices is coded. The driver devices are configured to receive the control signal, and to generate the respective driver signal subject to the value of the control signal parameter, and a control mode assignment that can be predetermined.
US09608543B2 Turn-off overvoltage limiting for IGBT
A turn-off overvoltage limiting for IGBT is described herein. The injection of a sample of the overvoltage across the IGBT in the gate drive to slow down the slope of the gate voltage decrease only during the overvoltage above a predetermined value is described herein. Techniques to increase the parasitic inductance to allow the control to limit an overvoltage at turn off of the second IGBT are also described herein.
US09608535B2 Electric-power conversion system having plurality of single-phase inverter circuits
The number of constituent components is reduced so as to provide a small-size and inexpensive electric-power conversion system. The electric-power conversion system is provided with an inverter circuit (14) connected with the rear stage of an AC power source, a smoothing capacitor (22) connected with the rear stage of the inverter circuit (14) by way of a rectifying device (20), a charging switch (2) that is connected with the front stage of the inverter circuit (14), that inputs an electric quantity based on an output of the AC power source (1) to the inverter circuit (14) when being turned on, and that cuts off an input of the electric quantity to the inverter circuit (14) when being turned off, and an inrush current prevention circuit (7) having an inrush current prevention switch (3) and an inrush current prevention resistor (4) that is connected in series with the rear stage of the inrush current prevention switch (3); the electric-power conversion system is characterized in that the inrush current prevention circuit (7) is connected in parallel with the charging switch (2).
US09608533B2 Phase control with adaptive parameters
An apparatus to control an amount of current delivered from an AC power source to an electrical load includes a line terminal configured to be connected to the AC power source, a load terminal configured to be connected to the electrical load, a controllably conductive power switch in series electrical connection between the line terminal and the load terminal, and a switching circuit configured to control a conductive state of the controllably conductive power switch wherein the switching circuit is configured to automatically detect at least one electrical characteristic.
US09608525B2 Selected-parameter adaptive switching for power converters
A selected-parameter adaptively switched power conversion system, for example, includes a counter for determining a period of an output oscillation a power supply switch, where the output oscillation starts when an output current generated by stored power of the power supply coil decays substantially to zero. An event generator for generating a switching delay event in response to the determined output oscillation period and generates a switching delay event in response to a determination of a phase of the output oscillation.
US09608523B1 Regulator, serializer, deserializer, serializer/deserializer circuit, and method of controlling the same
According to an embodiment, a regulator includes: a voltage control circuit to supply a voltage; a clock signal output circuit to output a clock signal controlled by the voltage supplied from the voltage control circuit; and a current control circuit to supply the voltage supplied from the voltage control circuit to the clock signal output circuit, the current control circuit make to flow a dummy current which is determined based on the voltage, and stopping flowing the dummy current at a timing when the clock signal output circuit outputs the clock signal.
US09608520B2 Mode control device, voltage converter, and control method used in the voltage converter
A voltage converter can include a voltage conversion circuit having an inductor configured to be charged and discharged to facilitate conversion of an input voltage to an output voltage, and a switch configured to allow the inductor to be charged and discharged. The voltage converter can further include a logic drive unit configured to provide a drive signal to the switch to control the charging and discharging of the inductor. The voltage converter can further include a mode control unit configured to provide a mode-switching signal to the logic drive unit to control switching between a continuous control mode and a discontinuous control mode based on an inductance current associated with the inductor and a constant load-current threshold.
US09608519B2 Switching converter with adaptive off time control and the method thereof
A switching converter having a power stage with a main switch to convert an input voltage to an output voltage; a current sense circuit generating a current sense signal indicative of a current flowing through the main switch; a PWM generator generating a PWM signal; an OFF time controller generating an OFF time control signal relating to the input voltage and the output voltage; and a logic circuit generating a switching signal based on the OFF time control signal and the PWM signal to control the main switch.
US09608518B2 Power supply device and control method thereof
A power supply device includes a master power supply module, a slave power supply module and a control module. The master power supply module is configured to output a master output current and an output voltage according to a master control signal. The slave power supply module is electrically connected in parallel to the master power supply module and configured to output a slave output current and the output voltage according to a slave control signal. The control module is electrically connected to the master power supply module and the slave power supply module and configured to output the master control signal according to the output voltage, generate a current compensation signal according to the master output current and the slave output current, and output the slave control signal according to the output voltage and the current compensation signal which is based on the master output current.
US09608515B2 Resonance detection and filtering circuitry
A circuit and method to filter a signal is provided. The circuit includes a notch filter circuit to receive an input signal and first and second tuning signals and to provide an output signal. The notch filter circuit has an input-output frequency response that includes a stopband region. The stopband region has a center frequency and has an attenuation level that is based at least on a tuning signal. The tunable filter circuit further includes a tuning circuit operable in at least two modes to generate the tuning signal. The at least two modes includes a tuning mode and a filtering mode. The tuning circuit generates the tuning signal such that the attenuation level of the stopband region is greater in the filtering mode than in the tuning mode.
US09608514B2 Diode circuit and power factor correction boost converter using the same
Embodiments relate to a diode circuit which uses a Schottky diode. A parallel bypass branch has a switch and bypass diode in series. The operation of the switch is dependent on the voltage across the Schottky diode so that the bypass function is only effective when a desired voltage is reached. The diode circuit can be used as a replacement for a single diode, and provides bypass current protection preferably without requiring any external control input.
US09608512B2 Soft start systems and methods for multi-stage step-up converters
A control circuit for a step-up converter includes a soft start module configured to control states of N transistor pairs of the step-up converter, where N is an integer greater than two. A driver module is in communication with the soft start module and configured to generate a first signal when N transistor pairs of the step-up converter are ready to switch. A first charging circuit is configured to charge (N−1) capacitors of the step-up converter to an input voltage of the step-up converter in response to the first signal and to generate a second signal when charging is complete. A second charging circuit is configured to sequentially charge the (N−1) capacitors of the step-up converter to (N−1) predetermined voltage values in response to the first signal and the second signal and before operation of the step-up converter begins.
US09608509B2 Switching converter with controllable restart delay and associated control method
A switching converter providing an output voltage has a first switch and a control circuit. The control circuit provides an auxiliary power supply voltage, and a switching control signal to control the first switch based on the output voltage and a reference signal. The switching converter is shut down by the control circuit when a fault happens, and the switching converter restarts when the auxiliary power supply voltage decreases to a first threshold.
US09608503B2 Actuator for damping low-frequency oscillations
An actuator has an electrically conductive coil which has a longitudinal axis and windings through which a current can flow. The coil is surrounded by a highly permeable first ferromagnetic body so that the first body has projections of highly permeable ferromagnetic material above and below the coil in the longitudinal direction. The actuator has a magnet spaced apart from the coil so that a gap forms therebetween. The magnet is surrounded by a highly permeable second ferromagnetic body so that the second body has projections of highly permeable ferromagnetic material above and below the magnet in the longitudinal direction. The magnet is statically mounted with the second body and the coil is spring mounted with the first body so that the coil and first body oscillate in the longitudinal direction when an alternating current flows through the coil. The coil is outside the magnet perpendicular to the longitudinal axis.
US09608502B2 Impactive vibration generating apparatus and application apparatus using same
An impactive vibration generating apparatus includes a rotary unit having a shaft and a coil arranged around the shaft; a fixing unit surrounding the rotary unit and having a magnet therein; a commutator arranged along the circumference of the shaft connected to the coil; a pair of brushes to slidably contacting the commutator; a protrusion attached to one part of the rotary unit; and a stopper contacting the protrusion when the rotary unit rotates so as to interrupt the rotation of the rotary unit. According to the impactive vibration generating apparatus, a sharp and strong single impactive vibration or only a few impactive vibrations can be generated. Further, a strong vibration can be caused by continuous impactive vibrations, and the frequency or cycle of the generation of the impactive vibrations can be adjusted.
US09608500B2 Portable generator system for providing temporary power to an electrical-distribution system
A portable generator produces secondary voltage to feed a portable trailer mounted transformer through secondary cables. Transformer voltages are stepped up to primary levels with disconnects/fuses protecting the transformer and generator. From the fuses a primary underground cable feeds a junction box mounted on the bottom side of the portable trailer for underground applications. Overhead applications include a temporary overhead erectable structure with overhead disconnects. A temporary ground rod with a grounding cable is used to establish a path to ground and a common neutral system for the portable trailer and all components of the portable generator apparatus and system.
US09608499B2 Rotary electric machine with a pair of interfitting portions, rotary electric machine stator, and rotary electric machine stator manufacturing method
An insulator includes: a trunk portion that is interposed between a tooth and a stator coil; and a first flange portion that is disposed on the trunk portion so as to be adjacent to the stator coil in a radial direction of a stator core. A notch portion is disposed on a flange protruding portion of the first flange portion that protrudes from the stator core in the axial direction of the stator core from an outer circumferential portion of the flange protruding portion toward the trunk portion. A holder that has a holder main body that is disposed on the notch portion is mounted onto the flange protruding portion. A temperature sensor is held between the holder main body and the stator coil.
US09608494B2 Rotating electrical machine with brush holder
An opening of a yoke provided to an electric motor is closed by a brush holder of an electricity supply unit. A pair of electricity supply terminals connected to respective brushes is fixed on the brush holder by outsert molding. A brush-side fixing pillar is inserted into a caulking hole piercing through a pigtail connecting portion of each electricity supply terminal, an input-side fixing pillar is inserted into a fixing hole piercing through an input-side connecting portion, and then the brush-side fixing pillar and the input-side fixing pillar are thermally caulked, whereby each electricity supply terminal is fixed on the brush holder. Each input-side fixing pillar and the corresponding brush-side fixing pillar, provided on the brush holder, are spaced away from each other by a predetermined distance so that a first terminal, a second terminal and a choke coil connected therebetween is attachable in place of the electricity supply terminal.
US09608492B2 Rotating electrical machine
A relay conductor of a rotating electrical machine is provided with: a coil connector that is connected to a coil on one side of a rotating shaft and further to the outside in the radial direction than the coil; a power line connector that is connected to an external power line on the other side of the rotating shaft; and relays that extend in the axial direction of the rotating shaft, and link the coil connector and the power line connector. At least a portion of the power line connector is positioned closer to the inner diameter side of the rotating electrical machine than the outer peripheral surface of a stator.
US09608491B2 Stator, motor, blower, and stator manufacturing method
A stator includes a first teeth unit including a first insulator having an annular first crossover wire guide and a plurality of first winding units radially provided at regular intervals on an outer circumference of the first crossover wire guide to cover teeth of one phase group of an alternating current, the teeth of the one phase group having upper halves fitted to the first winding units, a third insulator that covers lower halves of the teeth, and a winding wire of one phase wound around the teeth of the one phase group, a second teeth unit having an identical configuration to that of the first teeth unit in which a winding wire of the other phase is wound in a concentrated manner, with second winding units inserted between adjacent ones of the first winding units, and an annular yoke including a plurality of recesses at regular intervals.
US09608490B2 Compressor
A compressor includes a casing, a compression mechanism arranged inside the casing, a motor arranged inside the casing, and an insulation sheet. The motor drives the compression mechanism. The motor is a concentrated-winding motor having a stator that has a plurality of teeth, and an insulator adjacent to the stator, with windings wound about the teeth with the insulator interposed between the windings and the teeth. The insulation sheet is arranged between the casing and crossover wires of the windings.
US09608487B2 Electric motor and method for winding electric motor winding wire
A winding wire (14) includes a first coil (15) formed by being wound N/2+α times between two predetermined slots (13) present in positions which are point-symmetrical with respect to a rotating shaft, and a second coil (16) formed by being wound N/2−α times between the two predetermined slots (13) which are the same as those between which the first coil (15) is formed, when a predetermined number of turns of the winding wire (14) between the predetermined slots is N.
US09608483B2 Electrical machine with magnetic flux intensifier
An electrical machine has a stator-rotor configuration in which the rotor has at least two poles. The poles are configured to rotate in an angle and to electromagnetically interact with one or more teeth that is a part of a stator adjoined in a fixed position to the electrical machine. The configuration forms a gap in the lateral direction between the poles and the teeth. At least one of the poles is formed of a permanent magnet material and a magnetic flux intensifier is arranged relative to at least one of the poles and one of the teeth. The magnetic flux intensifier is configured to concentrate the magnetic field lines between a pole and the teeth.
US09608477B1 Enhancing collection of electrical power in an energy collection system including radially connected transformation units
There is provided an energy collection system comprising a first switching station electrically connected to a first set of one or more transformation units for receiving a first electrical power generated thereby; a second switching station electrically connected to a second set of one or more transformation units for receiving a second electrical power generated thereby; a sub-transmission station having a first primary electrical connection with the first switching station and a second primary electrical connection with the second switching station for receiving the first and second electrical powers; and a secondary electrical connection between the first and second switching stations; wherein the secondary electrical connection and the first and second primary electrical connections form, alone or using further connections, a closed-loop electrical circuit between the first switching station, the second switching station and the sub-transmission station. There is also provided a method of enhancing collection of electrical power in an energy collection system.
US09608467B2 System and method for charging a capacitor used to power measurement-while-drilling equipment
A system for charging a capacitor used to power measurement-while-drilling equipment includes a power bus, which is electrically connected to the capacitor; a first pair of battery terminals; switching circuitry for electrically connecting the power bus to and disconnecting the power bus from the first pair of battery terminals; and a controller, for controlling the switching circuitry, which is configured to charge the capacitor by applying a first pulse width modulated control signal to control the switching circuitry. The first pulse width modulated control signal has a duty cycle selected such that the voltage of the first battery remains above a first minimum operating voltage while the capacitor is being charged.
US09608461B2 Battery pack cooling and charging device and method
A battery pack cooling and charging device includes a charging module for a battery pack, a cooling fan, a power source module and a cooling fan control module. The cooling fan control module is capable of controlling the cooling fan for cooling and is connected with the cooling fan. During the charging operation, a rotational speed of the cooling fan for cooling the battery pack and a charging module is changed by detecting parameters such as fan operation time, a battery pack internal resistance, a charging module temperature, and a battery pack voltage. The rotational speed of the cooling fan is reasonably adjusted, thus noise of the cooling fan is reduced and energy consumption is reduced according to different phases of the charging process by regarding one parameter or combinations of parameters as conditions for changing the rotational speed of the fan.
US09608460B2 Remote rechargeable monitoring system and method
A system including a remote server connected over a network to a battery charger is configured to track usage of rechargeable batteries. Values of various sensed parameters of a battery, such as temperature, charge, current, and water level are stored with the battery and uploaded to the remote server, either wirelessly or through the network, and either directly from the battery or by way of the battery charger when the battery is coupled to the battery charger. The remote server operates to determine the condition, value and warranty of the battery based on the sensed parameters and on the user history of the battery. Alerts and warnings can be forwarded to the user and/or an enterprise manager or shop manager in the case of enterprise vehicles such as warehouses operating multiple electric forklifts, or rental car agencies, so that multiple rechargeable batteries can be readily tracked, monitored and maintained.
US09608458B2 Buck pre-charger for series-connected battery modules
Systems and methods of pre-charging battery cells that can reliably pre-charge battery cells included in a plurality of series-connected battery modules. The systems and methods can monitor a value of a pre-charge current provided to the plurality of series-connected battery modules, as well as monitor a voltage level of the battery cells within each battery module. The systems and methods can further switchingly interrupt the pre-charge current within each battery module once it has reached a predetermined threshold current value or the battery cells within the battery module have been charged to a UVP level, causing a flyback current to flow into the battery cells of each battery module that have not yet been charged to the UVP level. Once the battery cells within each battery module have been charged to the UVP level, the systems and methods can provide a full-charge current to the plurality of series-connected battery modules.
US09608457B2 Charging device and method for commonly charging multiple digital electronic devices
A charging device for commonly charging multiple digital electronic devices has a housing, a charge control unit and multiple outlet strips. The charge control unit is mounted inside the housing and has multiple relays. The outlet strips are electrically connected to the charge control unit with each outlet strip electrically connected to one of the relays. A charging method corresponding to the charging device is performed by the charge control unit without the need of users' configuration during a charge cycle. The charge method automatically determines if the outlet strips can simultaneously supply power to charge during each charge schedule of the charge cycle. At least one outlet strip supplies power to charge during each charge schedule, and each outlet strip supplies power to charge once, thereby achieving optimization for the charging process with automatic determination and enhancing charging efficiency and users' operational convenience.
US09608456B2 Method for estimating the self-discharge of a lithium battery
A method for determining the self-discharge current of a lithium-ion battery provided with a positive electrode, a negative electrode, and an electrolyte arranged between the positive and negative electrodes includes charging the battery until a metal lithium layer is formed between the electrolyte and the negative electrode, measuring the open-circuit voltage of the battery at two moments, and determining the self-discharge current from the variation of the voltage measured between the two moments.
US09608452B2 Wireless power transmission system, and method and apparatus for controlling power in wireless power transmission system
A wireless power transmission system, and an apparatus and method for controlling power in the wireless power transmission system are provided. The method includes determining a resonance frequency of the wireless power transmission system in which a wireless power transmission efficiency is greater than or equal to a predetermined value. The method further includes generating an operation power based on the wireless power transmission efficiency, the operation power being used to operate a target device. The method further includes transmitting the operation power to the target device. The method further includes controlling an amount of the operation power received by the target device to be within a predetermined range.
US09608448B2 Distributed energy conversion systems
A distributed energy conversion system may include one or more DC power sources and two or more inverters to convert DC power from the power sources to AC power. The AC power from the two or more inverters may be combined to provide a single AC output. A module may include one or more photovoltaic cells and two or more inverters. An integrated circuit may include power electronics to convert DC input power to AC output power and processing circuitry to control the power electronics. The AC output power may be synchronized with an AC power distribution system.
US09608443B2 Energy storage system of uninterruptible power supply equipped with battery and method of driving the same
Disclosed herein are the energy storage system of an Uninterruptible Power Supply (UPS) equipped with the battery and a method of driving the same. The energy storage system includes a commercial power source unit configured to supply a first power source to a load, and the battery configured to supply a second power source to the load. And the system monitors a power failure state in the commercial power source unit, determines a charging state of the battery, and controls the commercial power source unit and the battery in response to output of monitoring or determination, so that the first power source or the second power source is supplied to the load. A power reservation ratio for the use of power can be increased by reducing power used during daytime.
US09608437B2 Electro-static discharge protection for integrated circuits
Techniques for improving electro-static discharge (ESD) performance in integrated circuits (IC's). In an aspect, one or more protective diodes are provided between various nodes of the IC. For example, protective diode(s) may be provided between the drain and gate of an amplifier input transistor, and/or between the drain and ground, etc. In certain exemplary embodiments, the amplifier may be a cascode amplifier. Further aspects for effectively dealing with ESD phenomena are described.
US09608436B2 Method of fault clearance
There is a method of fault clearance for a voltage source converter that interconnects a DC network and an AC network. The voltage source converter is connected to the DC network via one or more DC circuit interruption devices. The method comprises the steps of: (a) detecting a fault in the DC network; (b) carrying out a primary protection sequence, wherein the step of carrying out the primary protection sequence involves carrying out a first sub-sequence that includes the steps of: i. opening the or each DC circuit interruption device, ii. setting a DC power order of the voltage source converter to zero, iii. controlling the voltage source converter to exchange re-circuit breaker active power with the AC network.
US09608428B2 Distinguishing between overload and open load in off conditions
Techniques are described for determining whether a switch circuit experienced one of a latched overload condition and an open load with no input voltage condition. In the techniques, a first diagnostic signal is output if the switch circuit experienced the latched overload condition. Also, in the techniques, a second, different diagnostic signal is output if the switch circuit experienced the open load with no input voltage condition.
US09608426B2 Cable and cable pulling method
The cable (1) includes a cable outer sheath (12) surrounding a cable core (11) and at least a ring (21, 23, 25, 28, 30) surrounding partly the cable outer sheath (12) so that the ring (21, 23, 25, 28, 30) presses the cable outer sheath (12) on the cable core (11) in a way adapted to increase a transfer, on the cable core (11), of a pulling effort exerted on the cable outer sheath (12).
US09608425B2 Spacer and/or spacer damper
Among other things, a spacer unit for spacing apart a bundle of cables is provided. The spacer unit comprises two or more spacer assemblies which are adjustable to provide for various sized bundle configurations and/or to provide for various degrees of spacing. Respective spacer assemblies comprise a housing apparatus and a modular frame. The housing apparatus couples to a clamping arm that clamps to a cable. The modular frame allows the spacer assembly to be coupled to other spacer assemblies to vary a configuration of a spacing unit, and is configured for selective rotation relative to the housing apparatus to facilitate altering a shape of the spacer assembly.
US09608423B1 Electrical wiring device assembly with wall plate
A wall plate is disclosed that includes a plate portion having a finish surface bounded by a perimeter. The finish surface has a latitudinal profile characterized by a latitudinal arc and a longitudinal profile characterized by a longitudinal arc. The latitudinal arc is defined as a section of a first circle having a first radius and a first chord substantially equal to a latitudinal dimension of the plate portion. The first radius is a function of the number of gangs covered by the wall plate. The longitudinal arc is defined as a portion of a second circle having a second radius and a second chord substantially equal to a longitudinal dimension of the plate portion. The wall plate also includes a wall member disposed around the perimeter to form an interior volume.
US09608422B1 Electrical box replacement cover method and apparatus
The present invention is an electrical box cover system and method of installation that covers and protects existing electrical boxes and their electrical components. This invention prevents corrosion and the resulting damage to the mechanical and electrical components of the electrical box while ensuring the electrical box is safe to open and allowing access to the inside of the electrical box. The electrical box cover system includes a cover, fasteners, and a gasket. Generally, to install the cover, the fasteners are drilled through the cover and onto the sides of the damaged electrical box with the gasket, which is placed in the cover.
US09608418B1 Decorative covers and keys for electrical wiring devices
A flat decorative frame made of rectangular crystal or glass or molded transparent or tinted plastic materials for providing assembly of right angle architectural decorative cover with right angle rectangular or square opening access for power outlet and push keys operating electrical hybrid or manual switches by tactile action of a tactile spring including a matching decorative touch icons panel with the panels and the keys including indicators indicating the load status and the keying position for the manual and hybrid switches.
US09608416B2 Wire stripper with clamping device
An insulated wire clamp device as disclosed for a wire stripper machine comprises a first beveled rotary collar on a first side of a shank and a second beveled rotary collar on a second side of the shank having a cutting blade there between. The collars comprise a first clamp and a second clamp of an insulated wire in a complementary V-shaped wire drive wheel. The wire drive wheel comprises a third and a fourth clamp of the wire on inner sides of the V-shaped wire drive wheel and the cutting blade comprises a fifth clamp of the wire in a cutting plane thereof. Shank spacers between the first collar and the rotary cutting blade and between the second collar and the rotary cutting blade add predetermined and incremental spacing options between three of the five clamps in the cutting plane of the insulated wire in the wire stripping machine.
US09608410B2 Surface-emitting light source and laser apparatus
A surface-emitting light source includes a substrate including a light emitting region where plural light emitting points are disposed and a non-light emitting region located around the light emitting region; and a lens array including plural lenses and a non-lens region around the plural lenses. The substrate and the lens array are directly bonded with each other at the non-light emitting region and the non-lens region such that the plural light emitting points and the plural lenses face each other, and the lens array has a linear expansion coefficient not greater than a linear expansion coefficient of the substrate.
US09608407B1 Laser diodes with an etched facet and surface treatment
A gallium- and nitrogen-containing laser device including an etched facet with surface treatment to improve an optical beam is disclosed.
US09608405B2 Laser driver with maintaining average optical power constant
The laser driver including a difference amplifier, a target potential circuit, an adjusting circuit, and bypass circuit is disclosed. The differential amplifier outputs a driving signal and a reverse driving signal having a phase opposite to a phase of the driving signal. The bypass circuit outputs an output current in response to the driving signal for generating a driving current for a semiconductor laser element that emits an optical signal in response to the driving signal. The adjusting circuit controls average potential of the driving signal and the reverse driving signal, so that the average potential becomes substantially equal to a target potential provided by the target potential circuit. The target potential corresponds to average optical power of the optical signal. When amplitude of the driving signal is changed for adjusting an extinction ratio of the optical signal, the adjusting circuit maintains the average optical power in a constant value.
US09608400B2 Laser device, and exposure device and inspection device provided with laser device
A laser device, includes: a laser light generating unit generates laser lights with first and second wavelengths; an amplifying unit amplifies the lights with first and second wavelengths the first and the second amplified lights; a wavelength converting unit that generates a light output, either of first converted light wavelength conversion of the first amplified light and the second amplified light, or of the first converted light and the second converted light wavelength conversion of the second amplified light; and a control unit that controls operation of the laser light generating unit, wherein: the control unit controls an output condition of the light output by adjusting a temporal overlap, of the first converted light and the second amplified light, or the first and second converted lights, through control of relative timings of the laser light with the first and second wavelengths.
US09608398B2 Apparatus for protecting powered optical amplifiers
The present application is directed to an optical apparatus including an optical waveguide configured to receive an optical signal at an input wavelength. The apparatus also includes one or more optical pump sources connected to transmit pump light to the optical gain medium for the optical gain medium to amplify the optical signal. The apparatus also includes an optical feedback loop for a protection wavelength that includes the optical gain medium and at least a portion of the optical waveguide. A round-trip optical gain of the optical feedback loop is higher at an optical wavelength of the pump light than at the input wavelength less than unity in the presence of the optical signal. In addition, the round-trip gain of the optical feedback loop is greater than or equal to unity in the absence of the optical signal.
US09608395B2 Slip ring assembly
A medical apparatus (600) including: a magnetic resonance imaging system (602), a medical device (634), and a slip ring assembly (400, 500) for supplying electrical power to the medical device. The slip ring assembly includes: a cylindrical body (100), a rotating member (402) for rotating the medical device, a first cylindrical conductor attached to the cylindrical body, a second cylindrical conductor (108), a first set of conductive elements (112, 712) connected to the second cylindrical conductor; and a brush assembly (406) comprising a first brush (302) and a second brush (304). The first brush is operable to contact the first cylindrical conductor. The second brush is operable to contact the set of conductive elements. The first and second cylindrical conductive elements overlap at least partially. The second cylindrical conductor is connected to the cylindrical body. The first cylindrical conductor and the second cylindrical conductors are electrically isolated.
US09608394B2 Light bulb socket assembly
A light bulb socket assembly including an inner socket member having an interior chamber sized to receive a threaded end of a light bulb, and having a threaded member configured to screw into a conventional light bulb socket, a spring positioned between the inner socket member and an outer sleeve, locking tabs positioned extending through openings in an outer wall surrounding the interior chamber, where in a first secured position the locking tabs are in engagement with the threaded end of light bulb, and in a second unsecured position when the outer sleeve is refracted, the locking tabs are no longer in secured engagement with the threaded end of the light bulb, such that the light bulb may be removed by pulling the light bulb out of the inner socket member.
US09608392B1 Arrangement for energized rail for movable sockets
Arrangement introduced on rail for movable sockets susceptible to receive several sockets by the fitting and turn on the rail's body. It comprises an electrical energy conductor rail with a body that internally has a rectangular gap that prolongs for the whole extension of the rail configuring an access and housing for movable sockets to be inserted on the rail. Once chosen the assembly local of the movable sockets along the rail longitudinal profile, each socket has its metallic contacts inserted in the rail's gap from the frontal aperture and turned to 90 degrees, making the convex saliences, with interference, to meet the metallic plates, closing electric contact and energizing said socket. The removal of a socket occurs by a new 90 degrees turn in relation to the rail, resulting on the separation of the metallic contacts of the plates and the consequent desenergization of the socket.
US09608390B1 Connector
A connector includes an insulating base, a plurality of pins and a metal enhancing plate. The insulating base has a first surface, a second surface and a side surface, wherein the first surface is opposite to the second surface, and the side surface is connected between the first surface and the second surface. The pins are disposed on the first surface and include a power pin, wherein a section of the side surface is aligned with the power pin. The metal enhancing plate is disposed on the second surface, wherein the metal enhancing plate does not extend to the section of the side surface.
US09608389B2 Audio jack with included microphone
A connector for receiving a cylindrical plug includes a body defining a plug aperture and a cavity for receiving the cylindrical plug. A plurality of electrical contacts in communication with the cavity make electrical connections with the cylindrical plug and retain the cylindrical plug. A microphone is coupled to the body such that the plug aperture and the cavity provide an acoustic path to the microphone. The microphone may be at an end of the connector opposite the plug aperture or on a side of the connector adjacent the plug aperture. The connector allows a microphone to be added to a device, such as a mobile telephone, without the need for an additional external aperture. The microphone in the connector may operate with a second microphone and processing electronics in the device to provide audio processing functions such as noise cancellation or audio beamforming.
US09608384B2 Low profile connector
An electrical connector includes a housing, a cage and a switch unit. The housing has a base and a side wall connected to a side edge of the base. The cage and the housing together define a slot, and an entrance of the slot is on an end face. The switch unit is provided to the side wall. The side wall further has a mounting space that can receive the switch unit and a through-hole extending from the end face of the side wall into the mounting space along the card insertion direction so that a pin-like element can be inserted into the through-hole to enable the switch unit.
US09608382B2 Header transition connector for an electrical connector system
A header transition connector includes a header housing having a separating wall separating a first cavity from a second cavity. Header signal contacts are held by the header housing. The header signal contacts are arranged in pairs carrying differential signals. The header signal contacts have first mating ends in the first cavity for mating with a first receptacle connector. The header signal contacts have second mating ends in the second cavity for mating with a second receptacle connector. Header ground shields are held by the header housing. The header ground shields have first mating ends in the first cavity for mating with the first receptacle connector. The header ground shields have second mating ends in the second cavity for mating with the second receptacle connector. At least a group of the header ground shields are electrically commoned with each other within the header housing.
US09608379B1 Communication connector
A communication connector including elongated contacts, and an optional flexible compensation circuit. The elongated contacts include a plurality of contact pairs. Each pair includes first and second contacts configured to transmit a differential signal. The elongated contacts may each have first and second portions with first and second heights, respectively. The first height is greater than the second height. The first portion of the first contact is positioned alongside the first portion of the second contact to capacitively couple the first and second contacts together. The optional flexible compensation circuit includes compensation circuity configured to at least partially reduce crosstalk between the elongated contacts.
US09608377B1 Caged electrical connector assemblies having indicator lights
An electrical connector assembly includes a cage member having a plurality of walls defining a port configured to receive a pluggable module therein through a front end of the cage member. The port extends to a rear end of the cage member. The walls are manufactured from a conductive material and provide electrical shielding. A communication connector is disposed within the cage member and is positioned at the rear end of the cage member to mate with the pluggable module when the pluggable module is inserted into the port. The communication connector has a mating face being forward facing. A communication connector light pipe is mounted to the communication connector and provided at the mating face. The communication connector light pipe has an emitting face emitting light into the pluggable module.
US09608376B1 Electrical connection device
An electrical connection device includes a plug connector and a positioning module. The plug connector has a plug body with first and second side surfaces respectively provided with first and second fixing holes. The positioning module includes a mounting member having a main body provided with a through hole, and a first fixing member. The through hole in the mounting member can be selectively disposed to align with the first or second fixing hole so as to fix the first fixing member in the first or second fixing hole and to connect together the positioning module and the plug connector to form a first or second assembly state of the electrical connection device.
US09608371B2 Interconnection apparatus and assembly comprising same
An interconnection apparatus including: a rigid substrate having a first side and a second side; at least one first connector arranged on the first side; and at least one second connector arranged on the second side. The apparatus can compensate an alignment error of complementary connectors configured to be mated with the at least one first connector and the at least one second connector.
US09608370B1 Connector terminal
A connector terminal includes a holding portion, an elastic arm portion connected to a front end of the holding portion. The holding portion and the elastic arm portion as a whole show an outward arc shape, a front end of the elastic arm portion protrudes inward to form a contact portion, a rear end of the holding portion is bent and extended inward and then extended rearward to form an abutting portion, the thickness of the holding portion and the elastic arm portion becomes gradually smaller from the holding portion to the front end of the elastic arm portion.
US09608359B2 Waterproof connector with integrated shell and contact into housing
A waterproof connector is configured in such a manner that the waterproof properties between a housing and electrically conductive members, such as a shell and contacts, are improved. This waterproof connector includes a housing having an insulating resin and at least one electrically conductive member formed integrally with the housing. The electrically conductive member has a connection section which is exposed from the housing and connected to a mating connector, a mounting section which is exposed from the housing and mounted to a circuit board, and a holding section which connects the connection section and the mounting section, and which is embedded in the housing. A waterproof shaped section for blocking the entry of water along the interfaces between the holding section and the housing is formed on the surface of the holding section.
US09608358B2 Electronic device including opening
An electronic device may include a housing that may include an opening formed on an outer surface and a space fluidly communicating with the opening, at least one electronic element which is disposed in the space, and at least one terminal which is disposed on the outer surface of the housing and is electrically connected with the at least one electronic element.
US09608354B2 Joint connector for connecting electronic devices in vehicle
A joint connector includes: a connector housing formed with a plurality of terminals that receive a plurality of sockets to which wirings are connected; and a holder that is fitted into the connector housing and electrically connects the sockets which are inserted into the terminals, respectively. Also, a plurality of fitting pieces are inserted into connection portions of the sockets, respectively, which are arranged inside the terminals so as to protrude in a length direction on an inner side of the holder.
US09608350B2 Electronic equipment unit and manufacturing mold assembly thereof
An electronic equipment unit includes a multi-layer circuit board. A part arrangement region on which circuit parts are mounted and a terminal region are provided on the multi-layer circuit board. The part arrangement region is encapsulated with resin. An outline region is formed from a solder resist film surrounding the part arrangement region to prevent the resin from flowing into the terminal region. A non-solder resist region is provided so as to surround the outline region and formation of the solder resist film is inhibited in the non-solder resist region. A clamp abutting surface which is pressed by a mold and surrounds the terminal region and thereby prevents the resin from flowing into the terminal region is a partial region of the multi-layer circuit board where a surface layer circuit pattern is absent.
US09608348B2 High speed bypass cable for use with backplanes
A cable bypass assembly is disclosed for use in providing a high speed transmission line that connect a chip, processor or circuitry mounted on a circuit board to other similar components. The bypass cable assembly has a structure that allows for low loss between a first body and a connector that includes a second body. The connector includes a plurality of conductive terminals arranged in a manner that allows the impedance and other electrical characteristics of the cable to be maintained in a desirable manner through the cable bypass assembly.
US09608347B2 Right-angle electrical connector
In a housing 10 are formed holding grooves 17A to 17D that permit arm-use blades 20A-1 to 20D-1 of various types of blades 20A to 20D to be inserted from the rear, connection components 33A-1 to 33D-1 provided to the lower ends of legs 33A to 33D of conductive bar members 30A to 30D of the various types of blades 20A to 20D are located outside the housing, the arm-use blades 20A-1 to 20D-1 of the various types of blades 20A to 20D are able to move in the vertical direction over a specific range within the corresponding holding grooves 17A to 17D, and the various types of blades 20A to 20D are able to move within a holding space 17.
US09608345B2 Continuity maintaining biasing member
A post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a connector body attached to the post, a coupling element attached to the post, the coupling element having a first end a second end, and a biasing member disposed within a cavity formed between the first end of the coupling element and the connector body to bias the coupling element against the post is provided. Moreover, a connector body having a biasing element, wherein the biasing element biases the coupling element against the post, is further provided. Furthermore, associated methods are also provided.
US09608344B2 Assembly comprising coaxial cable and right-angled coaxial connector and manufacturing method thereof
An assembly includes a right-angled coaxial connector, a first coaxial cable and a second coaxial cable. The right-angled coaxial connector includes a first component and a second component connected to a first coaxial cable and a second coaxial cable respectively. The inner conductor and the outer conductor of the first coaxial cable and the first inner conductor and the first outer conductor of the first component, the inner conductor and the outer conductor of the second coaxial cable and the second inner conductor and the second outer conductor of the second component, as well as the first inner conductor and the first outer conductor of the first component and the second inner conductor and the second outer conductor of the second component are permanently connected in a single welding procedure through a first soldering element, a second soldering element and a third soldering element, respectively.
US09608341B2 High-current plug-in connection with multi-arm contact lamellae
A socket for a high-current plug-in connection is provided, which includes a contact sleeve and a hollow cylindrical contacting system. The contacting system includes a plurality of elongated contact lamellae, is situated in an inner area of the contact sleeve, and is supported with at least a portion of its outer wall on the inner wall. The contact lamellae extend between a first collar and a second collar of the contacting system. The socket includes a contact lamella, in an area between the first collar and second collar, having an arm, via which the contact lamella is additionally connected to a collar of the contacting system in a supporting manner.
US09608340B2 Method for connecting an electrical component to a component support, and device
The invention relates to a method for connecting an electric component to an electrical component support and an electrical component for an electrical component support, in particular for a motor vehicle. According to the invention, an electric component is connected to an electrical component support which comprises a base part and an electrical conductor paths arranged therein. At least one electric contact connected to the electrical component is moved in the base part such that the electric contact is electrically connected to the conductor path. The invention also relates to two electric contacts which are connected to the electric components and which are connected, according to the claims, to two different conductor paths in the base part. Said electric components can comprise more than two electric contacts, which according to the claimed method, are connected to the conductor paths of the base part.
US09608337B2 Built-in antenna for electronic device
A built-in antenna for an electronic device is provided. The built-in antenna includes a substrate, a 1st antenna radiator with at least two radiating portions, a 2nd antenna radiator, and a switching means. The substrate has a conductive area and a non-conductive area. The 2nd antenna radiator is arranged within the non-conductive area of the substrate and fed by a Radio Frequency (RF) end of the substrate. The 2nd antenna radiator is configured to operate at a band different from at least one operating band of the 1st antenna radiator, and is fed by the RF end in a position adjacent the 1st antenna radiator. The switching means switches to selectively feed the 1st antenna radiator and the 2nd antenna radiator.
US09608330B2 Superluminal antenna
A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.
US09608328B2 System and method for printing tunable antennas
The present invention is a method and system for using a 3D printer for printing various tunable antennas. In one embodiment, and exponent antenna is created by printing a board using a 3D printer in combination with vacuum metallization to create the antenna and provide engineered break points for adjusting the printed antenna for the most effective gain. In another embodiment, a spiral cavity backed antenna is printed using a combination of a 3D printer and vacuum metallization. In a third embodiment, a horn antenna is printed using a combination of a 3D printer engineered break points for adjustment and a hinged version with an actuator creating a new antenna.
US09608327B1 Magnetically boosted NFC antenna
The range of a Near Field Communications (NFC) in an electronic device is boosted by positioning a magnet near the center of a spiral loop NFC antenna. The magnet interacts with a modulated magnetic field generated by the antenna, concentrating the power of the modulated field. The magnet may be part of another component of the device, such as a magnet in the zoom mechanism of a camera. If the electronic device has a metal case, performance of the NFC antenna is further enhanced by including an opening through the metal over an axis of the magnet and a segment of the antenna's spiral loop, and by extending the opening to eliminate a parasitic current pathway around the antenna. The extended opening in the metal case significantly reduces the effect of eddy currents generated in the housing that counter the NFC magnetic field.
US09608325B2 Dynamic resource allocation in a multi-role or multi-function system
A multi-role or multi-function system operable to perform a multi-role or a multi-function and configured to dynamically allocate requisite resources for performing antenna functions during a frame interval of the multi-role or the multi-function by determining whether the antenna functions are completely performable in the frame interval, based on a time-sharing resource allocation procedure; and if not, allocating the requisite resources for performing the antenna functions during the frame interval, based on a time-sharing resource allocation procedure and an antenna-sharing resource allocation procedure.
US09608324B2 Antenna apparatus and method for controlling antenna array
An antenna apparatus and a method for controlling an antenna array are provided. The method includes the following steps. A plurality of selectable antenna configurations is provided for a directional service. One of the antenna configurations is selected for an antenna element of the antenna array according to a service criterion. The antenna apparatus includes an antenna array, a controller, and a switching unit. The antenna array includes a plurality of antenna elements. The controller is adapted to generate a control signal based on selecting one of a plurality of antenna configurations according to a service criterion for an antenna element to provide a directional service. The switching unit is adapted to configure each of the antenna elements according to the control signal.
US09608323B1 Omni-directional antenna with extended frequency range
An omni-directional antenna can include a feed disk, which can terminate at a feed disk apex, and a top element, which can include a nipple that terminates a top element apex. The feed disk and top element can be positioned so that the feed disk apex and the top element apex can be spaced-apart by a distance “d”, which can be chosen according to the desired frequency range and cable feed impedance. The feed disk and top element can also have respective bottom conical and top conical surfaces. When the feed disk and top element are positioned, the top and bottom conical surfaces can establish a respective first predefined angle relative to a horizontal plane and a second predefined angle relative to the horizontal plane, thereby extending the antenna frequency range. The predefined angles can be chosen according to the desired frequency range of operation and cable feed impedance.
US09608320B2 Method of opening a protective dome, in particular a radome, and radome equipped with a pantograph for implementation thereof
A method for opening a dome for the protection of a device to be protected, fitted in a part described as fixed, in which, in the initial position before opening, a generally plane interface separates the dome from the fixed part, is provided. The method includes connecting the dome to the fixed part by at least two independent double-link connections that are movable in rotation between the dome and the fixed part. The links in a single connection being fitted in common to the dome and to the fixed part to form overall a pantograph in the shape of an isosceles trapezium which, during opening, opens out by pivoting until maximum opening is achieved, so that the dome moves away from the fixed part via a combination of movements in translation and in rotation.
US09608316B2 Dual band PCB antenna for vehicle
A printed circuit board (PCB) is disposed to stand vertically on a main board and having a first surface and a second surface opposite to the first surface. A main antenna pattern is formed on the first surface of the PCB to operate in dual band including a low frequency band and a high frequency band. A bandwidth extension pattern is formed on the second surface of the PCB and formed to operate in the high frequency band, the bandwidth extension pattern having a coupling stub which forms an overlapping portion with a portion of the main antenna pattern, with the PCB interposed therebetween, to implement an antenna having an extended bandwidth, which operates together with the portion of the main antenna pattern in the high frequency band.
US09608315B2 Star-handle system for locking antenna to a vehicle roof
The invention relates to a roof antenna (1) for mounting on a roof (2) of a vehicle, said roof antenna (1) having a base plate (7) and an antenna cover (3) that can be connected to the base plate (7). A printed circuit board (4) with antenna elements and at least one plug connection (5) is arranged under the antenna cover (3). The base plate (7) has detent hooks (11) for pre-attaching on the roof (2) and fixing means for a final assembly, said fixing means being designed as a central dome (6) with a screw thread and a star handle (12) that interacts with the dome (6).
US09608308B2 Material including signal passing and signal blocking strands
An antenna and a material. The material can include signal blocking strands and signal passing strands.
US09608301B2 Electrochemical energy store
An electrochemical energy store including at least one anode and at least one cathode in an electrolyte, lithium peroxide being generated at the cathode by the reaction of lithium ions with oxygen. The cathode is connected to an oxygen reservoir.
US09608299B2 Battery and battery-sensing apparatuses and methods
Apparatuses and methods for determining one or more performance related characteristics (such as state of charge and/or health) of one or more electrochemical cells that store and release electrical energy are disclosed. Embodiments include pressure and/or temperature sensors that sense a change in pressure resulting from the tendency of the electrochemical cell to change volume and/or the temperature of the one or more electrochemical cells as the electrochemical cell(s) are charged or discharged. Alternate embodiments include one or more calculating members that receive pressure and/or temperature information from the pressure and/or temperature sensing members and calculate a performance related characteristic of the electrochemical cell. Still further embodiments include determining one or more performance related characteristics of an electrochemical cell by sensing the tendency of an electrochemical cell to change volume (such as by sensing pressure) and/or by sensing the temperature as the electrochemical cell is charged or discharged.
US09608293B2 Method of manufacturing lithium-ion secondary battery
A method of manufacturing a lithium-ion secondary battery proposed herein includes the following steps of: preparing a battery in which an electrode assembly is enclosed in a battery case; filling a first electrolyte solution containing a film forming agent into the battery case; charging and discharging the battery filled with the first electrolyte solution; discharging the first electrolyte solution from the battery that has been charged and discharged; and filling a second electrolyte solution containing a film forming agent at a concentration of less than 0.005 mol/L into the battery case from which the first electrolyte solution has been discharged.
US09608290B2 Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
Provided is an electrolyte solution additive including lithium difluorophosphate (LiDFP), a vinylene carbonate-based compound, and a sultone-based compound. Also, a non-aqueous electrolyte solution including the electrolyte solution additive and a lithium secondary battery including the non-aqueous electrolyte solution are provided. The lithium secondary battery including the electrolyte solution additive of the present invention may improve low-temperature output characteristics, high-temperature cycle characteristics, output characteristics after high-temperature storage, and swelling characteristics.
US09608287B2 Non-aqueous electrolytic solution, electrical storage device utilizing same, and cyclic sulfonic acid ester compound
An object of the present invention is to provide a nonaqueous electrolytic solution capable of improving electrochemical characteristics in a broad temperature range, an energy storage device using it.A nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, which comprises at least one cyclic sulfonic acid ester compound represented by the following general formula (I), and an energy storage device. (wherein R1 and R2 may be the same or different, each representing a hydrogen atom, an alkyl group in which at least one hydrogen atom may be substituted with a halogen atom, orahalogenatom; L represents a divalent hydrocarbon group of an alkylene group in which at least one hydrogen atom is substituted with OR3, or a divalent hydrocarbon group of an alkylene group in which at least one methylene (CH2) is substituted with C(═O); R3 represents a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, an alkynylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, an alkenyloxycarbonyl group, an alkynyloxycarbonyl group, an aryloxycarbonyl group, a 2,2-dioxide-1,2-oxathiolan-4-yloxycarbonyl group, a 2,2-dioxide-1,2-oxathian-4-yloxycarbonyl group, an alkanesulfonyl group, an arylsulfonyl group, a dialkylphosphoryl group, an alkoxy(alkyl)phosphoryl group, a dialkoxyphosphoryl group, —S(O)—OR4, or —C(O)CH2P(O)(OR5)2; R4 represents an alkyl group, a 2,2-dioxide-1,2-oxathiolan-4-yl group, or a 2,2-dioxide-1,2-oxathian-4-yl group; R5 represents an alkyl group; further, in R3, at least one hydrogen atom may be substituted with a halogen atom, and L may be further substituted with any of an alkyl group, a haloalkyl group or a halogen atom).
US09608284B2 Dynamically controlled heat exchange for cascading startup of fuel cell grids
A “Cascading Startup Controller” provides various techniques for quickly and efficiently initializing grids of interconnected fuel cells. In general, the Cascading Startup Controller dynamically controls heat exchange between fuel cells in the grid to produce a cascading startup of the fuel cell grid via an expanding pattern of excess thermal energy routing from hotter fuel cell stacks to cooler fuel cell stacks. This expanding pattern of excess thermal energy routing is dynamically controlled via automated valves of a heat exchange grid coupled to the fuel cell grid to decrease a total startup time for fuel cell stacks in the grid. Additional excess heat beyond that used to heat fuel cells to operational temperatures is then made available for a variety of purposes, including, but not limited to, preheating gas or other fuel for use by the fuel cells, local or community-based heating systems, heat-based energy cogeneration systems, etc.
US09608280B2 Battery temperature control device
Provided is a battery temperature control device configured to automatically heat a battery with a battery-driven heater so that the battery does not freeze at a minimum electric power consumption when the battery is out of use. The battery temperature control device predicts, based on a combination of a battery temperature and an outside air temperature, a predictive time that the battery temperature is likely to be less than a first set temperature, while the battery temperature is higher than or equal to the first set temperature at which there is no risk of freezing, and sets the predictive time as the next controller startup time, and determines whether or not the battery temperature has fallen to below the first set temperature with a control program wakeup when the predictive time has expired, and battery-drives the heater when the battery temperature fall has occurred, to heat the battery.
US09608278B2 Mixed metal oxide material of tin and titanium
A mixed metal oxide material of tin and titanium is provided for use in a fuel cell. The mixed metal oxide may form the core of a core-shell composite material, used as a catalyst support, in which a catalyst such as platinum forms the shell. The catalyst may be applied as a single monolayer, or up to 20 monolayers.
US09608275B2 Electrically conductive layer coated aluminum material and method for manufacturing the same
Provided are an electrically conductive layer coated aluminum material having properties which can withstand long term use; and a method for manufacturing the electrically conductive layer coated aluminum material. The electrically conductive layer coated aluminum material includes: an aluminum material (1); a first electrically conductive layer (2); an interposing layer (3); and a second electrically conductive layer (4). The first electrically conductive layer (2) is formed on a surface of the aluminum material (1) and includes an organic substance having electrical conductivity. The interposing layer (3) is formed between the aluminum material (1) and the first electrically conductive layer (2) and includes a carbide of aluminum. The second electrically conductive layer (4) is formed on a surface of the first electrically conductive layer (2) and includes carbon-containing particles (41). A resin is attached onto the surface of the aluminum material (1) and is dried, a carbon-containing substance is attached thereonto, and thereafter, the aluminum material (1) is placed in a space including a hydrocarbon-containing substance and is heated, thereby forming the first electrically conductive layer (2), the interposing layer (3), and the second electrically conductive layer (4).
US09608271B2 Positive electrode active material for non-aqueous electrolyte secondary battery
The present invention provides a positive electrode active material for nonaqueous electrolyte secondary battery including a lithium transition metal composite oxide represented by the following formula: LiaNixMn2-xFeyBzO4 wherein 1.00≦a≦1.30, 0.30≦x≦0.60, 0.003≦y≦0.200, and 0.003≦z≦0.200.
US09608270B2 Method for preparing lithium iron phosphate nanopowder
The present invention relates to a method for preparing a lithium iron phosphate nanopowder, including the steps of (a) preparing a mixture solution by adding a lithium precursor, an iron precursor and a phosphorus precursor in a reaction solvent, and (b) putting the mixture solution into a reactor and heating to prepare the lithium iron phosphate nanopowder under pressure conditions of 1 to 10 bar, and a lithium iron phosphate nanopowder prepared by the method. When compared to a common hydrothermal synthesis method, a supercritical hydrothermal synthesis method and a glycothermal synthesis method, a reaction may be performed under a relatively lower pressure. Thus, a high temperature/high pressure reactor is not necessary and process safety and economic feasibility may be secured. In addition, a lithium iron phosphate nanopowder having uniform particle size and effectively controlled particle size distribution may be easily prepared.
US09608267B2 Precursor for preparing of lithium composite transition metal oxide
Disclosed is a precursor for preparing a lithium composite transition metal oxide. More particularly, a transition metal precursor, including a composite transition metal compound represented by Formula 1 below, used to prepare a lithium transition metal oxide: NiaMbMn1−(a+b)(O1−x)2  (1) wherein M is at least one selected form the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and Period II transition metals; and 0.2≦a≦0.25, 0≦b≦0.1, and 0
US09608260B2 Anode active material having high density and preparation method thereof
Provided is an anode active material including lithium metal oxide particles having an internal porosity ranging from 3% to 8% and an average particle diameter (D50) ranging from 5 μm to 12 μm. According to the present invention, since the high-density lithium metal oxide particles are included, the adhesion to an anode may be significantly improved even by using the same or smaller amount of a binder that is required during the preparation of an anode slurry, and high rate characteristics of a secondary battery may be improved by decreasing the average particle diameter of the lithium metal oxide particles.
US09608259B2 Positive electrode for secondary battery
Disclosed herein are a cathode for a secondary battery, which includes a combination of one or more selected from compounds represented by Formula 1 and or more selected from compounds represented by Formula 2, as illustrated below, and a secondary battery having the same, xLi2MO3*(1−x)LiM′O2  (1) (1−u)LiFePO4*uC  (2).
US09608257B2 Rechargeable battery having upper cover
A rechargeable battery including an electrode assembly including a first electrode and a second electrode, a case that receives the electrode assembly therein, a first terminal electrically connected to the first electrode, a second terminal electrically connected to the second electrode, a cap plate coupled with an opening of the case and electrically connected to the first electrode, the cap plate including a short circuit hole, a short circuit member located in the short circuit hole, the short circuit member being deformable to electrically connect the cap plate to the second terminal, and an upper cover that covers the short circuit hole. The second terminal includes a positioning groove into which a lateral end of the upper cover is insertable, the upper cover being slidably installed with respect to the second terminal.
US09608256B2 Rechargeable battery
The described technology has been made in an effort to provide a rechargeable battery having advantages of protecting an electrode assembly and a case from arc debris generated from a cell fuse. A rechargeable battery in accordance with exemplary embodiment includes: an electrode assembly configured to perform charging and discharging operations; a case configured to accommodate the electrode assembly therein; a cap plate coupled to an opening of the case; an electrode terminal installed on the cap plate; a lead tab configured to connect the electrode assembly to the electrode terminal, and including a fuse; and a side retainer supported in an inner surface of the case to be coupled to the lead tab. The side retainer includes an exhaust guide member that is opened toward the cell fuse and a sidewall of the case.
US09608255B2 Nonaqueous electrolyte secondary battery and battery module
A nonaqueous electrolyte secondary battery, having an internal resistance of 10 mΩ or less as an alternating-current impedance value of 1 kHz, comprises a metal outer container, a nonaqueous electrolyte contained in the container, a positive electrode contained in the container, a negative electrode contained in the container, a separator interposed between the negative electrode and the positive electrode, a negative electrode lead having one end connected to the negative electrode, and a negative electrode terminal attached to the outer container so as to be connected electrically to the other end of the negative electrode lead, at least the surface of the negative electrode terminal which is connected to the negative electrode lead being formed of aluminum alloy with an aluminum purity of less than 99 wt. % containing at least one metal selected from the group consisting of Mg, Cr, Mn, Cu, Si, Fe and Ni.
US09608251B2 Battery module with electrode identifier
A battery module includes a plurality of rechargeable batteries, each rechargeable battery including a first electrode end and a second electrode end protruding outside a case of the rechargeable battery, a first top insulation member at a bottom of the first electrode end, and an identifier on the first top insulation member, a bus bar electrically connecting ends of neighboring rechargeable batteries, a bottom housing including a space, the rechargeable batteries being arranged in the space of the bottom housing, and a top cover attached to the bottom housing, the top cover including a recognizer the fits with the identifier.
US09608250B2 Wire arrangement body, busbar module and power-supply unit
A wire arrangement body includes: a wire arrangement groove portion of a groove shape that receives one or more wires; a lid portion that is rotatably connected to the wire arrangement groove portion about a first hinge and covers the wire arrangement groove portion so as to seal a groove opening of the wire arrangement groove portion; and a wire drawing piece that is rotatably connected to the lid portion about a second hinge. The wire arrangement body is provided so that a rotation axis of the second hinge crosses at a right angle to a rotation axis of the first hinge.
US09608248B2 Assembled battery and power consumption apparatus
An assembled battery includes a plurality of secondary battery cell series modules each having a plurality of secondary battery cells connected in series, wherein in each secondary battery cell series module, the secondary battery cells are connected in series by a first connection member, the secondary battery cell constituting the secondary battery cell series module and the secondary battery cell constituting the secondary battery cell series module adjacent to the above secondary battery cell series module are connected in parallel by a second connection member, the electrical resistance value of the second connection member is higher than the electrical resistance value of the first connection member, and the melting point of a material constituting the second connection member is lower than the melting point of a material constituting the first connection member.
US09608245B2 System for providing structural integrity of a battery module
A battery module includes a housing configured to receive a plurality of electrochemical cells, a skeletal frame coupled with the housing, and a framework disposed proximate to the skeletal frame. Moreover, the framework is substantially aligned with the skeletal frame and configured to transfer a force applied to the framework to the skeletal frame.
US09608244B2 Battery module having novel structure
Disclosed herein is a battery module including (a) a battery cell stack including two or more battery cells or unit modules electrically connected to each other in a state in which the battery cells or unit modules are vertically stacked, (b) a first housing to cover the entirety of the end of one side of the battery cell stack and portions of the top and bottom of the battery cell stack and (c) a second housing to cover the entirety of the end of the other side of the battery cell stack and the remainder of the top and bottom of the battery cell stack, wherein the first housing and the second housing are provided with coupling holes formed to couple the first housing and the second housing to each other, the coupling holes being horizontal coupling holes, through which coupling members can be inserted in the lateral direction.
US09608240B2 Rechargeable battery
A battery includes a case accommodating an electrode assembly, the case including an opening at one end and including at least one sidewall, the sidewall having a coupling portion adjacent to the opening, a cap plate that closes the opening, the cap plate having an upper surface, the coupling portion of the sidewall connecting the cap plate to the case, the coupling portion including a top surface of the sidewall, the cap plate overlying a first portion of the top surface of the sidewall, such that the upper surface of the cap plate is entirely above top surface of the sidewall, and a welding bead contacting the cap plate and a second portion of the top surface of the sidewall, the second portion of the top surface being between the first portion and an outer surface of the sidewall.
US09608238B2 Display panel including multilayer diffusion barrier
Disclosed is a display panel including: a flexible substrate; a buffer layer disposed on the flexible substrate; a pixel disposed on the buffer layer and comprising a thin film transistor and an image device connected to the thin film transistor; a barrier layer disposed on the flexible substrate to protect the pixel from a substance from the flexible substrate; and a diffusion prevention layer disposed between the barrier layer and the buffer layer and configured to prevent hydrogen generated from the barrier layer from being diffused into the thin film transistor.
US09608231B2 Display apparatus
Provided is a display apparatus. The display apparatus includes a display panel, a back cover disposed on a rear side of the display panel, the back cover having a curved shape of which both ends protrude forward, and a fixing part fixing the back cover to maintain the curved shape of the back cover. The display panel is curved in a shape corresponding to that of the back cover.
US09608229B2 Organic EL lighting panel substrate, organic EL lighting panel, and organic EL lighting device
Disclosed is an organic EL lighting panel substrate that can improve the uniformity in luminance and chromaticity in an organic EL lighting panel plane and can suppress deterioration in reliability due to disconnection and the like caused by an auxiliary electrode. The organic EL lighting panel substrate (10) includes: a light-transmitting substrate (11); and a transparent electrode (12). The transparent electrode (12) is arranged on one surface of the light-transmitting substrate (11). The organic EL lighting panel substrate (10) further includes an auxiliary electrode (13) electrically connected to the transparent electrode (12). The light-transmitting substrate (11) has a groove (11c), and the auxiliary electrode (13) is arranged in the groove (11c) of the light-transmitting substrate (11). The auxiliary electrode (13) is formed of a material having a volume resistivity at 20° C. in the range from 1.59×10−8 to 13×10−8 Ω·m.
US09608228B2 Organic light-emitting device with transparent electrode having both conductivity and optical transparency
An organic light-emitting device includes an internal light extraction layer including a scattering layer and a smooth layer; and a transparent electrode including an underlying layer and an electrode layer, wherein the transparent electrode is provided on the smooth layer side of the internal light extraction layer, the internal light extraction layer has a refractive index in the range of 1.7 to less than 2.5, and the electrode layer includes silver or an alloy including silver as a main component.
US09608227B2 Organic light emitting diode display
An organic light emitting diode (OLED) display includes: a thin film transistor on the substrate; a first electrode electrically connected to the thin film transistor; a hole injection layer on the first electrode; an emission layer on the hole injection layer; an electron injection layer on the emission layer; a first intermediate layer on the electron injection layer; and a second electrode on the first intermediate layer.
US09608226B2 Method for manufacturing transparent electrode
A method for forming a transparent electrode includes a step of forming a thin metal wire on a transparent substrate; and a step of forming a transparent conductive layer on the transparent substrate and the thin metal wire. The step of forming the transparent conductive layer is a step of forming the transparent conductive layer by applying an application liquid onto the transparent substrate and the thin metal wire by printing. The application liquid is composed of a conductive polymer, a water-soluble binder having a structural unit represented by the following general formula (I), a polar solvent having a log P value of −1.50 to −0.45, and 5.0 to 25 mass % of a glycol ether.
US09608219B2 Semiconductor structure and method for its production
The present invention relates to a semiconductor structure and a method for its production, the semiconductor structure comprising at least one conductor region and at least two semiconductor regions, which semiconductor regions are partly separated by the at least one conductor region. The at least one conductor region comprises openings extending between the semiconductor regions which are partly separated by the respective conductor region. The semiconductor regions comprise at least one organic semiconductor material having a specific HOMO energy level, in particular a DPP polymer. The conductor region comprises a conductive material having a specific work function, said combination of specific energy level and work function allowing for a simple preparation of the conductive region. The invention further relates to a method for providing such a semiconductor structure.
US09608218B2 N-type thin film transistor
An N-type thin film transistor includes an insulating substrate, a semiconductor carbon nanotube layer, an MgO layer, a functional dielectric layer, a source electrode, a drain electrode, and a gate electrode. The semiconductor carbon nanotube layer is located on the insulating substrate. The source electrode and the drain electrode electrically connect the semiconductor carbon nanotube layer, wherein the source electrode and the drain electrode are spaced from each other, and a channel is defined in the semiconductor carbon nanotube layer between the source electrode and the drain electrode. The MgO layer is located on the semiconductor carbon nanotube layer. The functional dielectric layer covers the MgO layer. The gate electrode is located on the functional dielectric layer.
US09608214B2 Integrated conductive substrate, and electronic device employing same
Provided are an integrated conductive substrate simultaneously serving as a substrate and an electrode, and an electronic device using the same. The integrated conductive substrate includes a metal layer composed of a non-ferrous metal, which has a first surface having a first root mean square roughness, and a semiconductor layer containing a semiconductor material, which has a second surface having a second root mean square roughness and is formed on the first surface. Here, the semiconductor layer includes a semiconductor-type planarization layer formed by a solution process using at least one of the semiconductor material and a precursor of the semiconductor material to planarize the first surface of the metal layer, and the second root mean square roughness is smaller than the first root mean square roughness.
US09608211B2 Heterocyclic compound and organic light-emitting diode including the same
A heterocyclic compound and an organic light-emitting diode including the same, the heterocyclic compound being represented by Formula 1 below:
US09608209B2 Organic electroluminescent element
An organic EL device includes a pair of electrodes and an organic compound layer between pair of electrodes. The organic compound layer includes an emitting layer including a first material, a second material and a third material, in which singlet energy EgS(H) of the first material, singlet energy EgS(H2) of the second material, and singlet energy EgS(D) of the third material satisfy a specific relationship.
US09608208B2 Compounds for electronic devices
The present invention relates to a compound of a formula (I), (II) or (III), to the use of this compound in an electronic device, and to an electronic device comprising one or more compounds of the formula (I), (II) or (III). The invention furthermore relates to a process for the preparation of a compound of the formula (I), (II) or (III) and to a formulation comprising one or more compounds of the formula (I), (II) or (III).
US09608203B2 Method for manufacturing memory device and method for manufacturing metal wiring
A method for manufacturing a memory device of an embodiment includes: forming on a substrate a block copolymer layer which contains a first polymer and a second polymer having lower surface energy than that of the first polymer; performing thermal treatment on the block copolymer layer, to separate the block copolymer layer such that a first phase containing the first polymer and extending in the first direction and a second phase containing the second polymer and extending in the first direction are alternately arrayed; selectively forming on the first phase a first metal wiring layer extending in the first direction; forming on the first metal wiring layer a memory layer where resistance changes by application of a voltage; and forming on the memory layer a second metal wiring layer which extends in a second direction intersecting in the first direction.
US09608202B1 Provision of structural integrity in memory device
Embodiments of the present disclosure are directed towards techniques to provide structural integrity for a memory device comprising a memory array. In one embodiment, the device may comprise a memory array having at least a plurality of wordlines disposed in a memory region of a die, and a first fill layer deposited between adjacent wordlines of the plurality of wordlines in the memory region, to provide structural integrity for the memory array. At least a portion of a periphery region of the die adjacent to the memory region may be substantially filled with a second fill layer that is different than the first fill layer. Other embodiments may be described and/or claimed.
US09608199B1 Magnetic memory device
According to one embodiment, a magnetic memory device includes a stack structure including a first magnetic layer variable in magnetization direction, a second magnetic layer fixed in magnetization direction, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer, the first magnetic layer including a first layer, a second layer, and a third layer between the first layer and the second layer and containing magnesium (Mg), iron (Fe), and oxygen (O), the second layer being between the nonmagnetic layer and the third layer, wherein a thickness of the second layer is greater than that of the first layer, and the thickness of the first layer is greater than that of the third layer.
US09608198B2 Magnetic tunnel junction device
The output voltage of an MRAM is increased by means of an Fe(001)/MgO(001)/Fe(001) MTJ device, which is formed by microfabrication of a sample prepared as follows: A single-crystalline MgO (001) substrate is prepared. An epitaxial Fe(001) lower electrode (a first electrode) is grown on a MgO(001) seed layer at room temperature, followed by annealing under ultrahigh vacuum. A MgO(001) barrier layer is epitaxially formed on the Fe(001) lower electrode (the first electrode) at room temperature, using a MgO electron-beam evaporation. A Fe(001) upper electrode (a second electrode) is then formed on the MgO(001) barrier layer at room temperature. This is successively followed by the deposition of a Co layer on the Fe(001) upper electrode (the second electrode). The Co layer is provided so as to increase the coercive force of the upper electrode in order to realize an antiparallel magnetization alignment.
US09608197B2 Memory cells, methods of fabrication, and semiconductor devices
A magnetic cell includes an attracter material proximate to a magnetic region (e.g., a free region). The attracter material is formulated to have a higher chemical affinity for a diffusible species of a magnetic material, from which the magnetic region is formed, compared to a chemical affinity between the diffusible species and at least another species of the magnetic material. Thus, the diffusible species is removed from the magnetic material to the attracter material. The removal accommodates crystallization of the depleted magnetic material. The crystallized, depleted magnetic material enables a high tunnel magnetoresistance, high energy barrier, and high energy barrier ratio. The magnetic region may be formed as a continuous magnetic material, thus enabling a high exchange stiffness, and positioning the magnetic region between two magnetic anisotropy-inducing oxide regions enables a high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.
US09608196B2 Storage element and storage device
Provided is an information storage element comprising a first layer, an insulation layer coupled to the first layer, and a second layer coupled to the insulation layer opposite the first layer. The first layer is capable of storing information according to a magnetization state of a magnetic material. The insulation layer includes a non-magnetic material. The second layer includes a fixed magnetization. In an embodiment, the first layer has a transverse length that is approximately 45 nm or less and a volume that is approximately 2,390 nm3 or less. In a further embodiment, the second layer includes MgO and is capable of allowing electrons passing through the second layer reach the first layer before the electrons enter a non-polarized state.
US09608194B2 Piezoelectric device and production method for green compact being molded body of piezoelectric device prior to sintering
A plurality of piezoelectric device corresponding parts including a green main body part and a green top surface electrode formed on a top surface of the green main body part are placed on a tabular substrate at intervals. Next, a tabular elastic body is pressed from above to the plurality of piezoelectric device corresponding parts, so as to form an inclined part declined toward an outer side in an edge of a top surface of each piezoelectric device corresponding part, and to form a circular arc part at an intersection between the inclined part and a side surface of the piezoelectric device corresponding part. Next, a green side surface electrode is formed on the side surface of each piezoelectric device corresponding part so that the green side surface electrode is connected to the green top surface electrode. Next, this molded body is sintered so that a piezoelectric device is obtained.
US09608192B2 Temperature compensated acoustic resonator device
An acoustic resonator device comprises: a substrate comprising a cavity or an acoustic mirror; a first electrode disposed over the substrate; a piezoelectric layer disposed over the first electrode; and a second electrode disposed over the piezoelectric layer. The first electrode or the second electrode, or both, are made of an electrically conductive material having a positive temperature coefficient.
US09608190B2 Thermoelectric conversion material, method for producing same, and thermoelectric conversion module
The invention provides a thermoelectric conversion material having a low thermal conductivity and an improved figure of merit and a production method for the material, and also provides a thermoelectric conversion module. The thermoelectric conversion material has, on a porous substrate having microscopic pores, a thermoelectric semiconductor layer formed of a thermoelectric semiconductor material, wherein the porous substrate has a polymer layer (B) on a plastic film (A) and the microscopic pores are formed in the polymer layer (B) and in a part of the plastic film (A). The production method for the thermoelectric conversion material comprises a substrate formation step of forming a porous substrate including a step 1, a step 2 and a step 3, and comprises a film formation step of forming a thermoelectric semiconductor layer through film formation of a thermoelectric semiconductor material on the porous substrate. The thermoelectric conversion module uses the thermoelectric conversion material.
US09608189B2 Thermoelectric generator unit and method of testing the thermoelectric generator unit
A thermoelectric generator unit according to this disclosure includes a plurality of tubular thermoelectric generators, each of which generates electromotive force based on a difference in temperature between the inner and outer peripheral surfaces. The unit further includes a plurality of electrically conductive members providing electrical connection for the generators and a container housing the generators inside. The container includes a shell surrounding the generators and a pair of plates, at least one of which has a plurality of openings and channels. Each channel houses an electrically conductive member. The generators are electrically connected together in series via the electrically conductive member. At least one of the channels has an interconnection which connects at least two of the openings together and a testing hole portion. The testing hole portion runs from the interconnection through an outer edge of the at least one plate.
US09608179B2 SMD type LED package device, method for manufacturing the same, and light-emitting apparatus
Disclosed is a SMD type LED package device, a method for manufacturing the same, and a light-emitting apparatus, wherein the surface-mount-device (SMD) type light-emitting diode (LED) package device comprises an assembly of an LED chip, two metal supporting frames, and a packaging body. The two metal supporting frames of the assembly are spaced apart from each other and disposed in parallel along the first axis. Each metal supporting frame has a first end electrically connected to the LED chip and a second end opposite to the first end. The packaging body has a lens portion and a supporting portion, which is integrally formed with the packaging body and covers the LED chip and the first ends of the metal supporting frames.
US09608172B2 Optoelectronic semiconductor component
In at least one embodiment, the optoelectronic semiconductor component contains at least one chip support having electrical contact devices and also at least one optoelectronic semiconductor chip that is set up to produce radiation and that is mechanically and electrically mounted on the chip support. A component support is attached to the chip support. The semiconductor chip is situated in a recess in the component support. The component support is electrically insulated from the chip support and from the semiconductor chip. The component support is formed from a metal or from a metal alloy. On a top that is remote from the chip support, the component support is provided with a reflective coating.
US09608169B2 Semiconductor light-emitting device and method for fabricating the same
A semiconductor light-emitting device is provided. The semiconductor light-emitting device may include a light-emitting structure, an electrode, an ohmic layer, an electrode layer, an adhesion layer, and a channel layer. The light-emitting structure may include a compound semiconductor layer. The electrode may be disposed on the light-emitting structure. The ohmic layer may be disposed under the light-emitting structure. The electrode layer may include a reflective metal under the ohmic layer. The adhesion layer may be disposed under the electrode layer. The channel layer may be disposed along a bottom edge of the light-emitting structure.
US09608166B2 Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
A method of forming an ohmic contact for a semiconductor device can be provided by thinning a substrate to provide a reduced thickness substrate and providing a metal on the reduced thickness substrate. Laser annealing can be performed at a location of the metal and the reduced thickness substrate at an energy level to form a metal-substrate material to provide the ohmic contact thereat.
US09608163B2 Nano-structure semiconductor light emitting device
A nano-structure semiconductor light emitting device includes a base layer formed of a first conductivity type semiconductor, and a first insulating layer disposed on the base layer and having a plurality of first openings exposing partial regions of the base layer. A plurality of nanocores is disposed in the exposed regions of the base layer and formed of the first conductivity-type semiconductor. An active layer is disposed on surfaces of the plurality of nanocores and positioned above the first insulating layer. A second insulating layer is disposed on the first insulating layer and has a plurality of second openings surrounding the plurality of nanocores and the active layer disposed on the surfaces of the plurality of nanocores. A second conductivity-type semiconductor layer is disposed on the surface of the active layer positioned to be above the second insulating layer.
US09608158B2 Proximity sensor having light-blocking structure in leadframe and method of making same
A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound and forms walls rising from the frame of fingers to create an enclosed cavity for the LED. The pads, leads, and fingers connected to a board using a layer of solder for attaching the proximity sensor.
US09608157B2 Photon counting semiconductor detectors
A radiation detector (10) includes a semiconductor element (1) for generating positive holes and electrons, a cathode (2) formed on a first surface of the semiconductor element (1) and a plurality of segmented anodes (3) formed on a second surface of the semiconductor element (1), the second surface being in opposed relation to the first surface. Additionally, a plurality of segmented steering electrodes (5a) are positioned adjacent the plurality of segmented anodes (3). Moreover, a plurality of doping atoms are located above at least a portion of the plurality of segmented anodes (3) for reducing the voltage difference between the plurality of segmented anodes (3) and the plurality of segmented steering electrodes (5a).
US09608156B2 Assembly and mounting of solar cells on space panels
The present disclosure provides a method of fabricating a solar cell panel in an automated process by applying an adhesive pattern to a support, positioning a solar cell assembly over the pattern, and applying pressure to adhere the assembly to the support.
US09608151B2 Solar shield
A solar shield can include a body and at least one fastening feature. The body can have a length and a width, where each of the length and the width is at least large enough to cover a top surface of at least one of a number of PV solar panels. The at least one fastening feature can be mechanically coupled to the body. The at least one fastening feature, when enabled, secures the body to the top surface of the at least one of the plurality of PV solar panels. The body can be rigid or flexible. The at least one fastening feature can be, at least, a clip, a clamp, or a strap.
US09608149B2 Solar cell module and method for producing the same
This solar cell module (1) comprises a plurality of solar cell arrays (11). Each solar cell array (11) includes a plurality of spherical semiconductor elements (20) arranged in a row, at least a pair of bypass diodes (40), and a pair of lead members (14) that connect the plurality of spherical semiconductor elements (20) and the plurality of bypass diodes (40) in parallel. Each of the lead members (14) includes one or plural lead strings (15) to which the plurality of spherical semiconductor elements (20) are electrically connected and having a width less than or equal to the radius of the spherical semiconductor element (20), and plural lead pieces (16) formed integrally with the lead strings (15) at least at both end portions of the lead member (14), on which the bypass diodes (40) are electrically connected in reverse parallel to the spherical semiconductor elements (20), and having width larger than or equal to the width of the bypass diodes (40).
US09608147B2 Photoconductor and image sensor using the same
A photoconductor includes a first semiconductor layer, a second semiconductor layer disposed on the first semiconductor layer, a first electrode connected to a first lateral side of the first semiconductor layer and the second semiconductor layer, and a second electrode connected to a second lateral side of the first semiconductor layer and the second semiconductor layer, where the first semiconductor layer and the second semiconductor layer form a type II junction or a quasi-type-II junction.
US09608146B2 Method for fabrication of copper-indium gallium oxide and chalcogenide thin films
A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
US09608143B2 Composition for forming N-type diffusion layer, method of forming N-type diffusion layer, and method of producing photovoltaic cell
The composition for forming an n-type diffusion layer in accordance with the present invention contains a glass powder and a dispersion medium, in which the glass powder includes an donor element and a total amount of the life time killer element in the glass powder is 1000 ppm or less. An n-type diffusion layer and a photovoltaic cell having an n-type diffusion layer are prepared by applying the composition for forming an n-type diffusion layer, followed by a thermal diffusion treatment.
US09608138B2 Solar cell module
In the solar cell module including a plurality of solar cells interconnected with wiring members, each of the solar cells includes a plurality of front-side finger electrodes that are disposed on a light-receiving surface of the solar cell and connected with tabs and a plurality of rear-side finger electrodes that are disposed on a rear surface of the solar cell and connected with tabs. Rear-side auxiliary electrode sections are arranged in regions, which is wider than the front-side finger electrodes, on the rear surface opposite to regions where the front-side finger electrodes are present.
US09608129B1 Semiconductor device and Zener diode having branch impurity regions
A semiconductor device includes a substrate, a well region of a first-conductivity type disposed in the substrate, a first impurity region of a second-conductivity type and having a plurality of branches disposed in the well region, a second impurity region of the first-conductivity type and having a plurality of branches, and a third impurity region of the first-conductivity type disposed in the well region. The second-conductivity type is opposite to the first-conductivity type. A portion of the first impurity region overlaps a portion of the third impurity region. The plurality of branches of the second impurity region are disposed in the third impurity region, and a portion of the third impurity region is disposed between the first impurity region and the second impurity region.
US09608125B2 Display substrate, its testing method and its manufacturing method
The present disclosure provides a display substrate, its testing method and its manufacturing method. A first testing terminal is connected to a gate electrode of a first TFT, a second testing terminal is connected to a source electrode of the first TFT and a drain electrode of a second TFT, a third testing terminal is connected to a gate electrode of the second TFT, and a fourth testing terminal is connected to a drain electrode of the first TFT and a source electrode of the second TFT.
US09608124B2 Semiconductor device
Provided is a transistor which has favorable transistor characteristics and includes an oxide semiconductor, and a highly reliable semiconductor device which includes the transistor including the oxide semiconductor. In the semiconductor device including the transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode are stacked in this order, a sidewall insulating film is formed along side surfaces and a top surface of the gate electrode, and the oxide semiconductor film is subjected to etching treatment so as to have a cross shape having different lengths in the channel length direction or to have a larger length than a source electrode and a drain electrode in the channel width direction. Further, the source electrode and the drain electrode are formed in contact with the oxide semiconductor film.
US09608123B2 Method for manufacturing semiconductor device
In a semiconductor device including a transistor in which an oxide semiconductor layer, a gate insulating layer, and a gate electrode layer on side surfaces of which sidewall insulating layers are provided are stacked in this order, a source electrode layer and a drain electrode layer are provided in contact with the oxide semiconductor layer and the sidewall insulating layers. In a process for manufacturing the semiconductor device, a conductive layer and an interlayer insulating layer are stacked to cover the oxide semiconductor layer, the sidewall insulating layers, and the gate electrode layer. Then, parts of the interlayer insulating layer and the conductive layer over the gate electrode layer are removed by a chemical mechanical polishing method, so that a source electrode layer and a drain electrode layer are formed. Before formation of the gate insulating layer, cleaning treatment is performed on the oxide semiconductor layer.
US09608117B2 Semiconductor devices including a finFET
A semiconductor device includes an active fin structure extending in a first direction, the active fin structure including protruding portions divided by a recess, a plurality of gate structures extending in a second direction crossing the first direction and covering the protruding portions of the active fin structure, a first epitaxial pattern in a lower portion of the recess between the gate structures, a second epitaxial pattern on a portion of the first epitaxial pattern, the second epitaxial pattern contacting a sidewall of the recess, and a third epitaxial pattern on the first and second epitaxial patterns, the third epitaxial pattern filling the recess. The first epitaxial pattern includes a first impurity region having a first doping concentration, the second epitaxial pattern includes a second impurity region having a second doping concentration lower than the a first doping concentration, and the third epitaxial pattern includes a third impurity region having a third doping concentration higher than the second doping concentration. The semiconductor device may have good electrical characteristics.
US09608115B2 FinFET having buffer layer between channel and substrate
FinFET and fabrication method thereof. The FinFET fabrication method includes providing a semiconductor substrate; forming a plurality of trenches in the semiconductor substrate, forming a buffer layer on the semiconductor substrate by filling the trenches and covering the semiconductor substrate, and forming a fin body by etching the buffer layer. The FinFET fabrication method may further includes forming a insulation layer on the buffer layer around the fin body; forming a channel layer on the surface of the fin body; forming a gate structure across the fin body; forming source/drain regions in the channel layer on two sides of the gate structure; and forming an electrode layer on the source/drain regions.
US09608110B2 Methods of forming a semiconductor circuit element and semiconductor circuit element
The present disclosure provides methods of forming a semiconductor circuit element and a semiconductor circuit element, wherein the semiconductor circuit element includes a first semiconductor device with a first gate structure disposed over a first active region of a semiconductor substrate and a second semiconductor device with a second gate structure disposed over a second active region of the semiconductor substrate, the first gate structure comprising a ferroelectric material buried into the first active region before a gate electrode material is formed on the ferroelectric material and the second gate structure comprising a high-k material different from the ferroelectric material.
US09608108B2 Semiconductor device and method for manufacturing the same
A semiconductor substrate has a main surface with an n type offset region having a trench portion formed of a plurality of trenches extending in a direction from an n+ drain region toward an n+ source region. The plurality of trenches each have a conducting layer therein extending in the main surface in the direction from the n+ drain region toward the n+ source region.
US09608107B2 Method and apparatus for MOS device with doped region
A semiconductor device is provided. The device may include a semiconductor layer; and a doped well disposed in the semiconductor layer and having a first conductivity type. The device may also include a drain region, a source region, and a body region, where the source and body regions may operate in different voltages. Further, the device may include a first doped region having a second conductivity type, the first doped region disposed between the source region and the doped well; and a second doped region having the first conductivity type and disposed under the source region. The device may include a third doped region having the second conductivity type and disposed in the doped well; and a fourth doped region disposed above the third doped region, the fourth doped region having the first conductivity type. Additionally, the device may include a gate and a field plate.
US09608106B2 Semiconductor device and method for forming the same
A semiconductor device and a method for forming the same are disclosed. The semiconductor device includes a first junction region formed at the bottom of a vertical pillar, a bit line formed below the first junction region, and an insulation film formed below the bit line. As a result, the 4F2-sized semiconductor device is provided and the bit line is configured in the form of a laminated structure of a conductive layer and a polysilicon layer, so that bit line resistance is reduced. In addition, the semiconductor device reduces ohmic contact resistance by forming silicide between the conductive layer and the polysilicon layer, and includes an insulation film at a position between the semiconductor substrate and the bit line, resulting in reduction of bit line capacitance. Therefore, the sensing margin of the semiconductor device is increased and the data retention time is also increased.
US09608098B2 Tunable FIN-SCR for robust ESD protection
One embodiment of the present invention relates to a silicon-controlled-rectifier (SCR). The SCR includes a longitudinal silicon fin extending between an anode and a cathode and including a junction region there between. One or more first transverse fins traverses the longitudinal fin at one or more respective tapping points positioned between the anode and the junction region. Other devices and methods are also disclosed.
US09608095B2 Thermoelectric conversion element and manufacturing method for the same
Concerning a thermoelectric conversion element, it is desired to provide a new spin current to charge current conversion material. A thermoelectric conversion element includes a magnetic layer possessing in-plane magnetization, and an electromotive layer magnetically coupled to the magnetic layer. The electromotive layer is formed of a carbon material, possesses anisotropy of electric conductivity, and further includes an additive.
US09608092B2 Method of manufacturing a semiconductor device having a rectifying junction at the side wall of a trench
A method for forming a field-effect semiconductor device includes: providing a wafer having a main surface and a first semiconductor layer of a first conductivity type; forming at least two trenches from the main surface partly into the first semiconductor layer so that each of the at least two trenches includes, in a vertical cross-section substantially orthogonal to the main surface, a side wall and a bottom wall, and that a semiconductor mesa is formed between the side walls of the at least two trenches; forming at least two second semiconductor regions of a second conductivity type in the first semiconductor layer so that the bottom wall of each of the at least two trenches adjoins one of the at least two second semiconductor regions; and forming a rectifying junction at the side wall of at least one of the at least two trenches.
US09608090B2 Method for fabricating semiconductor device having fin structure that includes dummy fins
A method for fabricating semiconductor device is disclosed. First, a substrate, and a sacrificial mandrel is formed on the substrate, in which the sacrificial mandrel includes a first side and a second side with the indentation. Next, a spacer is formed adjacent to the first side and the second side of the sacrificial mandrel, the sacrificial mandrel is removed, and the spacer is used to remove part of the substrate for forming a fin-shaped structure and a dummy fin-shaped structure.
US09608088B2 Hybrid active-field gap extended drain MOS transistor
An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
US09608087B2 Integrated circuits with spacer chamfering and methods of spacer chamfering
Semiconductor devices and methods for forming the devices with spacer chamfering. One method includes, for instance: obtaining a wafer with at least one source, at least one drain, and at least one fin; forming at least one sacrificial gate with at least one barrier layer; forming a first set of spacers adjacent to the at least one sacrificial gate; forming at least one second set of spacers adjacent to the first set of spacers; and etching to remove a portion of the first set of spacers above the at least one barrier layer to form a widened opening. An intermediate semiconductor device is also disclosed.
US09608086B2 Metal gate structure and method of formation
Embodiments of the present invention provide a metal gate structure and method of formation. In the replacement metal gate (RMG) process flow, the gate cut process is performed after the metal gate is formed. This allows for a reduced margin between the end of the gate and an adjacent fin. It enables a thinner sacrificial layer on top of the dummy gate, since the gate cut step is deferred. The thinner sacrificial layer improves device quality by reducing the adverse effect of shadowing during implantation. Furthermore, in this process flow, the work function metal layer is terminated along the semiconductor substrate by a capping layer, which reduces undesirable shifts in threshold voltage that occurred in prior methods and structures.
US09608085B2 Predisposed high electron mobility transistor
A predisposed high electron mobility transistor (HEMT) is disclosed. The predisposed HEMT includes a buffer layer, a HEMT channel layer on the buffer layer, a first HEMT barrier layer over the HEMT channel layer, and a HEMT cap layer on the first HEMT barrier layer. The HEMT cap layer has a drain region, a source region, and a gate region. Further, the HEMT cap layer has a continuous surface on the drain region, the source region, and the gate region. When no external voltage is applied between the source region and the gate region, the gate region either depletes carriers from the HEMT channel layer or provides carriers to the HEMT channel layer, thereby selecting a predisposed state of the predisposed HEMT.
US09608084B2 Emitter contact epitaxial structure and ohmic contact formation for heterojunction bipolar transistor
Embodiments of the present disclosure describe apparatuses, methods, and systems of an integrated circuit (IC) device. The IC device includes a diffusion control layer as part of an emitter epitaxial structure. The IC device may utilize a common metallization scheme to simultaneously form an emitter contact and a base contact. Other embodiments may also be described and/or claimed.
US09608080B2 Method and structure to reduce parasitic capacitance in raised source/drain silicon-on-insulator devices
An aspect of the invention is directed to a silicon-on-insulator device including a silicon layer on an insulating layer on a substrate; a raised source and a raised drain on the silicon layer; a gate between the raised source and the raised drain; a first spacer separating the gate from the raised source and substantially covering a first sidewall of the gate; a second spacer separating the gate from the raised drain and substantially covering a second sidewall of the gate; and a low-k layer over the raised source, the raised drain, the gate and each of the first spacer and the second spacer; and a dielectric layer over the low-k layer.
US09608075B1 III-nitride semiconductor device with doped epi structures
A compound semiconductor device includes a first III-nitride buffer layer doped with carbon and/or iron, a second III-nitride buffer layer above the first III-nitride buffer layer and doped with carbon and/or iron, a first III-nitride device layer above the second III-nitride buffer layer, and a second III-nitride device layer above the first III-nitride device layer and having a different band gap than the first III-nitride device layer. A two-dimensional charge carrier gas arises along an interface between the first and second III-nitride device layers. The first III-nitride buffer layer has an average doping concentration of carbon and/or iron which is greater than that of the second III-nitride buffer layer. The second III-nitride buffer layer has an average doping concentration of carbon and/or iron which is comparable to or greater than that of the first III-nitride device layer. A method of manufacturing the compound semiconductor device is described.
US09608068B2 Substrate with strained and relaxed silicon regions
A method is provided for forming an integrated circuit. A trench is formed in a substrate. Subsequently, a silicon-germanium feature is formed in the trench, and an etch stop layer is formed on the substrate and on the silicon-germanium feature. Lastly, a silicon device layer is formed on the etch stop layer. The silicon device layer has a tensily-strained region overlying the silicon-germanium feature. Regions of the silicon device layer not overlying the silicon-germanium feature are less strained than the tensily-strained region. The tensily-strained region of the silicon device layer may be further processed into channel features in n-type field effect transistors with improved charge carrier mobilities and device drive currents.
US09608067B2 Hybrid aspect ratio trapping
A semiconductor structure includes a material stack located on a surface of a semiconductor substrate. The material stack includes, from bottom to top, a silicon germanium alloy portion that is substantially relaxed and defect-free and a semiconductor material pillar that is defect-free. A dielectric material structure surrounds sidewalls of the material stack and is present on exposed portions of the semiconductor substrate.
US09608065B1 Air gap spacer for metal gates
A method of forming a semiconductor device that includes forming a trench adjacent to a gate structure to expose a contact surface of one of a source region and a drain region. A sacrificial spacer may be formed on a sidewall of the trench and on a sidewall of the gate structure. A metal contact may then be formed in the trench to at least one of the source region and the drain region. The metal contact has a base width that is less than an upper surface width of the metal contact. The sacrificial spacer may be removed, and a substantially conformal dielectric material layer can be formed on sidewalls of the metal contact and the gate structure. Portions of the conformally dielectric material layer contact one another at a pinch off region to form an air gap between the metal contact and the gate structure.
US09608061B2 Fin field-effct transistors
A method for fabricating fin field-effect transistors includes providing a semiconductor substrate; and forming a plurality of fins on a surface of the semiconductor substrate. The method also includes forming dummy gates formed over side and top surfaces of the fins; forming a precursor material layer with a surface higher than top surfaces of the fins to cover the dummy gates and the semiconductor substrate; performing a thermal annealing process to convert the precursor material layer into a dielectric layer having a plurality of voids; and planarizing the dielectric layer to expose the top surfaces of the dummy gates. Further, the method also includes performing a post-treatment process using oxygen-contained de-ionized water on the planarized dielectric layer to eliminate the plurality of voids formed in the dielectric layer; removing the dummy gates to form trenches; and forming a high-K metal gate structure in each of the trenches.
US09608058B1 Semiconductor device
A semiconductor device includes a SiC layer that has a first surface and a second surface, a first electrode in contact with the first surface, a first SiC region of a first conductivity type in the SiC layer, a second SiC region of a second conductivity type in the SiC layer and surrounding a portion of the first SiC region, a third SiC region of the second conductivity type in the SiC layer and surrounding the second SiC region, the third SiC region having an impurity concentration of the second conductivity type lower than that of the second SiC region, and a fourth SiC region of the second conductivity type in the SiC layer between the second SiC region and the third Sic region, the fourth SiC region having an impurity concentration of the second conductivity type higher than that of the second SiC region.
US09608054B2 Semiconductor device and method for fabricating the same
A semiconductor device and a method of fabricating the same include a semiconductor substrate, a high-k dielectric pattern and a metal-containing pattern sequentially being stacked on the semiconductor substrate, a gate pattern including poly semiconductor and disposed on the metal-containing pattern, and a protective layer disposed on the gate pattern, wherein the protective layer includes oxide, nitride and/or oxynitride of the poly semiconductor.
US09608053B2 EL display panel, power supply line drive apparatus, and electronic device
Disclosed herein is an electroluminescence display panel including a pixel circuit, a signal line, a scan line, a drive power supply line, a common power supply line, a power supply line drive circuit, a high-potential power supply line, and a low-potential power supply line.
US09608050B2 Organic light emitting diode display utilizing a curved semiconductor layer
An organic light emitting diode (OLED) display including: a substrate; a semiconductor layer disposed on the substrate and including a switching semiconductor layer and a driving semiconductor layer connected to the switching semiconductor layer; a first gate insulating layer disposed on the semiconductor layer; a switching gate electrode and a driving gate electrode disposed on the first gate insulating layer and respectively overlapping with the switching semiconductor layer and the driving semiconductor layer; a second gate insulating layer disposed on the switching gate electrode and the driving gate electrode; a driving voltage line configured to transmit a driving voltage and disposed on the second gate insulating layer; an interlayer insulating layer disposed on the driving voltage line and the second gate insulating layer; and a data line configured to transmit a data signal and disposed on the interlayer insulating layer.
US09608049B2 Organic light emitting diode display
An organic light emitting diode (OLED) display includes a flexible substrate, a barrier layer disposed on the flexible substrate, and an organic light emitting diode disposed on the barrier layer. The barrier layer includes a plurality of metal layers and a plurality of insulation layers in which the metal layers and the insulation layers are alternatively stacked with each other on the flexible substrate.
US09608048B2 Touch display device and method for manufacturing the same
A touch display device and a method for manufacturing the same are provided. The touch display device includes a first substrate, a second substrate disposed opposite to the first substrate, and at least one touch signal transmission unit. The touch signal transmission unit includes: a first conductive layer located above a side of the first substrate facing the second substrate; a second conductive layer located above a side of the second substrate facing the first substrate; a touch signal transmission layer, located between the second conductive layer and the second substrate and electrically connected to the first conductive layer via the second conductive layer; and a spacer located between the first substrate and the second substrate, where a vertical projection of the spacer onto the first substrate at least partially overlaps vertical projections of the first conductive layer and the second conductive layer onto the first substrate.
US09608044B2 OLED display panel, method for manufacturing the same, display device and electronic product
The present disclosure provides an OLED display panel, which sequentially includes: a first light emitting layer covering at least two adjacent sub-pixels including the first sub-pixel; a charge blocking layer covering the second sub-pixel and the third sub-pixel; a second light emitting layer covering the first sub-pixel and the second sub-pixel; a third light emitting layer covering at least two adjacent sub-pixels including the third sub-pixel. LUMO energy levels of a main material of the charge blocking layer, a main light emitting material of the third light emitting layer, a main light emitting material of the second light emitting layer and a main light emitting material of the first light emitting layer are sequentially decreased; or, HOMO energy levels of the main light emitting materials of the first light emitting layer, the second light emitting layer, the third light emitting layer and the charge blocking layer are sequentially decreased.
US09608043B2 Method of operating memory array having divided apart bit lines and partially divided bit line selector switches
A non-volatile data storage device comprises pairs of immediately adjacent and isolated-from-one-another local bit lines that are independently driven by respective and vertically oriented bit line selector devices. The isolation between the immediately adjacent and isolated-from-one-another local bit lines also isolates from one another respective memory cells of the non-volatile data storage device such that leakage currents cannot flow from memory cells connected to a first of the immediately adjacent and isolated-from-one-another local bit lines to memory cells connected to the second of the pair of immediately adjacent and isolated-from-one-another local bit lines. A method programming a desire one of the memory cells includes applying boosting voltages to word lines adjacent to the bit line of the desired memory cell while not applying boosting voltages to word lines adjacent to the other bit line of the pair.
US09608040B2 Memory device and method of fabricating the same
A memory device including a substrate, an insulating layer on the substrate, the insulating layer including a first region having a first top surface and a second region having a second top surface, the second top surface being lower than the first top surface with respect to the substrate, the first region including a first through hole penetrating therethrough, the second region including a second through hole penetrating therethrough, a first conductive pattern filling the first through hole, a second conductive pattern at least partially filling the second through hole, a magnetic tunnel junction pattern on the first conductive pattern, and a contact plug coupled to the second conductive pattern may be provided. Further, a method of fabricating the memory device also may be provided.
US09608039B1 Magnetic junctions programmable using spin-orbit interaction torque in the absence of an external magnetic field
A magnetic memory including a plurality of magnetic junctions and at least one spin-orbit interaction (SO) active layer is described. Each of the magnetic junctions includes a reference layer, a free layer and a nonmagnetic spacer layer between reference and free layers. The magnetic junction includes a biasing structure for providing a magnetic bias in a first direction and/or the free layer has a length in the first direction and a width in a second direction. The width is less than the length. The SO active layer(s) are adjacent to the free layer and carry a current in a third direction. The third direction is at a nonzero acute angle from the first direction. The SO active layer(s) exerts a SO torque on the free layer due to the current passing through the at least one SO active layer. The free layer is switchable using the SO torque.
US09608038B2 Magnetic tunnel junction (MTJ) memory element having tri-layer perpendicular reference layer
The present invention is directed to an STT-MRAM device comprising a plurality of memory elements. Each of the memory elements includes an MTJ structure in between a seed layer and a cap layer. The MTJ structure includes a magnetic free layer structure and a magnetic reference layer structure with an insulating tunnel junction layer interposed therebetween; and a magnetic fixed layer separated from the magnetic reference layer structure by an anti-ferromagnetic coupling layer. The magnetic reference layer structure includes a first magnetic reference layer formed adjacent to the insulating tunnel junction layer and a second magnetic reference layer separated from the first magnetic reference layer by an intermediate magnetic reference layer. The first, second, and intermediate magnetic reference layers have a first invariable magnetization direction substantially perpendicular to layer planes thereof. The magnetic fixed layer has a second invariable magnetization direction that is opposite to the first invariable magnetization direction.
US09608034B2 Manufacturing method of back illumination CMOS image sensor device using wafer bonding
Disclosed is a manufacturing method of a semiconductor device including a step of attaching semiconductor wafers together, in which it is prevented that the bonding strength between the attached semiconductor wafers may be decreased due to a void caused between the two semiconductor wafers. Moisture, etc., adsorbed to the surfaces of the semiconductor wafers is desorbed by performing a heat treatment on the semiconductor wafers after cleaning the surfaces thereof with pure water. Subsequently, after a plasma treatment is performed on the semiconductor wafers, the two semiconductor wafers are attached together. The wafers are firmly bonded together by subjecting to a high-temperature heat treatment.
US09608031B2 Method for manufacturing solid-state image sensor
A method for manufacturing a solid-state image sensor, the method comprising preparing a substrate including a photoelectric conversion portion, forming, on the substrate, a structure which includes a first member made of a material containing silicon oxide and a second member arranged on the first member and made of a material containing silicon carbide, forming an opening in a position above the photoelectric conversion portion in the structure by removing a part of the first and the second members, and forming a transparent member in the opening, wherein the second member is formed at a first temperature and the transparent member is formed at a second temperature lower than the first temperature.
US09608030B2 Solid-state imaging apparatus, method of manufacturing the same, and electronic apparatus
A solid-state imaging apparatus includes an imaging region in which pixels are arranged, a connection region that surrounds the imaging region and includes an electrode pad, and an in-layer lens that is formed in the imaging region for each of the pixels. The in-layer lens is formed of a coating-type high-refractive-index material. The connection region includes an opening that is formed such that an upper surface of the electrode pad is exposed from the high-refractive-index material applied to the electrode pad.
US09608029B2 Optical package with recess in transparent cover
Embodiments of the present invention are directed to optical packages having a cover made of transparent material with a recess formed therein and methods of forming same. The recess may be formed in a periphery portion of the transparent material and may have various shapes and configurations. Adhesive is provided in at least a portion of the recess of the transparent material, which secures the transparent material to an image sensor.
US09608028B2 Image sensor and method for manufacturing same
Disclosed is an image sensor, which is characterized by increased strength of adhesion between a photoconductive layer and a front electrode made of aluminum, and which includes a first electrode composed of aluminum, copper or an aluminum-copper alloy on a substrate, a buffer layer formed on the first electrode, a photoconductive layer formed on the buffer layer, and a second electrode formed on the photoconductive layer, wherein the buffer layer includes a material having higher strength of adhesion than the photoconductive layer to the first electrode.
US09608027B2 Stacked embedded SPAD image sensor for attached 3D information
A pixel array includes a plurality of visible light pixels arranged in the pixel array. Each one of the plurality of visible light pixels includes a photosensitive element arranged in a first semiconductor die to detect visible light. Each one of the plurality of visible light pixels is coupled to provide color image data to visible light readout circuitry disposed in a second semiconductor die stacked with and coupled to the first semiconductor die in a stacked chip scheme. A plurality of infrared (IR) pixels arranged in the pixel array. Each one of the plurality of IR pixels includes a single photon avalanche photodiode (SPAD) arranged in the first semiconductor die to detect IR light. Each one of the plurality of visible light pixels is coupled to provide IR image data to IR light readout circuitry disposed in the second semiconductor die.
US09608025B2 Imaging apparatus and imaging system
Provided is an imaging apparatus includes: a substrate; a photoelectric conversion unit configured to generate a signal charge by photoelectric conversion; a contact wiring of a conductor electrically connected to the photoelectric conversion unit; a transistor including a control electrode, a first main electrode electrically connected to the contact wiring, and a second main electrode; a charge accumulating unit provided in the substrate and electrically connected to the second main electrode of the transistor; and a first switching unit configured to switch connection and disconnection between the control electrode and the first main electrode of the transistor.
US09608024B2 CMOS image sensor for reducing dead zone
An image sensor such as a complementary metal-oxide-semiconductor (CMOS) image sensor and a method of manufacturing the same are provided. The CMOS image sensor includes: a semiconductor substrate including a first surface and a third surface formed by removing a part of the semiconductor substrate from a second surface opposite to the first surface; a plurality of active regions which are formed between the first surface and the third surface and each of which includes a photoelectric conversion element generating charges in response to light input through the third surface; and an isolation region vertically formed from either of the first and third surfaces to isolate the active regions from one another. When the CMOS image sensor is viewed from the above of the third surface, each of the active regions may have round corners and concave sides.
US09608023B1 Edge reflection reduction
An image sensor package includes an image sensor with a pixel array disposed in a semiconductor material, and a transparent shield adhered to the semiconductor material. The pixel array is disposed between the semiconductor material and the transparent shield. A light blocking layer is disposed in recessed regions of the transparent shield, and the recessed regions are disposed on an illuminated side of the transparent shield. The light blocking layer is disposed to prevent light from reflecting off edges of the transparent shield into the image sensor.
US09608021B2 Image sensor and method for manufacturing thereof
An image sensor is provided including a substrate, an array of photosensitive units, a grid, a light-tight layer and a plurality of color filters. In the image sensor, the grid has a top surface, and the light-tight layer is disposed on the top surface of the grid. Due to the light-tight layer on the grid, an incident light entering into the grid can be blocked by the light-tight layer, so that the crosstalk effect is reduced significantly. Further, a method for manufacturing the image sensor also provides herein.
US09608020B2 Imaging element mounting substrate and imaging device
An imaging element mounting substrate includes: an insulating base comprising insulating layers, the insulating base surface comprising an opening which is located at a center thereof; a connection electrode disposed at a lower surface of the insulating base around the opening; and light-transmission control layers between the insulating layers, and comprising inner edges located on an outside of the opening. An inner edge of one light-transmission control layer lies closer to the opening than an inner edge of another light-transmission control layer as seen in a transparent plan view, and the insulating base has, in an inner periphery of the opening of an insulating layer constituting a lower surface of the insulating base, an inclined portion which is inclined such that the opening becomes smaller in size from the lower surface as approaching an upper surface of the insulating base.
US09608016B2 Method of separating a wafer of semiconductor devices
A method according to embodiments of the invention includes providing a wafer comprising a semiconductor structure grown on a growth substrate. The semiconductor structure includes a light emitting layer disposed between an n-type region and a p-type region. The wafer includes trenches defining individual semiconductor devices. The trenches extend through an entire thickness of the semiconductor structure to reveal the growth substrate. The method further includes forming a thick conductive layer on the semiconductor structure. The thick conductive layer is configured to support the semiconductor structure when the growth substrate is removed. The method further includes removing the growth substrate.
US09608011B2 Thin-film transistor and fabricating method thereof, array substrate and display apparatus
The present invention discloses a thin-film transistor and a fabricating method thereof, an array substrate and a display apparatus. An active layer in the thin-film transistor comprises a first active layer and a second active layer which are stacked; wherein, an orthographic projection of the first active layer on the substrate covers orthographic projections of the source electrode, the drain electrode as well as a gap located between the source electrode and the drain electrode on the substrate, and covers an orthographic projection of the gate electrode on the substrate; the second active layer is located at the gap between the source electrode and the drain electrode, and an orthographic projection of the second active layer on the substrate is located in a region where the orthographic projection of the gate electrode on the substrate is located.
US09608009B2 Display device and method of fabricating the same
A disclosed display device includes a first oxide semiconductor layer and an oxide semiconductor connection wire both formed from an oxide semiconductor material layer over a substrate. The oxide semiconductor connection wire is integrally connected to the first oxide semiconductor layer and has a lower sheet resistance than the first oxide semiconductor layer. The display device also includes a first gate electrode either over the first oxide semiconductor layer or between the first oxide semiconductor layer and the substrate. The display device further includes a first gate insulation layer between the first oxide semiconductor layer and the first gate electrode.
US09608006B2 Semiconductor device and touch panel
A touch panel whose power consumption can be reduced is provided, and an increase in the manufacturing cost of the touch panel is prevented. A photosensor which includes a light-receiving element including a non-single-crystal semiconductor layer between a pair of electrodes and a transistor including an oxide semiconductor layer in a channel formation region is provided. A touch panel which includes a plurality of pixels and the photosensor adjacent to at least one of the plurality of pixels is provided. Each of the plurality of pixels includes a pair of terminals. One of the pair of terminals is a reflective conductive film. Alternatively, each of the pair of terminals is a light-transmitting conductive film.
US09608002B2 Semiconductor memory device and method for manufacturing same
According to one embodiment, the stacked body includes a plurality of stacked units and a first intermediate layer. Each of the stacked units includes a plurality of electrode layers and a plurality of insulating layers. Each of the insulating layers is provided between the electrode layers. The first intermediate layer is provided between the stacked units. The first intermediate layer is made of a material different from the electrode layers and the insulating layers. The plurality of columnar portions includes a channel body extending in a stacking direction of the stacked body to pierce the stacked body, and a charge storage film provided between the channel body and the electrode layers.
US09607996B2 Semiconductor device
A semiconductor device includes a memory transistor (10A) which is capable of being irreversibly changed from a semiconductor state where drain current Ids depends on gate voltage Vg to a resistor state where drain current Ids does not depend on gate voltage Vg. The memory transistor (10A) includes a gate electrode (3), a metal oxide layer (7), a gate insulating film (5), and source and drain electrodes. The drain electrode (9d) has a multilayer structure which includes a first drain metal layer (9d1) and a second drain metal layer (9d2), the first drain metal layer (9d1) being made of a first metal whose melting point is not less than 1200° C., the second drain metal layer (9d2) being made of a second metal whose melting point is lower than that of the first metal. Part P of the drain electrode 9d extends over both the metal oxide layer (7) and the gate electrode (3) when viewed in a direction normal to a surface of the substrate. The part (P) of the drain electrode (9d) includes the first drain metal layer (9d1) and does not include the second drain metal layer (9d2).
US09607983B2 Semiconductor device
A semiconductor device is formed, the semiconductor device including: an SOI substrate; field insulating films that are formed on the SOI substrate and that separate a plurality of element formation regions; first and second HV pMOSs, and first and second LV pMOSs that are formed in the plurality of element formation regions; a first interlayer insulating film and a second interlayer insulating film formed on the SOI substrate; a mold resin formed on the second interlayer insulating film; and conductive films that are formed on the first interlayer insulating film and that are interposed between the plurality of element formation regions, and the field insulating films and mold resin.
US09607977B1 Electrostatic discharge protection device and method for producing an electrostatic discharge protection device
An electrostatic discharge protection device includes an anode, a cathode, a negative voltage holding transistor and a positive voltage holding transistor. The anode is coupled to an input terminal, and the cathode is coupled to a ground. The negative voltage holding transistor includes an N-well. The positive voltage holding transistor includes an N-well. The N-well of the positive voltage holding transistor and the N-well of the negative voltage holding transistor are coupled together and are float. The negative voltage holding transistor and the positive voltage holding transistor are coupled between the anode and the cathode in a manner of back-to-back.
US09607975B2 Semiconductor device and wireless tag using the same
In a wireless tag with which a wireless communication system whose electric power of a carrier wave from a R/W is high, an overvoltage protection circuit is provided to prevent from generating excessive electric power in the wireless tag when the wireless tag receives excessive electric power. However, as noise is generated by operation of the overvoltage protection circuit, an error of reception occurs in receiving a signal whose modulation factor is small. To solve the problem, the maximum value of generated voltage in the wireless tag is held in a memory circuit after the overvoltage protection circuit operates, then the overvoltage protection circuit is controlled in accordance with the maximum value of generated voltage. The voltages at which the overvoltage protection circuit starts and stops operating are different from each other, and hysteresis occurs between the timing when the overvoltage protection circuit starts and stops operating.
US09607961B2 Semiconductor device
A semiconductor device includes a semiconductor substrate, a front surface electrode provided on a front surface of the semiconductor substrate, a solder layer, and a metal member fixed to a front surface of the front surface electrode via the solder layer. The solder layer includes an inner solder portion positioned inner than an end portion of the metal member and an outer solder portion positioned outer than the end portion of the metal member, relative to a direction along the front surface of the semiconductor substrate. The semiconductor substrate includes an inner substrate portion positioned below the inner solder portion and an outer substrate portion positioned below the outer solder portion. A density of carriers that flow from the outer substrate portion to the front surface electrode is lower than a density of carriers that flow from the inner substrate portion to the front surface electrode.
US09607955B2 Contact pad
The present disclosure relates to forming multi-layered contact pads for a semiconductor device, wherein the various layers of the contact pad are formed using one or more thin-film deposition processes, such as an evaporation process. Each contact pad includes an adhesion layer, which is formed over the device structure for the semiconductor device; a titanium nitride (TiN) barrier layer, which is formed over the adhesion layer; and an overlay layer, which is formed over the barrier layer. At least the titanium nitride (TiN) barrier layer is formed using an evaporation process.
US09607946B2 Reverse damascene process
The present disclosure relates to a method of forming a back-end-of-the-line metallization layer. The method is performed by forming a plurality of freestanding metal layer structures (i.e., metal layer structures not surrounded by a dielectric material) on a semiconductor substrate within an area defined by a patterned photoresist layer. A diffusion barrier layer is deposited onto the metal layer structure in a manner such that the diffusion barrier layer conforms to the top and sides of the metal layer structure. A dielectric material is formed on the surface of the substrate to fill areas between metal layer structures. The substrate is planarized to remove excess metal and dielectric material and to expose the top of the metal layer structure.
US09607942B2 Semiconductor device with patterned ground shielding
Semiconductor devices and methods of formation are provided herein. A semiconductor device includes a first inductor, a patterned ground shielding (PGS) proximate the first inductor comprising one or more portions and a first switch configured to couple a first portion of the PGS to a second portion of the PGS. The semiconductor device also has a configuration including a first inductor on a first side of the PGS, a second inductor on a second side of the PGS and a first switch configured to couple a first portion of the PGS to a second portion of the PGS. Selective coupling of portions of the PGS by activating or deactivating switches alters the behavior of the first inductor, or the behavior and interaction between the first inductor and the second inductor. A mechanism is thus provided for selectively configuring a PGS to control inductive or other properties of a circuit.
US09607938B2 Integrated circuit packaging system with embedded pad on layered substrate and method of manufacture thereof
An integrated circuit packaging system and method of manufacture thereof includes: a dielectric core having an embedded pad; a top solder resist layer on the dielectric core, a pad top surface of the embedded pad below the top solder resist layer; a device interconnect attached to the embedded pad; and an integrated circuit device having an interconnect pillar, the interconnect pillar attached to the device interconnect for mounting the integrated circuit device to the dielectric core.
US09607932B2 Semiconductor device
A semiconductor device is disclosed. The semiconductor device has a semiconductor chip, an island having an upper surface to which the semiconductor chip is bonded, a lead disposed around the island, a bonding wire extended between the surface of the semiconductor chip and the upper surface of the lead, and a resin package sealing the semiconductor chip, the island, the lead, and the bonding wire, while the lower surface of the island and the lower surface of the lead are exposed on the rear surface of the resin package, and the lead is provided with a recess concaved from the lower surface side and opened on a side surface thereof.
US09607926B2 Probe pad design to reduce saw defects
An integrated circuit wafer and fabrication method includes a probe pad structure in saw lanes between integrated circuits. The probe pad structure includes a probe pad with a plurality of pad segments. The pad segments are elements of an interconnect level of the wafer.
US09607925B2 Semiconductor device for verifying operation of through silicon vias
A semiconductor device may include: a plurality of output paths, which include a plurality of through silicon vias (TSVs), respectively, and suitable for transmission of test confirmation information; an information provider suitable for providing the test confirmation information to the plurality of TSVs; and an output controller suitable for selectively blocking one of the output paths including a failed one among the plurality of TSVs.
US09607924B2 Power semiconductor module and method for cooling power semiconductor module
The present disclosure relates to a power semiconductor module comprising a printed circuit board (PCB), and to method of cooling such a power semiconductor module. The module comprises a power semiconductor device and an island of thermally conducting foam embedded into the printed circuit board. The power semiconductor device and the island of thermally conducting foam are positioned on top of each other, and the island is arranged to form a path for a flowing coolant cooling the power semiconductor device.
US09607923B2 Electronic device having a thermal conductor made of silver between a heat sink and an electronic element, and fabrication method thereof
An electronic device is provided, which includes an electronic element and a heat dissipating element disposed on the electronic element through a thermal conductor, wherein a width of the thermal conductor is smaller than a width of the electronic element. The thermal conductor includes silver to thereby greatly increase the thermal conductivity of the thermal conductor and hence improve the thermal conduction efficiency of the electronic device.
US09607918B2 Fan-out wafer level packages containing embedded ground plane interconnect structures and methods for the fabrication thereof
Fan-Out Wafer Level Packages (FO-WLPs) and methods for fabricating FO-WLPs containing Embedded Ground Planes (EGPs) and backside EGP interconnect structures are provided. In one embodiment, the method includes electrically coupling an EGP to a backside terminal of a first microelectronic device through a backside EGP interconnect structure. A molded package body is formed around the first microelectronic device, the EGP, and the EGP interconnect structure. The molded package body has a frontside at which the EGP is exposed. One or more Redistribution Layers are formed over the frontside of the molded packaged body and contain at least one interconnect line electrically coupled to the backside contact through the EGP and the backside EGP interconnect structure.
US09607915B2 Through substrate vias and device
Method of making through-substrate-vias in glass substrates includes providing a first substrate on which a plurality of needles protruding vertically from the substrate are made; providing a second substrate made of glass; locating the substrates adjacent each other such that the needles on the first substrate face the second substrate; applying heat to a temperature where the glass softens, by heating the glass or the needle substrate or both; applying a force such that the needles on the first substrate penetrate into the glass to provide impressions in the glass; and finally, removing the first substrate and providing material filling the impressions in the second substrate made of glass. A device includes a silicon substrate having a cavity in which a MEMS component is accommodated, and a cap wafer made of a material having a low dielectric constant, and through substrate vias of metal, is bonded to the silicon substrate.
US09607912B2 Integrated circuit comprising at least an integrated antenna
An integrated circuit on a substrate includes a peripheral portion that surrounds an active area and is positioned close to a scribe line providing separation with other integrated circuits realized on a same wafer. The integrated circuit includes at least one conductive structure that extends in the peripheral portion on different planes of metallizations starting from the substrate and forms an integrated antenna. Magnetic trench structures are provided adjacent the integrated antenna.
US09607906B2 Integrated circuit chip with corrected temperature drift
An integrated circuit chip includes trenches at least partially surrounding a critical portion of a circuit that is sensitive to temperature variations. The trenches are locally interrupted in order to permit circuit connections to pass between the critical portion and an outer portion containing a remainder of the circuit. The critical portion includes heating resistors and a temperature sensor.
US09607904B2 Atomic layer deposition of HfAlC as a metal gate workfunction material in MOS devices
ALD of HfxAlyCz films using hafnium chloride (HfCl4) and Trimethylaluminum (TMA) precursors can be combined with post-deposition anneal processes and ALD liners to control the device characteristics in high-k metal-gate devices. Variation of the HfCl4 pulse time allows for control of the Al % incorporation in the HfxAlyCz film in the range of 10-13%. Combinatorial process tools can be employed for rapid electrical and materials characterization of various materials stacks. The effective work function (EWF) in metal oxide semiconductor capacitor (MOSCAP) devices with the HfxAlyCz work function layer coupled with ALD deposited HfO2 high-k gate dielectric layers was quantified to be mid-gap at ˜4.6 eV. Thus, HfxAlyCz is a promising metal gate work function material allowing for the tuning of device threshold voltages (Vth) for anticipated multi-Vth integrated circuit (IC) devices.
US09607899B1 Integration of vertical transistors with 3D long channel transistors
A method for integrating a vertical transistor and a three-dimensional channel transistor includes forming narrow fins and wide fins in a substrate; forming a first source/drain (S/D) region at a base of the narrow fin and forming a gate dielectric layer and a gate conductor layer over the narrow fin and the wide fin. The gate conductor layer and the gate dielectric layer are patterned to form a vertical gate structure and a three-dimensional (3D) gate structure. Gate spacers are formed over sidewalls of the gate structures. A planarizing layer is deposited over the vertical gate structure and the 3D gate structure. A top portion of the narrow fin is exposed. S/D regions are formed on opposite sides of the 3D gate structure to form a 3D transistor, and a second S/D region is formed on the top portion of the narrow fin to form a vertical transistor.
US09607895B2 Silicon via with amorphous silicon layer and fabrication method thereof
A method is provided for fabricating a semiconductor structure. The method includes providing a substrate having an upper surface and a bottom surface; and forming a deep hole in the substrate from the upper surface. The method also includes forming an amorphous silicon layer on a side surface and a bottom surface of the deep hole to promote a preferred crystal orientation in subsequently formed layers. Further, the method includes forming a barrier layer having a preferred orientation along the (111) crystal face on the barrier layer. Further, the method also includes forming a metal layer having a preferred orientation along the (111) crystal face on the barrier layer to fill the through hole.
US09607888B2 Integration of ALD barrier layer and CVD Ru liner for void-free Cu filling
Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
US09607884B2 Semiconductor device and method of manufacturing the same
Manufacturing stability of a semiconductor device is improved. A method of manufacturing a semiconductor device includes the steps of: forming an etching stopper film over a first interlayer insulating film; forming an inorganic insulating film over the etching stopper film; forming a resist film over the inorganic insulating film; selectively etching the etching stopper film and the inorganic insulating film by using the resist film as a mask to form a first opening in the etching stopper film and to form a second opening in the inorganic insulating film; removing the resist film by O2 plasma ashing; forming a second interlayer insulating film over the inorganic insulating film; and etching the second interlayer insulating film to form a wiring groove that is coupled to the second opening, and etching a portion located under the first opening of the first interlayer insulating film to form a via hole.
US09607871B2 EFEM system and lid opening/closing method
An object is to prevent down flow gas from entering into a pod in an open state in an EFEM system. An upper canopy is provided along the upper edge of an opening portion on the mini-environment side to block down flow along the opening portion. The upper canopy provides a space in which inert gas supplied through a supply port provided in the pod flows into the mini-environment through the opening of the pod after circulating inside the pod. The down flow has no effect in this space, and the entrance of down flow into the pod can be prevented.
US09607870B2 Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flash of light
A flash heating part in a heat treatment apparatus includes 30 built-in flash lamps, and irradiates a semiconductor wafer held by a holder in a chamber with a flash of light. Thirty switching elements are provided in a one-to-one correspondence with the 30 flash lamps. Each of the switching elements defines the waveform of current flowing through a corresponding one of the flash lamps by intermittently supplying electrical charge thereto. Radiation thermometers measure an in-plane temperature distribution of the semiconductor wafer during flash irradiation. Based on the results of measurement with the radiation thermometers, a controller individually controls the operations of the 30 switching elements to individually define the light emission patterns of the 30 flash lamps.
US09607866B2 Capacitive coupling plasma processing apparatus and method for using the same
A plasma processing apparatus includes a process container configured to accommodate a target substrate and to be vacuum-exhausted. A first electrode and a second electrode are disposed opposite each other within the process container. The first electrode includes an outer portion and an inner portion both facing the second electrode such that the outer portion surrounds the inner portion. An RF power supply is configured to apply an RF power to the outer portion of the first electrode. A DC power supply is configured to apply a DC voltage to the inner portion of the first electrode. A process gas supply unit is configured to supply a process gas into the process container, wherein plasma of the process gas is generated between the first electrode and the second electrode.
US09607865B2 Substrate processing device and substrate processing method
A substrate processing device 100 includes a cleaning liquid supply unit 114 supplying a cleaning liquid to a surface of a substrate W, a solvent supply unit 115 supplying a volatile solvent to the surface of the substrate W supplied with the cleaning liquid to replace the cleaning liquid on the surface of the substrate W with the volatile solvent, a heating unit 117 heating the substrate W supplied with the volatile solvent, and a drying unit 118 drying the surface of the substrate W by removing a droplet of the volatile solvent produced on the surface of the substrate W by a heating operation of the heating unit 117, and the heating unit 117 and the drying unit 118 are arranged in a course of transportation of the substrate W transported from the solvent supply unit 115.
US09607862B2 Extrusion-resistant solder interconnect structures and methods of forming
Various embodiments include methods of forming interconnect structures, and the structures formed by such methods. In one embodiment, a method can include: providing a precursor interconnect structure having: a photosensitive polyimide (PSPI) layer; a controlled collapse chip connection (C4) bump overlying the PSPI layer; and a solder overlying the C4 bump and contacting a side of the C4 bump. The method can further include recessing a portion of the PSPI layer adjacent to the C4 bump to form a PSPI pedestal under the C4 bump. The method can additionally include forming an underfill abutting the PSPI pedestal and the C4 bump, wherein the underfill and the solder form an interface separated from the PSPI pedestal.
US09607858B2 Low resistance contacts for semiconductor devices
The invention provides a method of forming at least one Metal Germanide contact on a substrate for providing a semiconducting device (100) by providing a first layer (120) of Germanium (Ge) and a second layer of metal. The invention provides a step of reacting the second layer with the first layer with high energy density pulses for obtaining a Germanide metal layer (160A) having a substantially planar interface with the underlying first (Ge) layer.
US09607854B2 Methods to reduce debonding forces on flexible semiconductor films disposed on vapor-releasing adhesives
A method comprises providing a handle substrate having a front surface and a back surface; providing a layer of flexible semiconductor material having a front surface and a back surface and an at least partially sacrificial backing layer stack on the back surface of the layer of flexible semiconductor material; bonding the front surface of the layer of flexible semiconductor material to the front surface of the handle substrate; removing at least a portion of the at least partially sacrificial backing layer stack from the back surface of the layer of flexible semiconductor material; opening outgassing paths through the layer of flexible semiconductor material; and processing the layer of flexible semiconductor material.
US09607853B2 Patterning method using metal mask and method of fabricating semiconductor device including the same patterning method
A patterning method using a metal mask includes sequentially forming a lower metal layer and an upper metal layer on an etching object layer, forming an upper metal mask, forming the upper metal mask including patterning the upper metal layer, forming a lower metal mask, forming the lower metal mask including patterning the lower metal layer using the upper metal mask, and patterning the etching object layer using the upper metal mask.
US09607851B2 Method for removing polysilicon protection layer on a back face of an IGBT having a field stop structure
Disclosed is a method for removing a polysilicon protection layer (12) on a back face of an IGBT having a field stop structure (10). The method comprises thermally oxidizing the polysilicon protection layer (12) on the back face of the IGBT until the oxidation is terminated on a gate oxide layer (11) located above the polysilicon protection layer (12) to form a silicon dioxide layer (13), and removing the formed silicon dioxide layer (13) and the gate oxide layer (11) by a dry etching process. The method for removing the protection layer is easier to control.
US09607844B2 Substrate processing method and substrate processing apparatus
The method includes holding a substrate horizontally with a holding and rotating mechanism; introducing processing liquid from a fluid introduction portion of, in a processing liquid pipe in which a processing liquid nozzle having a discharge port at a tip end is provided at one end, the other end of the processing liquid pipe into the processing liquid pipe so as to discharge the processing liquid from the discharge port toward the substrate; introducing, after stopping the processing liquid discharge step, a gas from the fluid introduction portion into the processing liquid pipe so as to extrude the processing liquid within the processing liquid pipe and within the processing liquid nozzle outwardly; and stopping, after starting the introduction of the gas, the introduction of the gas into the processing liquid pipe with the processing liquid being left within the processing liquid pipe and/or the processing liquid nozzle.
US09607842B1 Methods of forming metal silicides
A method of forming a metal silicide can include depositing an interface layer on exposed silicon regions of a substrate, where the interface layer includes a silicide forming metal and a non-silicide forming element. The method can include depositing a metal oxide layer over the interface layer, where the metal oxide layer includes a second silicide forming metal. The substrate can be subsequently heated to form the metal silicide beneath the interface layer, using silicon from the exposed silicon regions, the first silicide forming metal of the interface layer and the second silicide forming metal of the metal oxide layer.
US09607837B1 Method for forming silicon oxide cap layer for solid state diffusion process
A method for protecting a doped silicate glass layer includes: forming a doped silicate glass layer on a substrate in a reaction chamber by plasma-enhanced atomic layer deposition (PEALD) using a first RF power; and forming a non-doped silicate glass layer having a thickness of less than 4 nm on the doped silicate glass layer in the reaction chamber, without breaking vacuum, by plasma-enhanced atomic layer deposition (PEALD) using a second RF power, wherein the second RF power is at least twice the first RF power.
US09607835B2 Semiconductor device with biased feature
A transistor including a gate structure with a first portion and a second portion; the first and second portions each have a first edge and an opposing second edge that are substantially collinear. The gate structure also includes an offset portion interposing the first portion and the second portion. The offset portion has a third edge and an opposing fourth edge. The third edge and the fourth edge are non-collinear with the first and second edges of the first and second portions of the gate structure. For example, the offset portion is offset or shifted from the first and second portions.
US09607833B2 System and method for photomask particle detection
The method includes performing a photolithography process which includes using a photomask to pattern a radiation beam. The photolithography process also includes exposing a target substrate to the patterned radiation beam. During the exposing of the target surface, there is a real-time monitoring for particles incident or approximate the photomask.
US09607832B2 Epitaxial wafer manufacturing device and manufacturing method
Provided is an epitaxial wafer manufacturing device (1) that deposits and grows epitaxial layers on the surfaces of wafers W while supplying a raw material gas to a chamber, wherein a shield (12), arranged in close proximity to the lower surface of a top plate (3) so as to prevent deposits from being deposited on the lower surface of the top plate (3), is removably attached inside the chamber, has an opening (13) in the central portion thereof that forces a gas inlet (9) to face the inside of a reaction space K, and has a structure in which it is concentrically divided into a plurality of ring plates (16), (17) and (18) around the opening (13).
US09607831B2 Method for depositing an aluminium nitride layer
A method for depositing an aluminium nitride layer on a substrate is provided that comprises: providing a silicon substrate; placing the substrate in a vacuum chamber; conditioning a surface of the substrate by etching and providing a conditioned surface; depositing an aluminum film onto the conditioned surface of the substrate by a sputtering method under an atmosphere of Argon and depositing an epitaxial aluminium nitride layer on the aluminum film by a sputtering method under an atmosphere of Nitrogen and Argon.
US09607829B2 Method of surface functionalization for high-K deposition
A method of surface functionalization for high-k deposition is provided in several embodiments. The method provides interface layer growth with low effective oxide thickness and good nucleation behavior for high-k deposition. The method includes providing a substrate that is at least substantially free of oxygen on a surface of the substrate, forming an interface layer on the surface of the substrate by exposing the surface of the substrate to one or more pulses of ozone gas, modifying the interface layer by exposing the interface layer to one or more pulses of a treatment gas containing a functional group to form a functionalized interface layer terminated with the functional group, and depositing a high-k film on the functionalized interface layer.
US09607823B2 Protection method for protecting a silicide layer
The method includes the steps of: a) providing a stack including, successively, a substrate, a silicide layer formed on the substrate, and a silicon nitride layer covering at least the silicide layer, b) etching predefined regions of the silicon nitride layer in such a way as to expose at least areas of the silicide layer intended to form the electrical contacts, and c) depositing a protective layer on at least the areas of the silicide layer exposed in step b), the method not including a step of exposing the stack to moisture between step b) and step c), in particular moisture from the ambient air.
US09607818B2 Multimode ionization device
A multimode ionization device includes an electrospray unit, a charge generating unit, and a plasma supplying unit. The electrospray unit is configured to form an electrospray plume which travels along a traveling path. The charge generating unit is configured to permit a liquid electrospray medium to leave the electrospray unit as the electrospray plume. The plasma supplying unit can generate and guide a plasma plume to mix with the electrospray plume so as to obtain a plume combination in a confluent zone, and is oriented to permit at least one of analytes carried in the plume combination to travel to the receiving unit along a linearly-extending end zone of the traveling path.
US09607815B2 Low work-function, mechanically and thermally robust emitter for thermionic energy converters
Improved thermionic energy converters are provided by electrodes that include a silicon carbide support structure, a tungsten adhesion layer disposed on the silicon carbide support structure, and an activation layer disposed on the tungsten adhesion layer. The activation layer is a material that lowers the electrode work function, such as BaO, SrO and/or CaO.
US09607814B2 Photodetection unit and method for manufacturing same
In a photodetection unit 100 according to one aspect of the present invention, a photomultiplier 1 and a voltage divider board 132 are electrically connected to each other through a flexible wiring board 120, whereby the photomultiplier 1 can freely set its orientation and achieve a high degree of freedom of installation. In addition, in a voltage divider 130, an insulating resin 136 within a resin case 134 covers around the voltage divider board 132, thereby improving a voltage withstand performance of the voltage divider board 132. This eases restrictions on conditions under which the voltage divider board 132 is installed, whereby the degree of freedom of installation of the photodetection unit 100 is further improved as a whole, which makes it applicable to wider uses.
US09607813B2 Magnetic field generation apparatus and sputtering apparatus
Provided is a magnetic field generation apparatus including: two or more main magnetic pole portions configured to generate a main magnetic field; one or more secondary magnetic pole portions including a plurality of first divisional magnets obtained by a division, that generate a secondary magnetic field for adjusting the generated main magnetic field; and a yoke portion including one or more first yokes opposing the plurality of first divisional magnets in correspondence with the one or more secondary magnetic pole portions.
US09607810B2 Impedance-based adjustment of power and frequency
Systems and methods for impedance-based adjustment of power and frequency are described. A system includes a plasma chamber for containing plasma. The plasma chamber includes an electrode. The system includes a driver and amplifier coupled to the plasma chamber for providing a radio frequency (RF) signal to the electrode. The driver and amplifier is coupled to the plasma chamber via a transmission line. The system further includes a selector coupled to the driver and amplifier, a first auto frequency control (AFC) coupled to the selector, and a second AFC coupled to the selector. The selector is configured to select the first AFC or the second AFC based on values of current and voltage sensed on the transmission line.
US09607805B2 Apparatus of plural charged-particle beams
One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
US09607802B2 Apparatus and methods for aberration correction in electron beam based system
One embodiment relates to an apparatus for aberration correction in an electron beam lithography system. An inner electrode surrounds a pattern generating device, and there is at least one outer electrode around the inner electrode. Each of the inner and outer electrodes has a planar surface in a plane of the pattern generating device. Circuitry is configured to apply an inner voltage level to the inner electrode and at least one outer voltage level to the at least one outer electrode. The voltage levels may be set to correct a curvature of field in the electron beam lithography system. Another embodiment relates to an apparatus for aberration correction used in an electron based system, such as an electron beam inspection, or review, or metrology system. Other embodiments, aspects and features are also disclosed.
US09607800B1 High brightness electron impact ion source
An electron impact ion beam source is provided with a pressure chamber to confine a specific high pressure area within excited gas to a small enough volume that the source can be operated at relatively high pressure and still achieve substantial brightness of the extracted ion beam. In particular, the area is configured such that the overall linear dimension along the beam path is less than the mean free path of the ions and the electrons within the chamber. If pressure is increased, the linear dimension must be correspondingly decreased to maximized brightness. By keeping linear dimensions sufficiently small, both incident electrons and extracted ions are enabled to transit the source region without significant energy loss. The new source design allows operation at pressures at least an order of magnitude higher than other known ion sources and thus produces an order of magnitude higher brightness.
US09607797B2 Low movement trip and integrated signal flag for miniature circuit breakers
A circuit breaker includes a trip mechanism having reduced trip movement and an integrated signal flag. The trip mechanism includes a spring-biased trip lever and a latching member for keeping the trip lever in an on or latched position. Upon occurrence of an abnormal current condition, the latching member is moved away from the trip lever to trip the trip mechanism. The latching member also has a catch mechanism designed to catch the trip lever after it is released, thereby halting further progress of both the trip lever and the latching member. As a result, less space is needed within the circuit breaker for trip movement compared to existing solutions. Moreover, the location of the catch mechanism on the latching member is selected such that the halting of the latching member places the integrated signal flag in an optimal viewing position within a viewing window.
US09607793B2 Switch
A switch includes a fixed contact part including a fixed contact, a movable contact part including a movable contact, a control button, an operation part including a first end and a second end, and a lock. When the first end is pressed, the control button is pressed by the operation part, the movable contact touches the fixed contact, and the switch becomes an ON state. While the movable contact and the fixed contact are in contact with each other, a first protrusion of the lock touches an engaging part of the control button to limit movement of the control button and maintain the ON state. When the second end is pressed, the operation part touches a second protrusion of the lock and moves the lock in such a direction that the first protrusion moves away from the engaging part, and the switch becomes the OFF state.
US09607791B2 Operating device and electronic device using the same
An operating device and an electronic device using the same are provided. The operating device includes a base, an electronic circuit board, a lever and a slider. The base includes a bearer. The electronic circuit board is disposed on the base. The lever is disposed on the electronic circuit board. The slider is movably disposed on the sliding portion for triggering the lever.
US09607788B2 Compact contamination resistant push button switch
An appliance switch provides contacts protected within a housing that may fit coaxially within and behind a pushbutton of the switch. The pushbutton includes a rearwardly extending arm that actuates an operator extending from a rear edge of the switch as installed avoiding a water path into the contact assembly.
US09607787B2 Tactile feedback button for a hazard detector and fabrication method thereof
According to one embodiment, a casing of a hazard detector includes a body portion and a button portion. The button portion is coupled with the body portion via a plurality of arms. The arms allow the button portion to be axially movable relative to the body portion and also couple the button portion with the body portion so that tabs that extend radially outward from the button portion are positioned under and contact an inwardly facing surface of the body portion. The arms bias the button portion axially outward relative to the body portion so as maintain contact between the tabs and the inwardly facing surface. In this configuration, when the button portion is pressed at a position off-axis from a central axis of the button portion, the button portion pivots about one or more contact points between one or more tabs and the inwardly facing surface.
US09607786B2 Electronic switching device and system
The present invention is directed to an electronic switch device that includes a front cover assembly having a user interface, a back body assembly, and a plurality of terminals configured to be coupled to an AC power source and the load. A circuit assembly is coupled to the plurality of terminals. The circuit assembly includes a relay switch having a commutator and a set of contacts. The relay switch is characterized by a predetermined commutator period, the predetermined commutator period being substantially the commutator travel time between the set of contacts during a relay switch actuation. The circuit assembly further includes an actuation circuit configured to provide a constant current actuation signal that energizes the relay switch in response to an input stimulus via the user interface such that an end of the predetermined commutator period substantially coincides with a predetermined point in an AC power cycle.
US09607785B1 Temporary restriction of access to circuit breakers
A circuit breaker can actuate to a closed condition and to an open condition. An assembly for the circuit breaker can include an obstacle that can be positioned to obstruct one form of actuation while permitting another form of actuation. The obstacle can be moved from the obstructing position to allow multiple forms of actuation. The obstacle may permit manual actuation of the circuit to an open state in any position.
US09607781B2 Tap changer and vacuum interrupter for a tap changer of this kind
A tap changer for uninterrupted switching between winding taps of a tapped transformer has first and second load branches for each phase to be switched. Each load branch has a main vacuum switch and in parallel thereto a series connection of a switch-over resistance and a respective auxiliary vacuum switch. First and second vacuum switching tubes each contain the main vacuum switch of the respective first and second load branches and the auxiliary vacuum switch of the other of the load branches.
US09607780B2 Electrical contactor
An electrical contactor for switching a load current having an AC waveform, has a fixed electrical contact, a movable electrical contact, an actuator arrangement having a drive coil drivable for opening and closing the movable and fixed electrical contacts, and a power supply having a controller for outputting truncated-waveform drive pulses to the electrical actuator arrangement, so as to prevent contact separation prior to peak load current.
US09607777B2 Separator and electrochemical device
The present disclosure provides a separator and an electrochemical device, the separator is provided with a folded structure unit across a widthwise direction of the separator, and an overlapping part of the folded structure unit is filled with an adhesive. When the separator is applied into a production of the electrochemical device, a winding process can be performed as usual. After an electrolyte injection or high temperature aging of the electrochemical device, the adhesive filled in the folded structure unit of the separator may be dissolved into the electrolyte, the folded structure unit can be unfolded to a flat position again, so as to effectively eliminate deformation of the electrochemical device, which may be caused by thermal contraction of the separator, over stress in the separator wound in a cell, or the separator's binding on expansion of negative and positive electrodes, during operation and production of the electrochemical device.
US09607772B2 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
A porous electrode of the present invention is a porous electrode in which at least a first porous layer, an intermediate layer and a second porous layer are stacked on a substrate in this order, characterized in that the first porous layer and the second porous layer are formed of particles of the same material, and the first porous layer and the intermediate layer are formed of particles of different materials from each other. Preferably, the average particle diameter of the particles constituting the first porous layer differ in average particle diameter from the particles constituting the second porous layer.
US09607765B2 Composition for ceramic substrates and ceramic circuit component
A composition for ceramic substrates that includes a mixture of borosilicate glass powder and ceramic powder. The borosilicate glass powder contains 4% to 8% by weight B2O3, 38% to 44% by weight SiO2, 3% to 10% by weight Al2O3, and 40% to 48% by weight MO, where MO is at least one selected from CaO, MgO, and BaO. The mixing proportions of the borosilicate glass powder and the ceramic powder are 50% to 56% by weight the borosilicate glass powder and 50% to 44% by weight the ceramic powder. The ceramic powder has an average particle diameter D50 of 0.4 to 1.5 μm.
US09607762B2 Multilayer ceramic electronic part to be embedded in board and printed circuit board having multilayer ceramic electronic part embedded therein
There is provided a multilayer ceramic electronic part to be embedded in a board including: a ceramic body including dielectric layers; an active layer including a plurality of first and second internal electrodes; upper and lower cover layers disposed on and below the active layer, respectively; and first and second external electrodes formed on both end portions of the ceramic body, wherein a first internal electrode positioned at an outermost position among the first electrodes is connected to the first external electrode by at least one first via extended to at least one of first and second main surfaces of the ceramic body, and a second internal electrode positioned at an outermost position among the second internal electrodes is connected to the second external electrode by at least one second via extended to at least one of first and second main surfaces of the ceramic body.
US09607757B2 Non-contact wireless communication coil, transmission coil, and portable wireless terminal
A chargeable communication module is provided, which includes: a wireless power charging coil; a wireless communication coil being electrically isolated from the wireless power charging coil; and a magnetic body. The wireless power charging coil is disposed on a surface of the magnetic body. The wireless communication coil is arranged peripheral to the wireless power charging coil on the surface of the magnetic body.
US09607749B2 Split core current transformer
A sensing transformer includes a first transformer segment including a first magnetically permeable core having a sector having a planar cross-section bounded by a closed curve and having a first end and a second end. The first core includes a winding including at least one turn substantially encircling the cross-section of the core and a first segment housing enclosing the winding and a portion of the first core. A second transformer segment separable from the first transformer segment including a second magnetically permeable core having another sector having a third end and a fourth end.
US09607746B2 Electromagnetic actuator device
An electromagnetic actuator device has a coil unit (28, 58) enclosing a first yoke section (16, 56) of a stationary yoke unit (10, 54), an armature unit (14, 64) movably guided relative to the yoke unit (10, 54), by energization to interact with a positioning partner on the output side of the armature unit (14, 64) and permanent magnetic agents (22, 36, 68) coupled into a magnetic flux circuit of the yoke unit (10, 54) wherein de-energization of the coil unit (28, 58) a permanent magnetic flux circuit through the yoke unit (10, 54) and a section of the armature unit (14, 64) that is free of permanent magnetic flux and energization displaces the permanent magnetic flux, out of the section, wherein the armature unit (14), by spring force is pre-loaded in a direction opposed to permanent magnetic retaining force of the armature unit (14, 64) and the positioning partner is a combustion engine unit.
US09607745B2 Compact undulator system and methods
An undulator with a compact construction is provided that reduces weight, complexity and cost. The compact undulator system and methods provides mechanical integrity without compromising magnetic field quality.
US09607738B1 Cable having improved wires arrangement
A USB Type-C cable includes: a number of first wires and second wires, the first wires including a power wire for transmitting a power signal and plural coaxial wires for transmitting high speed signal, the second wires including at least one detective wire for transmitting detective signal, at least one power return wire for grounding, at least one twisted pair of wires for transmitting USB 2.0 signal, and at least one subsidiary wire for transmitting subsidiary signal; a jacket made of insulative material and receiving the first wires and the second wires; and a metal shield layer coating around the twisted pair of wires; wherein the first wires are arranged along an inner wall of the jacket in a circle and forms a cavity without a metal shield layer to receive the second wires, and the detective wire and the subsidiary wire are separated by the power return wire.
US09607737B2 Semiconductive polyolefin composition
A semiconductive polyolefin composition comprising (i) up to 80 wt. % of a polyolefin (I), (ii) carbon black, and (iii) up to 60 wt. % of a polymer (II) having a melting point of not less than 100° C., wherein the polyolefin (I) comprises two different ethylene copolymers: a first ethylene copolymer and second ethylene copolymer; wherein the first ethylene copolymer comprises polar group containing co-monomers in the amount of 3.5 mol % or less; and wherein the second ethylene copolymer comprises silane group containing co-monomers in the amount of 0.7 mol % or less.
US09607734B2 Shielded electrical ribbon cable with dielectric spacing
An electrical ribbon cable includes at least one conductor set having at least two elongated conductors extending from end-to-end of the cable. Each of the conductors are encompassed along a length of the cable by respective first dielectrics. A first and second film extend from end-to-end of the cable and are disposed on opposite sides of the cable The conductors are fixably coupled to the first and second films such that a consistent spacing is maintained between the first dielectrics of the conductors of each conductor set along the length of the cable. A second dielectric disposed within the spacing between the first dielectrics of the wires of each conductor set.
US09607733B2 Double-sided transparent conductive film and touch panel
A double-sided transparent conductive film including a base material film, having an anti-blocking layer, an optical adjusting layer and a transparent conductive layer formed in this order on each of both sides of the base material film, wherein an anti-blocking layer containing particles is formed at least one of: a location between the base material film and one optical adjusting layer; and a location between the base material film and the other optical adjusting layer, the anti-blocking layer has a flat portion and protrusion portions caused by the particles, and a value obtained by subtracting a thickness of the flat portion of the anti-blocking layer from a mode diameter of the particles is larger than a thickness of the optical adjusting layer.
US09607728B2 Electrically conductive, mesophase-separated olefin multiblock copolymer compositions
Free radically crosslinked, electrically conductive compositions exhibiting a highly stable volume resistivity comprise an olefin multiblock copolymer (OBC) having a high, e.g., greater than 20 mole percent comonomer content, e.g., butylene or octene, and carbon black. These compositions exhibit a highly stable volume resistivity relative to a composition similar in essentially all aspects save that the high comonomer OBC is replaced with a low comonomer OBC of similar density and melt index.
US09607726B2 Composition comprising silver nanowires
A composition for forming a conductive film. The composition comprises a plurality of nanowires comprising silver; a latex comprising polymer particles; and an aqueous-based carrier.
US09607721B2 Method of separating amorphous iron oxides
A method for separating amorphous iron oxides is provided. The method includes steps of sampling, filtering, dissolving and separating, analyzing the solution containing amorphous radioactive iron oxides and analyzing granules containing crystalline radioactive iron oxides. Characteristics of the radioactive iron oxides during various periods are acquired to solve the radiation buildup problem. Parameters for improving water quality and chemistry performance indicator are thus provided. Crystalline deposits are separated while the dissolving rate of radioactive iron oxides reaches more than 90%. The present invention does not use complex utilities, is easy to use and has a low operation cost for fast analysis.
US09607720B2 Long life high efficiency neutron generator
The design of a compact, high-efficiency, high-flux capable compact-accelerator fusion neutron generator (FNG) is discussed. FNG's can be used in a variety of industrial analysis applications to replace the use of radioisotopes which pose higher risks to both the end user and national security. High efficiency, long lifetime, and high power-handling capability are achieved though innovative target materials and ion source technology. The device can be scaled up for neutron radiography applications, or down for borehole analysis or other compact applications. Advanced technologies such as custom neutron output energy spectrum, pulsing, and associated particle imaging can be incorporated.
US09607717B2 Reliability screening of ferroelectric memories in integrated circuits
A data retention reliability screen of integrated circuits including ferroelectric random access memory (FRAM) arrays. A reference voltage level is determined for each integrated circuit being tested, corresponding to the read of a high polarization capacitance data state. A number of FRAM cells in the integrated circuit are programmed to that data state, and then read at an elevated temperature, with the number of failing cells compared against a pass/fail threshold to determine whether the integrated circuit is vulnerable to long-term data retention failure.
US09607715B1 Memory internal comparator testing system
In some embodiments, a system includes a memory testing circuit configured to perform a test of an internal comparator of a memory circuit by performing operations. The operations may include causing a first value to be stored at the memory circuit as a current data value. The operations may further include subsequently causing the first value to be sent to the memory circuit as a current comparison data value. The operations may further include causing the internal comparator to compare the current data value to the current comparison data value. The operations may further include receiving a current match value that indicates whether the current data value matches the current comparison data value. In some embodiments, the memory testing circuit may be configured to enable a self-test circuit to detect errors regarding functions of the memory circuit that the self-test circuit is not designed to test.
US09607709B2 Voltage generator, semiconductor memory device having the same, and method of operating semiconductor memory device
A voltage generator that includes an operation mode determination circuit suitable for determining an active mode or a standby mode based on a chip enable signal to activate an active mode signal or a standby mode signal according to a result of the determination; and a bulk voltage generation circuit outputting a bulk voltage having an internal power voltage when the active mode signal is activated, and outputting the bulk voltage having an external power voltage when the standby mode signal is activated.